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We consider the class of nonlinear optimal control problems (OCP) with polynomial data, i.e., the differential equation, state and control constraints and cost are all described by polynomials, and more generally for OCPs with smooth data. In addition, state constraints as well as state and/or action constraints are allowed. We provide a simple hierarchy of LMI (linear matrix inequality)-relaxations whose optimal values form a nondecreasing sequence of lower bounds on the optimal value. Under some convexity assumptions, the sequence converges to the optimal value of the OCP. Preliminary results show that good approximations are obtained with few moments.

INTRODUCTION

Solving a general nonlinear optimal control problem (OCP) is a difficult challenge, despite powerful theoretical tools are available, e.g., the maximum principle and Hamilton-Jacobi-Bellman (HJB) optimality equation. The problem is even more difficult in the presence of state and/or control constraints. State constraints are particularly difficult to handle, and the interested reader is referred to Capuzzo-Dolcetta and Lions [START_REF] Capuzzo-Dolcetta | Hamilton-Jacobi equations with state constraints[END_REF] and Soner [START_REF] Soner | Optimal control with state-space constraints[END_REF] for a detailed account of HJB theory in the case of state constraints. There exist many numerical methods to compute the solution of a given optimal control problem; for instance, multiple shooting techniques which solve two-point boundary value problems as described, e.g., in [START_REF] Stoer | Introduction to Numerical Analysis[END_REF][START_REF] Pesch | A practical guide to the solution of real-life optimal control problems[END_REF], or direct methods, as, e.g., in [START_REF] Stryk | Direct and indirect methods for trajectory optimization[END_REF][START_REF] Fletcher | Practical methods of optimization[END_REF][START_REF] Gill | Practical optimization[END_REF], which use, among others, descent or gradientlike algorithms. To deal with optimal control problems with state constraints, some adapted versions of the maximum principle have been developed (see [START_REF] Jacobson | New necessary conditions of optimality for control problems with state-variable inequality constraints[END_REF][START_REF] Maurer | On optimal control problems with bounded state variables and control appearing linearly[END_REF], and see [START_REF] Hartl | A survey of the maximum principles for optimal control problems with state constraints[END_REF] for a survey of this theory), but happen to be very hard to implement in general.

On the other hand, the OCP can be written as an infinite-dimensional linear program (LP) over two spaces of measures. This is called the weak formulation of the OCP in Vinter [START_REF] Vinter | Convex duality and nonlinear optimal control[END_REF] (stated in the more general context of differential inclusions). The two unknown measures are the state-action occupation measure (o.m.) up to the final time T , and the state o.m. at time T . The optimal value of the resulting LP always provides a lower bound on the optimal value of the OCP, and under some convexity assumptions, both values coincide; see Vinter [START_REF] Vinter | Convex duality and nonlinear optimal control[END_REF] and Hernandez-Hernandez et al. [START_REF] Hernandez-Hernandez | The linear programming approach to deterministic optimal control problems[END_REF] as well. See Gaitsgory and Rossomakhine [START_REF] Gaitsgory | Linear programming approach to deterministic long run average problems of optimal control[END_REF] for a more recent related work where, in addition, a numerical scheme is also defined for approximating an optimal control.

The dual of the original infinite dimensional LP has an interpretation in terms of "subsolutions" of related HJB-like optimality conditions, as for the unconstrained case. The only difference with the unconstrained case is the underlying function space involved, which directly incorporate the state constraints. Namely, the functions are only defined on the state constraint set .

An interesting feature of this LP approach with o.m.'s is that state constraints, as well as state and/or action constraints are all easy to handle; indeed they simply translate into constraints on the supports of the unknown o.m.'s. It thus provides an alternative to the use of maximum principles with state constraints. However, although this LP approach is valid for any OCP, solving the corresponding (infinitedimensional) LP is difficult in general; however, general LP approximation schemes based on grids have been proposed in, e.g., Hernandez and Lasserre [START_REF] Hernández-Lerma | Approximation schemes for infinite linear programs[END_REF].

This LP approach has also been used in the context of discrete-time Markov control processes, and is dual to Bellman's optimality principle. For more details the interested reader is referred to the convex analytic approach described in Borkar [START_REF] Borkar | Convex analytic methods in Markov decision processes[END_REF], Hernandez-Lerma and Lasserre [START_REF] Hernández-Lerma | Discrete-Time Markov Control Processes: Basic Optimality Criteria[END_REF][START_REF] Hernández-Lerma | Further Topics in Discrete-Time Markov Control Processes[END_REF][START_REF] Hernández-Lerma | The linear programming approach, In: Hanbook of Markov Decision Processes[END_REF] and many references therein. For some continuous-time stochastic control problems (e.g., modeled by diffusions) and optimal stopping problems, the LP approach has also been used with success to prove existence of stationary optimal policies; see for instance Bhatt and Borkar [START_REF] Bhatt | Occupation measures for controlled Markov processes: characterization and optimality[END_REF], Cho and Stockbridge [START_REF] Cho | Linear programming formulation for optimal stopping problems[END_REF], Helmes and Stockbridge [START_REF] Helmes | Numerical comparison of controls and verification of optimality for stochastic control problems[END_REF], Helmes et al. [START_REF] Helmes | Computing moments of the exit time distribution for Markov processes by linear programming[END_REF], Kurtz and Stockbridge [START_REF] Kurtz | Existence of Markov controls and characterization of optimal Markov controls[END_REF], and also Fleming and Vermes [START_REF] Fleming | Convex duality approach to the optimal control of diffusions[END_REF]. In some of these works, the moment approach is also used to approximate the resulting infinite-dimensional LP.

Contribution. In this paper, we consider the particular class of nonlinear OCP's with state and/or control constraints, for which all data describing the problem (dynamics, state and control constraints) are polynomials. The approach also extends to the case of problems with smooth data and compact sets, because polynomials are dense in the space of functions considered; this point of view is detailed in §4. In this restricted polynomial framework, the LP approach has interesting additional features that can be exploited for effective numerical computation. Indeed, what makes this LP approach attractive is that for the class of OCPs considered:

• Only the moments of the o.m.'s appear in the LP formulation, so that we already end up with countably many variables, a significant progress.

• Constraints on the support of the o.m.'s translate easily into either LP or SDP (Semi Definite Programming) necessary constraints on their moments. Even more, for (semi-algebraic) compact supports, relatively recent powerful results from real algebraic geometry make these constraints also sufficient.

• When truncating to finitely many moments, the resulting LP or SDP's are solvable and their optimal values form a monotone nondecreasing sequence (indexed by the number of moments considered) of lower bounds on the optimal value of the LP (and thus of the OCP).

Therefore, based on the above observations, we propose an approximation of the optimal value of the OCP via solving a hierarchy of SDPs (or linear matrix inequalities, LMIs) that provides a monotone nondecreasing sequence of lower bounds on the optimal value of the weak LP formulation of the OCP. In adddition, under some compactness assumption of the state and control constraint sets, the sequence of lower bounds is shown to converge to the optimal value of the LP, and thus the optimal value of the OCP when the former and latter are equal.

As such, it could be seen as a complement to the above shooting or direct methods, and when the sequence of lower bounds converges to the optimal value, a test of their efficiency. Finally this approach can also be used to provide a certificate of unfeasibility. Indeed, if in the hierarchy of LMI-relaxations of the minimum time OCP, one is infeasible then the OCP itself is infeasible. It turns out that sometimes this certificate is provided at an early stage in the hierarchy, i.e. with very few moments. This is illustrated on two simple examples.

In a pioneering paper, Dawson [START_REF] Dawson | Qualitative behavior of geostochastic systems[END_REF] had suggested the use of moments in the LP approach with o.m.'s, but results on the K-moment problem by Schmüdgen [START_REF] Schmüdgen | The K-moment problem for compact semi-algebraic sets[END_REF] and Putinar [START_REF] Putinar | Positive polynomials on compact semi-algebraic sets[END_REF] were not available at that time. Later, Helmes and Stockbridge [START_REF] Helmes | Numerical comparison of controls and verification of optimality for stochastic control problems[END_REF] and Helmes, Röhl and Stockbridge [START_REF] Helmes | Computing moments of the exit time distribution for Markov processes by linear programming[END_REF] have used LP moment conditions for computing some exit time moments in some diffusion model, whereas for the same models, Lasserre and Prieto-Rumeau [START_REF] Lasserre | LP relaxations for the moment approach in some performance evaluation problems[END_REF] have shown that SDP moment conditions are superior in terms of precision and number of moments to consider; in [START_REF] Lasserre | Pricing a class of exotic options via moments and SDP relaxations[END_REF], they have extended the moment approach for options pricing problems in some mathematical finance models. More recently, Lasserre, Prieur and Henrion [START_REF] Lasserre | Nonlinear optimal control: Numerical approximations via moments and LMI relaxations[END_REF] have used the o.m. approach for minimum time OCP without state constraint. Preliminary experimental results on Brockett's integrator example, and the double integrator show fast convergence with few moments.

Occupation measures and the LP approach

2.1. Definition of the optimal control problem. Let n and m be nonzero integers. Consider on R n the control system

(2.1) ẋ(t) = f (t, x(t), u(t)),
where f : [0, +∞)×R n ×R m -→ R n is smooth, and where the controls are bounded measurable functions, defined on intervals [0, T (u)] of R + , and taking their values in a compact subset U of R m . Let x 0 ∈ R n , and let X and K be compact subsets of R n . For T > 0, a control u is said admissible on [0, T ] whenever the solution x(•) of (2.1), such that x(0) = x 0 , is well defined on [0, T ], and satisfies

(2.2) (x(t), u(t)) ∈ X × U a.e. on [0, T ],
and

(2.3) x(T ) ∈ K.
Denote by U T the set of admissible controls on [0, T ]. For u ∈ U T , the cost of the associated trajectory x(•) is defined by

(2.4) J(0, T, x 0 , u) = T 0 h(t, x(t), u(t))dt + H(x(T )), where h : [0, +∞) × R n × R m -→ R and H : R n → R are smooth functions.
Consider the optimal control problem of determining a trajectory solution of (2.1, starting from x(0) = x 0 , satisfying the state and control constraints (2.2), the terminal constraint (2.3), and minimizing the cost (2.4). The final time T may be fixed or not.

If the final time T is fixed, we set (2.5) J * (0, T, x 0 ) := inf u∈U T J(0, T, x 0 , u), 

J * (0, x 0 ) := inf T >0, u∈U T J(0, T, x 0 , u),
Note that a particular OCP is the minimal time problem from x 0 to K, by letting h ≡ 1, H ≡ 0. In this particular case, the minimal time is the first hitting time of the set K.

It is possible to associate a stochastic or deterministic OCP with an abstract infinite dimensional linear programming (LP) problem P together with its dual P * (see for instance Hernández-lerma and Lasserre [START_REF] Hernández-Lerma | Discrete-Time Markov Control Processes: Basic Optimality Criteria[END_REF] for discrete-time Markov control problems, and Vinter [START_REF] Vinter | Convex duality and nonlinear optimal control[END_REF], Hernandez et al. [START_REF] Hernandez-Hernandez | The linear programming approach to deterministic optimal control problems[END_REF] for deterministic optimal control problems, as well as many references therein). We next describe this LP approach in the present context. 2.2. Notations and definitions. For a topological space X , let M(X ) be the Banach space of finite signed Borel measures on X , equipped with the norm of total variation, and denote by M(X ) + its positive cone, that is, the space of finite measures on X . Let C(X ) be the Banach space of bounded continuous functions on X , equipped with the sup-norm. Notice that when X is compact Hausdorff, then M(X ) ≃ C(X ) * , i.e., M(X ) is the topological dual of C(X ).

Let

R[x] = [x 1 , . . . x n ] (resp. R[t, x, u] = R[t, x 1 , . . . x n , u 1 , . . . , u m ]
) denote the set of polynomial functions of the variable x (resp., of the variables t, x, u).

Let Σ := [0, T ] × X, S := Σ × U, and let C 1 (Σ) be the Banach space of functions ϕ ∈ C(Σ) that are continuously differentiable. For ease of exposition we use the same notation g (resp. h) for a polynomial g ∈ R[t, x] (resp. h ∈ R[x]) and its restriction to the compact set Σ (resp. K).

Next, with u ∈ U, let A : C 1 (Σ) → C(S) be the mapping

(2.7) ϕ → Aϕ(t, x, u) := ∂ϕ ∂t (t, x) + f (t, x, u), ∇ x ϕ(t, x) .
Notice that ∂ϕ/∂t + ∇ x ϕ, f ∈ C(S) for every ϕ ∈ C 1 (Σ), because both X and U are compact, and f is understood as its restriction to S. Next, let L : C 1 (Σ) → C(S) × C(K) be the linear mapping

(2.8) ϕ → Lϕ := (-Aϕ, ϕ T ),
where ϕ T (x) := ϕ(T, x), for all x ∈ X. Obviously, L is continuous with respect to the strong topologies of C 1 (Σ) and C(S) × C(K).

Both (C(S), M(S)) and (C(K), M(K)) form a dual pair of vector spaces, with duality brackets

h, µ = h dµ, ∀ (h, µ) ∈ C(S) × M(S), and 
g, ν = g dν, ∀ (g, ν) ∈ C(K) × M(K) . Let L * : M (S) × M (K) → C 1 (Σ) * be the adjoint mapping of L, defined by (2.9) (µ, ν), Lϕ = L * (µ, ν), ϕ , for all ((µ, ν), ϕ) ∈ M (S) × M (K) × C 1 (Σ). Remark 2.1. (i)
The mapping L * is continuous with respect to the weak topologies σ(M(S) × M(K), C(S) × C(K)), and σ(C 1 (Σ) * , C 1 (Σ)).

(ii) Since the mapping L is continuous in the strong sense, it is also continuous with respect to the weak topologies σ(C 1 (Σ), C 1 (Σ) * ) and σ(C(S) × C(K), M(S) × M(K)). (iii) In the case of a free terminal time T ≤ T 0 , it suffices to redefine L :

C 1 (Σ) → C(S) × C([0, T 0 ] × K) by Lϕ := (-Aϕ, ϕ). The operator L * : M (S)×M ([0, T 0 ]×K) → C 1 (Σ) * is still defined by (2.9), for all ((µ, ν), ϕ) ∈ M (S) × M ([0, T 0 ] × K) × C 1 (Σ).
For time-homogeneous free terminal time problems, one only needs functions ϕ of x only, and so Σ = S = X × U and L : C 1 (Σ) → C(S) × C(K).

2.3.

Occupation measures and primal LP formulation. Let T > 0, and let u = {u(t), 0 ≤ t < T } be a control such that the solution of (2.1), with x(0) = x 0 , is well defined on [0, T ]. Define the probability measure ν u on R n , and the measure The measure µ u is called the occupation measure of the state-action (deterministic) process (t, x(t), u(t)) up to time T , whereas ν u is the occupation measure of the state x(T ) at time T . Remark 2.2. If the control u is admissible on [0, T ], i.e., if the trajectory x(•) satisfies the constraints (2.2) and (2.3), then ν u is a probability measure supported on K (i.e. ν u ∈ M(K) + ), and µ u is supported on [0, T ]×X×U (i.e. µ u ∈ M(S) + ). In particular, T = µ u (S).

µ u on [0, T ] × R n × R m , by ν u (D) := I D [x(T )], D ∈ B n , (2.10) µ u (A × B × C) := [0,T ]∩A I B×C [(x(t), u(t))] dt, (2.
Conversely, if the support of µ u is contained in S = [0, T ] × X × U and if µ u (S) = T , then (x(t), u(t)) ∈ X × U for almost every t ∈ [0, T ]. Indeed, with (2.11),

T = T 0 I X×U [(x(s), u(s))] ds ⇒ I X×U [(x(s), u(s))] = 1 a.e. in [0, T ], and hence (x(t), u(t)) ∈ X × U, for almost every t ∈ [0, T ]. If moreover the support of ν u is contained in K, then x(T ) ∈ K. Therefore, u is an admissible control on [0, T ].
Then, observe that the optimization criterion (2.5) now writes

J(0, T, x 0 , u) = K H dν u + S h dµ u = (µ u , ν u ), (h, H) ,
and one infers from (2.1), (2.2) and (2.3) that (2.12)

K g T dν u -g(0, x 0 ) = S ∂g ∂t + ∇ x g, f dµ u ,
for every g ∈ C 1 (Σ) (where g T (x) ≡ g(T, x) for every x ∈ K), or equivalently, in view of (2.8) and (2.9),

g, L * (µ u , ν u ) = g, δ (0,x0) , ∀g ∈ C 1 (Σ).
This in turn implies that

L * (µ u , ν u ) = δ (0,x0) .
Therefore, consider the infinite-dimensional linear program P (2.13) P : inf

(µ,ν)∈∆ { (µ, ν), (h, H) | L * (µ, ν) = δ (0,x0) }
(where ∆ := M(S) + × M(K) + ). Denote by inf P its optimal value and min P is the infimum is attained, in which case P is said to be solvable.

The problem P is said feasible if there exists (µ, ν) ∈ ∆ such that L * (µ, ν) = δ (0,x0) .
Note that P is feasible whenever there exists an admissible control.

The linear program P is a rephrasing of the OCP (2.1)-(2.5) in terms of the occupation measures of its trajectories (t, x(t), u(t)). Its dual LP reads (2.14)

P * : sup ϕ∈C1(Σ) { δ (0,x0) , ϕ | Lϕ ≤ (h, H)}
where

Lϕ ≤ (h, H) ⇔ Aϕ(t, x, u) + h(t, x, u) ≥ 0 ∀(t, x, u) ∈ S ϕ(T, x) ≤ H(x) ∀x ∈ K .
Denote by sup P * its optimal value and max P * is the supremum is attained, i.e. if P * is solvable. Discrete-time stochastic analogues of the linear programs P and P * are also described in Hernández-Lerma and Lasserre [START_REF] Hernández-Lerma | Discrete-Time Markov Control Processes: Basic Optimality Criteria[END_REF][START_REF] Hernández-Lerma | Further Topics in Discrete-Time Markov Control Processes[END_REF] for discrete time Markov control problems. Similarly see Cho and Stockbridge [START_REF] Cho | Linear programming formulation for optimal stopping problems[END_REF], Kurtz and Stockbridge [START_REF] Kurtz | Existence of Markov controls and characterization of optimal Markov controls[END_REF], and Helmes and Stcokbridge [START_REF] Helmes | Computing moments of the exit time distribution for Markov processes by linear programming[END_REF] for some continuous-time stochastic problems.

Theorem 2.3. If P is feasible, then:

(i) P is solvable, i.e., inf P = min P ≤ J(0, T, x 0 ). (ii) There is no duality gap, i.e., sup P * = min P.

(iii) If moreover, for every (t, x) ∈ Σ, the set f (t, x, U) ⊂ R n is convex, and the function

v → g t,x (v) := inf u∈U { h(t, x, u) : v = f (t, x, u)}
is convex, then the OCP (2.1)-(2.5) has an optimal solution and sup P * = inf P = min P = J * (0, T, x 0 ).

For a proof see §5.4. Theorem 2.3(iii) is due to Vinter [START_REF] Vinter | Convex duality and nonlinear optimal control[END_REF].

Semidefinite programming relaxations of P

The linear program P is infinite dimensional, and thus, not tractable as it stands. Therefore, we next present a relaxation scheme that provides a sequence of semidefinite programming, or linear matrix inequality relaxations (in short, LMIrelaxations) {Q r }, each with finitely many constraints and variables.

Assume that X and K (resp., U) are compact semi-algebraic subsets of R n (resp. of R m ), of the form

X := {x ∈ R n | v j (x) ≥ 0, j ∈ J}, (3.1) K := {x ∈ R n | θ j (x) ≥ 0, j ∈ J T }, (3.2) U := {u ∈ R m | w j (u) ≥ 0, j ∈ W }, (3.3)
for some finite index sets J T , J and W , where v j , θ j and w j are polynomial functions. Define

(3.4) d(X, K, U) := max j∈J1, l∈J, k∈W (deg θ j , deg v l , deg w k ).
To highlight the main ideas, in this section we assume that f , h and

H are polynomial functions, that is, h ∈ R[t, x, u], H ∈ R[x], and f : [0, +∞)×R n ×R m → R n is polynomial, i.e., every component of f satisfies f k ∈ R[t, x, u], for k = 1, . . . , n.
3.1. The underlying idea. Observe the following important facts.

The restriction of R[t, x] to Σ belongs to C 1 (Σ). Therefore,

L * (µ, ν) = δ (0,x0) ⇔ g, L * (µ, ν) = g(0, x 0 ), ∀g ∈ R[t, x],
because Σ being compact, polynomial functions are dense in C 1 (Σ) for the supnorm. Indeed, on a compact set, one may simultaneously approximate a function and its (continuous) partial derivatives by a polynomial and its derivatives, uniformly (see [START_REF] Hirsch | Differential topology[END_REF] pp. 65-66). Hence, the linear program P can be written

P : inf (µ,ν)∈∆ (µ, ν), (h, H) s.t. g, L * (µ, ν) = g(0, x 0 ), ∀g ∈ R[t, x],
or, equivalently, by linearity, (

P : inf (µ,ν)∈∆ (µ, ν), (h, H) s.t. Lg, (µ, ν) = g(0, x 0 ), ∀ g = (t p x α ); (p, α) ∈ N × N n . 3.5) 
The constraints of P,

(3.6) Lg, (µ, ν) = g(0, x 0 ), ∀ g = (t p x α ); (p, α) ∈ N × N n ,
define countably many linear equality constraints linking the moments of µ and ν, because if g is polynomial then so are ∂g/∂t and ∂g/∂x k , for every k, and ∇ x g, f . And so, Lg is polynomial. The functions h, H being also polynomial, the cost (µ, ν), (h, H) of the OCP (2.1)-(2.5) is also a linear combination of the moments of µ and ν.

Therefore, the linear program P in (3.5) can be formulated as a LP with countably many variables (the moments of µ and ν), and countably many linear equality constraints. However, it remains to express the fact that the variables should be moments of some measures µ and ν, with support contained in S and K respectively.

At this stage, one will make some (weak) additional assumptions on the polynomials that define the compact semi-algebraic sets X, K and U. Under such assumptions, one may then invoke recent results of real algebraic geometry on the representation of polynomials positive on a compact set, and get necessary and sufficient conditions on the variables of P to be indeed moments of two measures µ and ν, with appropriate support. We will use Putinar's Positivstellensatz [START_REF] Putinar | Positive polynomials on compact semi-algebraic sets[END_REF] described in the next section, which yields SDP constraints on the variables.

One might also use other representation results like, e.g., Krivine [START_REF] Krivine | Anneaux préordonnés[END_REF] and Vasilescu [START_REF] Vasilescu | Spectral measures and moment problems. Spectral Theory and Its Applications[END_REF], and obtain linear constraints on the variables (as opposed to SDP constraints). This is the approach taken in, e.g., Helmes et al. [START_REF] Helmes | Computing moments of the exit time distribution for Markov processes by linear programming[END_REF]. However, a comparison of the use of LP-constraints versus SDP constraints on a related problem [START_REF] Lasserre | LP relaxations for the moment approach in some performance evaluation problems[END_REF] has dictated our choice of the former.

Finally, if g in (3.6) runs only over all monomials of degree less than r, one then obtains a corresponding relaxation Q r of P, which is now a finite-dimensional SDP that one may solve with public software packages. At last, one lets r → ∞.

3.2. Notations, definitions and auxiliary results. For a multi-index α = (α 1 , . . . , α n ) ∈ N n , and for

x = (x 1 , . . . , x n ) ∈ R n , denote x α := x α1 1 • • • x αn n . Con- sider the canonical basis {x α } α∈N n (resp., {t p x α u β } p∈N,α∈N n ,β∈N m ) of R[x] (resp., of R[t, x, u]).
Given two sequences y = {y α } α∈N n and z = {z γ } γ∈N×N n ×N m of real numbers, define the linear functional L y : R[x] → R by

H(:= α∈N n H α x α ) → L y (H) := α∈N n H α y α ,
and similarly, define the linear functional

L z : R[t, x, u] → R by h → L z (h) := γ∈N×N n ×N m h γ z γ = p∈N,α∈N n ,β∈N m h pαβ z pαβ , where h(t, x, u) = p∈N,α∈N n ,β∈N m h pαβ t p x α u β .
Note that, for a given measure ν (resp., µ) on R (resp., on R × R n × R m ), there holds, for every

H ∈ R[x] (resp., for every h ∈ R[t, x, u]), ν, H = R Hdν = R H α x α dν = H α y α = L y (H),
where the real numbers y α = x α dν are the moments of the measure ν (resp., µ, h = L z (h), where z is the sequence of moments of the measure µ).

Definition 3.1. For a given sequence z = {z γ } γ∈N×N n ×N m of real numbers, the moment matrix M r (z) of order r associated with z, has its rows and columns indexed in the canonical basis {t p x α u β }, and is defined by

(3.7) M r (z)(γ, β) = z γ+β , γ, β ∈ N × N n × N m , |γ|, |β| ≤ r,
where |γ| := j γ j . The moment matrix M r (y) of order r associated with a given sequence y = {y α } α∈N n , has its rows and columns indexed in the canonical basis {x α }, and is defined in a similar fashion.

Note that, if z has a representing measure µ, i.e., if z is the sequence of moments of the measure

µ on R × R n × R m , then L z (h) = hdµ, for every h ∈ R[t, x, u], and if h denotes the vector of coefficients of h ∈ R[t, x, u] of degree less than r, then h, M r (z)h = L z (h 2 ) = h 2 dµ ≥ 0.
This implies that M r (z) is symmetric nonnegative (denoted M r (z) 0), for every r. The same holds for M r (y). Conversely, not every sequence y that satisfies M r (y) 0 for every r, has a representing measure. However, several sufficient conditions exist, and in particular the following one, due to Berg [START_REF] Berg | The multidimensional moment problem and semigroups[END_REF]. We next present another sufficient condition which is crucial in the proof of our main result.

Definition 3.3. For a given polynomial θ ∈ R[t, x, u], written θ(t, x, u) = δ=(p,α,β) θ δ t p x α u β ,
define the localizing matrix M r (θ z) associated with z, θ, and with rows and columns also indexed in the canonical basis of R[t, x, u], by

(3.8) M r (θ z)(γ, β) = δ θ δ z δ+γ+β γ, β ∈ N × N n × N m , |γ|, |β| ≤ r.
The localizing matrix M r (θ y) associated with a given sequence y = {y α } α∈N n is defined similarly.

Note that, if z has a representing measure

µ on R × R n × R m with support contained in the level set {(t, x, u) : θ(t, x, u) ≥ 0}, and if h ∈ R[t, x, u] has degree less than r, then h, M r (θ, z)h = L z (θ h 2 ) = θh 2 dµ ≥ 0.
Hence, M r (θ z) 0, for every r.

Let Σ 2 ⊂ R[x] be the convex cone generated in R[x]
by all squares of polynomials, and let Ω ⊂ R n be the compact basic semi-algebraic set defined by

(3.9) Ω := {x ∈ R n | g j (x) ≥ 0, j = 1, . . . , m}
for some family

{g j } m j=1 ⊂ R[x].
Definition 3.4. The set Ω ⊂ R n defined by (3.9) satisfies Putinar's condition if there exists u ∈ R[x] such that u = u 0 + m j=1 u j g j for some family {u j } m j=0 ⊂ Σ 2 , and the level set {x ∈ R n | u(x) ≥ 0} is compact.

Putinar's condition is satisfied if, e.g., the level set {x : g k (x) ≥ 0} is compact for some k, or if all the g j 's are linear, in which case Ω is a polytope. In addition, if one knows some M such that x ≤ M whenever x ∈ Ω, then it suffices to add the redundant quadratic constraint M 2 -x 2 ≥ 0 in the definition (3.9) of Ω, and Putinar's condition is satisfied (take u := M 2 -x 2 ). Theorem 3.5 (Putinar's Positivstellensatz [START_REF] Putinar | Positive polynomials on compact semi-algebraic sets[END_REF]). Assume that the set Ω defined by (3.9) satisfies Putinar's condition.

(a) If f ∈ R[x] and f > 0 on Ω, then (3.10) f = f 0 + m j=1 f j g j ,
for some family {f j } m j=0 ⊂ Σ 2 . (b) Let y = {y α } α∈N n be a sequence of real numbers. If (3.11) M r (y) 0 ; M r (g j y) 0, j = 1, . . . , m; ∀ r = 0, 1, . . . then y has a representing measure with support contained in Ω.

3.3. LMI-relaxations of P. Consider the linear program P defined by (3.5).

Since the semi-algebraic sets X, K and U defined respectively by (3.1), (3.2) and (3.3) are compact, with no loss of generality, we assume (up to a scaling of the variables x, u and t) that

T = 1, X, K ⊆ [-1, 1] n and U ⊆ [-1, 1] m .
Next, given a sequence z = {z γ } indexed in the basis of R[t, x, u] denote z(t), z(x) and z(u) its marginals with respect to the variables t, x and u, respectively. These sequences are indexed in the canonical basis of

R[t], R[x] and R[u] repectively. For instance, writing γ = (k, α, β) ∈ N × N n × N n , {z(t)} = {z k,0,0 } k∈N ; {z(x)} = {z 0,α,0 } α∈N n ; {z(u)} = {z 0,0,β } β∈N m . Let r 0 be an integer such that 2r 0 ≥ max (deg f, deg h, deg H, 2d(X, K, U)),
where d(X, K, U) is defined by (3.4). For every r ≥ r 0 , consider the LMI-relaxation

(3.12) Q r :                        inf y,z L z (h) + L y (H) M r (y), M r (z) 0 M r-deg θj (θ j y) 0, j ∈ J 1 M r-deg vj (v j z(x)) 0, j ∈ J M r-deg w k (w k z(u)) 0, k ∈ W M r-1 (t(1 -t) z(t)) 0 L y (g 1 ) -L z (∂g/∂t + ∇ x g, f ) = g(0, x 0 ), ∀g = (t p x α ) with p + |α| -1 + deg f ≤ 2r
, whose optimal value is denoted by inf Q r .

OCP with free terminal time. For the OCP (2.6), i.e., with free terminal time T ≤ T 0 , we need adapt the notation because T is now a variable. As already mentioned in Remark 2.1(iii), the measure ν in the infinite dimensional linear program P defined in (2.13), is now supported in [0, T 0 ] × K (and [0, 1] × K after re-scaling) instead of K previously. Hence, the sequence y associated with ν is now indexed in the basis {t p x α } of R[t, x] instead of {x α } previously. Therefore, given y = {y kα } indexed in that basis, let y(t) and y(x) be the subsequences of y defined by:

y(t) := {y k0 } k , k ∈ N; ; y(x) = {y 0α }, α ∈ N n .
Then again (after rescaling), the LMI-relaxation Q r now reads

(3.13) Q r :                              inf y,z L z (h) + L y (H) M r (y), M r (z) 0 M r-r(θj ) (θ j y) 0, j ∈ J 1 M r-r(vj ) (v j z(x)) 0, j ∈ J M r-r(w k ) (w k z(u)) 0, k ∈ W M r-1 (t(1 -t) y(t)) 0 M r-1 (t(1 -t) z(t)) 0 L y (g) -L z (∂g/∂t + ∇ x g, f ) = g(0, x 0 ), ∀g = (t p x α ) with p + |α| -1 + deg f ≤ 2r
.

The particular case of minimal time problem is obtained with h ≡ 1, H ≡ 0.

For time-homogeneous problems, i.e., when h and f do not depend on t, one may take µ (resp. ν) supported on X × U (resp. K), which simplifies the associated LMI-relaxation (3.13).

The main result is the following.

Theorem 3.6. Let X, K ⊂ [-1, 1] n , and U ⊂ [-1, 1] m be compact basic semialgebraic-sets respectively defined by (3.1), (3.2) and (3.3). Assume that X, K and U satisfy Putinar's condition (see Definition (3.4)), and let Q r be the LMIrelaxation defined in (3.12). Then, (i) inf Q r ↑ min P as r → ∞;

(ii) if moreover, for every (t, x) ∈ Σ, the set f (t, x, U) ⊂ R n is convex, and the function

v → g t,x (v) := inf u∈U { h(t, x, u) | v = f (t, x, u)} is convex, then inf Q r ↑ min P = J * (0, T, x 0 ), as r → ∞.
The proof of this result is postponed to the Appendix in Section §5.5.

Remark 3.7. It is known that the Hamilton-Jacobi-Bellman (HJB) optimality equation 

(3.14) inf u∈U {A v(s, x, u) + h(s, x, u)} = 0, (s, x) ∈ Σ, with boundary condition v T (x) (= v(T, x)) = H(x), for all x ∈ K, may have no continuously differentiable solution v : [0, T ] × R n → R,
+ h(t, x, u) ≥ 0, (t, x, u) ∈ S; ϕ(T, x) ≤ H(x), x ∈ K
see, e.g., Vinter [START_REF] Vinter | Convex duality and nonlinear optimal control[END_REF]. The dual of the LMI-relaxation Q r which is also a semidefinite program, denoted Q * r , is a reinforcement of P * in the sense that we consider only polynomial subsolutions, and, in addition, the positivity condition in (3.15) is replaced by the Putinar representation (3.10). Next, as Q * r is an approximation of P * , a topic of further research, beyond the scope of the present paper, is how to use Q * r to provide some information on an optimal solution of the OCP (2.1)-(2.5). 3.4. Certificates of non controllability. For minimum time OCPs, i.e., with free terminal time T and instantaneous cost h ≡ 1, and H ≡ 0, the LMI-relaxations Q r defined in (3.13) may provide certificates of non controllability.

Indeed, if for a given initial state x 0 ∈ X, some LMI-relaxation Q r in the hierarchy has no feasible solution, then the initial state x 0 cannot be steered to the origin in finite time. In other words, inf Q r = +∞ provides a certificate of uncontrollability of the initial state x 0 . It turns out that sometimes such certificates can be provided at cheap cost, i.e., with LMI-relaxations of low order r. This is illustrated on the Zermelo problem in §5.3.

Moreover, one may also consider controllability in given finite time T , that is, consider the LMI-relaxations as defined in (3.12) with T fixed, and H ≡ 0, h ≡ 1. Again, if for a given initial state x 0 ∈ X, the LMI-relaxation Q r has no feasible solution, the initial state x 0 cannot be steered to the origin in less than T units of time. And so, inf Q r = +∞ also provides a certificate of uncontrollability of the initial state x 0 .

Generalization to smooth optimal control problems

In the previous section, we assumed, to highlight the main ideas, that f , h and H were polynomials. In this section, we generalize Theorem 3.6, and simply assume that f , h and H are smooth. Consider the linear program P defined in the previous section

P : inf (µ,ν)∈∆ { (µ, ν), (h, H) s.t. g, L * (µ, ν) = g(0, x 0 ), ∀g ∈ R[t, x].
Since the sets X, K and U, defined previously, are compact, it follows from [START_REF] Coatmélec | Approximation et interpolation des fonctions différentiables de plusieurs variables[END_REF] (see also [26, pp. 65-66]) that f (resp. h, resp. H) is the limit in C 1 (S) (resp. C 1 (S), resp. C 1 (K)) of a sequence of polynomials f p (resp. h p , resp. H p ) of degree p, as p → +∞.

Hence, for every integer p, consider the linear program P p P p : inf

(µ,ν)∈∆ { (µ, ν), (h p , H p ) s.t. g, L * p (µ, ν) = g(0, x 0 ), ∀g ∈ R[t,
x], the smooth analogue of P, where the linear mapping L p : C 1 (Σ) → C(S) × C(K) is defined by L p ϕ := (-A p ϕ, ϕ T ), and where A p : C 1 (Σ) → C(S) is defined by

A p ϕ(t, x, u) := ∂ϕ ∂t (t, x) + f p (t, x, u), ∇ x ϕ(t, x) .
For every integer r ≥ max(p/2, d(X, K, U)), let Q r,p denote the LMI-relaxation (3.12) associated with the linear program P p . Recall that from Theorem 3.6, if K, X and U satisfy Putinar's condition, then inf Q r,p ↑ min P p as r → +∞;

The next result, generalizing Theorem 3.6, shows that it is possible to let p tend to +∞. For convenience, set v r,p = inf Q r,p , v p = min P p , v = min P. (ii) Moreover if for every (t, x) ∈ Σ, the set f (t, x, U) ⊂ R n is convex, and the function

v → g t,x (v) := inf u∈U { h(t, x, u) | v = f (t, x, u)} is convex, then v = J * (0, T, x 0 ).
The proof of this result is in the Appendix, Section §5.6.

From the numerical point of view, depending on the functions f , h, H, the degree of the polynomials of the approximate OCP P p may be required to be large, and hence the hierarchy of LMI-relaxations (Q r ) in (3.12) might not be efficiently implementable, at least in view of the performances of public SDP solvers available at present. Remark 4.2. The previous construction extends to smooth optimal control problems on Riemannian manifolds, as follows. Let M and N be smooth Riemannian manifolds. Consider on M the control system (2.1), where f : [0, +∞) × M × N -→ T M is smooth, and where the controls are bounded measurable functions, defined on intervals [0, T (u)] of R + , and taking their values in a compact subset U of N . Let x 0 ∈ M , and let X and K be compact subsets of M . Admissible controls are defined as previously. For an admissible control u on [0, T ], the cost of the associated trajectory x(•) is defined by (2.4), where where h : [0, +∞) × M × N -→ R and H : M → R are smooth functions.

According to Nash embedding Theorem [START_REF] Nash | The imbedding problem for Riemannian manifolds[END_REF], there exist an integer n (resp. m) such that M (resp. N ) is smoothly isometrically embedded in R n (resp. R m ). In this context, all previous results apply.

This remark is important for the applicability of the method described in this article. Indeed, many practical control problems (in particular, in mechanics) are expressed on manifolds, and since the optimal control problem investigated here is global, they cannot be expressed in general as control systems in R n (in a global chart).

Illustrative examples

We consider here the minimal time OCP, that is, we aim to approximate the minimal time to steer a given initial condition to the origin. We have tested the above methodology on two test OCPs, the double and Brockett integrators, for which the associated optimal value T * can be calculated exactly. The numerical examples in this section were processed with our Matlab package GloptiPoly 31 . 5.1. The double integrator. Consider the double integrator system in R 2

(5.1) ẋ1 (t) = x 2 (t), ẋ2 (t) = u(t), where x = (x 1 , x 2 ) is the state and the control u = u(t) ∈ U, satisfies the constraint |u(t)| ≤ 1, for all t ≥ 0. In addition, the state is constrained to satisfy x 2 (t) ≥ -1, for all t. In this time-homogeneous case, and with the notation of Section 2, we have

X = {x ∈ R 2 : x 2 ≥ -1}, K = {(0, 0)}, and U = [-1, 1].
Observe that X is not compact and so the convergence result of Theorem 3.6 may not hold. In fact, we may impose the additional constraint x(t) ∞ ≤ M for some large M (and modify X accordingly), because for initial states x 0 with x 0 ∞ relatively small with respect to M , the optimal trajectory remains in X. However, in the numerical experiments, we have not enforced an additional constraint. We have maintained the original constraint

x 2 ≥ -1 in the localizing constraint M r-r(vj ) (v j z(x)) 0, with x → v j (x) = x 2 + 1.
5.1.1. Exact computation. For this very simple system, one is able to compute exactly the optimal minimum time. Denoting T (x) the minimal time to reach the origin from x = (x 1 , x 2 ), we have:

If

x 1 ≥ 1 -x 2 2 /2 and x 2 ≥ -1 then T (x) = x 2 2 /2 + x 1 + x 2 + 1. If -x 2 2 /2 sign x 2 ≤ x 1 ≤ 1 -x 2 2 /2 and x 2 ≥ -1 then T (x) = 2 x 2 2 /2 + x 1 + x 2 . If x 1 < -x 2 2 /2 sign x 2 and x 2 ≥ -1 then T (x) = 2 x 2 2 /2 -x 1 -x 2 .
Note that the expressions in section III.A.1 of [START_REF] Lasserre | Nonlinear optimal control: Numerical approximations via moments and LMI relaxations[END_REF] are incorrect. third LMI-relaxation: r=3 0.5418 0.4400 0.3630 0.9989 0.9987 0.9987 0.9985 0.9984 0.9983 0.9984 0.9984 0.5115 0.3864 0.9803 0.9648 0.9687 0.9726 0.9756 0.9778 0.9798 0.9815 0.9829 0.4848 0.9793 0.8877 0.8745 0.8847 0.8997 0.9110 0.9208 0.9277 0.9339 0.9385 0.4613 0.7899 0.7321 0.7401 0.7636 0.7915 0.8147 0.8339 0.8484 0.8605 0.8714 0.4359 0.5179 0.5361 0.5772 0.6205 0.6629 0.7013 0.7302 0.7540 0.7711 0.7891 0.0000 0.2458 0.3496 0.4273 0.4979 0.5571 0.5978 0.6409 0.6719 0.6925 0.7254 0.4556 0.3740 0.4242 0.4789 0.5253 0.5767 0.6166 0.6437 0.6807 0.6972 0.7342 0.4978 0.4709 0.5020 0.5393 0.5784 0.6179 0.6477 0.6776 0.6976 0.7192 0.7347 0.5396 0.5395 0.5638 0.5955 0.6314 0.6600 0.6856 0.7089 0.7269 0.7438 0.7555 0.5823 0.5946 0.6190 0.6453 0.6703 0.7019 0.7177 0.7382 0.7539 0.7662 0.7767 0.6255 0.6434 0.6656 0.6903 0.7193 0.7326 0.7543 0.7649 0.7776 0.7917 0.8012 5.1.2. Numerical approximation. Table 1 displays the values of the initial state x 0 ∈ X, and denoting inf Q r (x 0 ) the optimal value of the LMI-relaxation (3.13) for the minimum time OCP (5.1) with initial state x 0 , Tables 2,3, and 4 display the numerical values of the ratios inf Q r (x 0 )/T (x 0 ) for r = 2, 3 and 5 respectively. Columns and rows in Tables 2,3, and 4 are respectively indexed by values of x 01 and x 02 indicated in Table 1. A ratio near 1 indicates a good approximation in relative value.

In Figures 1,2, and 3 one displays the level sets of the ratios inf Q r /T (x 0 ) for r = 2, 3 and 5 respectively. The closer to white the color, the closer to 1 the ratio inf Q r /T (x 0 ).

Finally, for this double integrator example we have plotted in Figure 4 the level sets of the function Λ 5 (x) -T (x) where T (x) is the known optimal minimum time to steer the initial state x to 0; the problem being time-homogeneous, one may take Table 4. Double integrator: ratio inf Q 5 /T (x 0 ) fifth LMI-relaxation: r=5 0.7550 0.5539 0.3928 0.9995 0.9995 0.9995 0.9994 0.9992 0.9988 0.9985 0.9984 0.6799 0.4354 0.9828 0.9794 0.9896 0.9923 0.9917 0.9919 0.9923 0.9923 0.9938 0.6062 0.9805 0.9314 0.9462 0.9706 0.9836 0.9853 0.9847 0.9848 0.9862 0.9871 0.5368 0.8422 0.8550 0.8911 0.9394 0.9599 0.9684 0.9741 0.9727 0.9793 0.9776 0.4713 0.6417 0.7334 0.8186 0.8622 0.9154 0.9448 0.9501 0.9505 0.9665 0.9637 0.0000 0.4184 0.5962 0.7144 0.8053 0.8825 0.9044 0.9210 0.9320 0.9544 0.9534 0.4742 0.5068 0.6224 0.7239 0.7988 0.8726 0.8860 0.9097 0.9263 0.9475 0.9580 0.5410 0.6003 0.6988 0.7585 0.8236 0.8860 0.9128 0.9257 0.9358 0.9452 0.9528 0.6106 0.6826 0.7416 0.8125 0.8725 0.9241 0.9305 0.9375 0.9507 0.9567 0.9604 0.6864 0.7330 0.7979 0.8588 0.9183 0.9473 0.9481 0.9480 0.9559 0.9634 0.9733 0.7462 0.8032 0.8564 0.9138 0.9394 0.9610 0.9678 0.9678 0.9696 0.9755 0.9764

Figure 1. Double integrator: level sets inf Q 2 /T (x 0 ) Λ r ∈ R[x] instead of R[t, x]
. For instance, one may verify that when the initial state is in the region where the approximation is good, then the whole optimal trajectory also lies in that region. 5.2. The Brockett integrator. Consider the so-called Brockett system in R 3

(5.2)

ẋ1 (t) = u 1 (t), ẋ2 (t) = u 2 (t), ẋ3 (t) = u 1 (t)x 2 (t) -u 2 (t)x 1 (t),
where x = (x 1 , x 2 , x 3 ), and the control u = (u 1 (t), u 2 (t)) ∈ U, satisfies the constraint

(5.3) u 1 (t) 2 + u 2 (t) 2 ≤ 1, ∀t ≥ 0.
In this case, we have X = R 3 , K = {(0, 0, 0)}, and U is the closed unit ball of R 2 , centered at the origin. Note that set X is not compact and so the convergence result of Theorem 3.6 may not hold, see the discussion at the beginning of example 5.1. Nevertheless, in the numerical examples, we have not enforced additional state constraints. 5.2.1. Exact computation. Let T (x) be the minimum time needed to steer an initial condition x ∈ R 3 to the origin. We recall the following result of [START_REF] Beals | Hamilton-Jacobi theory and the heat kernel on Heisenberg groups[END_REF] (in fact given for equivalent (reachability) OCP of steering the origin to a given point x).

Proposition 5.1. Consider the minimum time OCP for the system (5.2) with control constraint (5.3). The minimum time T (x) needed to steer the origin to a 

point x = (x 1 , x 2 , x 3 ) ∈ R 3 is given by (5.4) T (x 1 , x 2 , x 3 ) = θ x 2 1 + x 2 2 + 2|x 3 | θ + sin 2 θ -sin θ cos θ ,
where θ = θ(x 1 , x 2 , x 3 ) is the unique solution in [0, π) of

(5.5) θ -sin θ cos θ sin 2 θ (x 2 1 + x 2 2 ) = 2|x 3 |.
Moreover, the function T is continuous on R 3 , and is analytic outside the line

x 1 = x 2 = 0.
Remark 5.2. Along the line x 1 = x 2 = 0, one has

T (0, 0, x 3 ) = 2π|x 3 |.
The singular set of the function T , i.e. the set where T is not C 1 , is the line x 1 = x 2 = 0 in R 3 . More precisely, the gradients ∂T /∂x i , i = 1, 2, are discontinuous at every point (0, 0, x 3 ), x 3 = 0. For the interested reader, the level sets {(x 1 , x 2 , x 3 ) ∈ R 3 | T (x 1 , x 2 , x 3 ) = r}, with r > 0, are displayed, e.g., in Prieur and Trélat [START_REF] Prieur | Robust optimal stabilization of the Brockett integrator via a hybrid feedback[END_REF].

Numerical approximation.

Recall that the convergence result of Theorem 3.6 is guaranteed for X compact only. However, in the present case X = R 3 is not compact. One possibility is to take for X a large ball of R 3 centered at the origin because for initial states x 0 with norm x 0 relatively small, the optimal trajectory remains in X. However, in the numerical experiments presented below, we have chosen to maintain X = R 3 , that is, the LMI-relaxation Q r does not include any localizing constraint M r-r(vj ) (v j z(x)) 0 on the moment sequence z(x).

Recall that inf Q r ↑ min P as r increases, i.e., the more moments we consider, the closer to the exact value we get.

In Table 5 we have displayed the optimal values inf Q r for 16 different values of the initial state x(0) = x 0 , in fact, all 16 combinations of x 01 = 0, x 02 = 0, 1, 2, 3, and x 03 = 0, 1, 2, 3. So, the entry (2, 3) of Table 5 for the second LMI-relaxation is inf Q 2 for the initial condition x 0 = (0, 1, 2). At some (few) places in the table, the * indicates that the SDP solver encountered some numerical problems, which explains why one finds a lower bound inf Q r-1 slightly higher than inf Q r , when practically equal to the exact value T * .

Notice that the upper triangular part (i.e., when both first coordinates x 02 , x 03 of the initial condition are away from zero) displays very good approximations with low order moments. In addition, the further the coordinates from zero, the best.

For another set of initial conditions x 01 = 1 and x 0i = {1, 2, 3} Table 6 displays the results obtained at the LMI-relaxation Q 4 .

The regularity property of the minimal-time function seems to be an important topic of further investigation. 5.3. Certificate of uncontrollabilty in finite time. Consider the so-called Zermelo problem in R 2 studied in Bokanowski et al. [START_REF] Bokanowski | An anti-diffusive scheme for viability problems[END_REF] (5.6) ẋ1 (t) = 1 -a x 2 (t) + v cos θ ẋ2 (t) = v sin θ With the change of variable u 1 = v cos θ, u 2 = v sin θ, and U := {u : u 2 1 + u 2 2 ≤ ρ 2 }, this problem is formulated as a minimum time OCP with associated hierarchy of LMI-relaxations (Q r ) defined in (3.13). Therefore, if an LMI-relaxation Q r at some stage r of the hierarchy is infeasible then the OCP itself is infeasible, i.e., the initial state x 0 cannot be steered to the target K while the trajectory remains in X.

Figures 5 and6 display the uncontrollable initial states x 0 ∈ X found with the infeasibility of the LMI-relaxations Q 1 and Q 2 respectively. With Q 1 , i.e. by using only second moments, we already have a very good approximation of the controllable set displayed in [START_REF] Bokanowski | An anti-diffusive scheme for viability problems[END_REF], and Q 2 brings only a small additional set of uncontrollable states. In particular, taking g(t, x) = 1 and g(t, x) = T -t, it follows that µ(S) = T and ν(K) = 1. Hence, for every (µ, ν) satisfying L * (µ, ν) = δ (0,x0) , the pair ( 1 T µ, ν) belongs to the unit ball B 1 of (M(S) × M(K)). From Banach-Alaoglu Theorem, B 1 is compact for the weak ⋆ topology, and even sequentially compact because B 1 is metrizable (see, e.g., Hernández-Lerma and Lasserre [START_REF] Hernández-Lerma | Markov Chains and Invariant Probabilities[END_REF]Lemma 1.3.2]). Since L * is continuous (see Remark 2.1), it follows that the set of (µ, ν) satisfying L * (µ, ν) = δ (0,x0) is a closed subset of B 1 ∩(M(S) + ×M(K) + ), and thus is compact. Moreover, since the linear program P is feasible, this set is nonempty. Finally, since the linear functional to be minimized is continuous, P is solvable.

We next prove Item (ii). Consider the set

D := {(L * (µ, ν), (h, H), (µ, ν) ) | (µ, ν) ∈ M(S) + × M(K) + }. To prove that D is closed, consider a sequence {(µ n , ν n )} n∈N of M(S) + × M(K) + such that (5.7) (L * (µ α , ν α ), (h, H), (µ α , ν α ) ) → (a, b), for some (a, b) ∈ C 1 (Σ) * ×R. It means that L * (µ n , ν n ) → a, and (h, H), (µ n , ν n ) → b.
In particular, taking ϕ 0 := T -t and ϕ 1 = 1, there must hold

µ n (S) = ϕ 0 , L * (µ n , ν n ) → ϕ 0 , a , ν n (K) = ϕ 1 , L * (µ n , ν n ) → ϕ 1 , a .
Hence, there exist n 0 ∈ N and a ball B r of M(S) × M(K), such that (µ n , ν n ) ∈ B r for every n ≥ n 0 . Since B r is compact, along a subsequence, (µ n , ν n ) converges weakly to some (µ, ν) ∈ M(S) + × M(K) + . This fact, combined with (5.7) and the continuity of L * , yields a = L * (µ, ν), and b = (h, H), (µ, ν) . Therefore, the set D is closed.

From Anderson and Nash [1, Theorems 3.10 and 3.22], it follows that there is no duality gap between P and P * , and hence, with (i), sup P * = min P.

Item (iii) follows from Vinter [46, Theorems 2.1 and 2.3], applied to the mappings

F (t, x) := f (t, x, U ) , l(t, x, v) := inf u∈U { h(t, x, u) | v = f (t, x, u) }, for (t, x) ∈ R × R n .
5.5. Proof of Theorem 3.6. First of all, observe that Q r has a feasible solution. Indeed, it suffices to consider the sequences y and z consisting of the moments (up to order 2r) of the occupations measures ν u and µ u associated with an admissible control u ∈ U of the OCP (2.1)-(2.5). Next, observe that, for every couple (y, z) satisfying all constraints of Q r , there must holds y 0 = 1 and z 0 = 1. Indeed, it suffices to choose g(t, x) = 1 and g(t, x) = 1 -t (or t) in the constraint L y (g 1 ) -L z (∂g/∂t + ∇ x g, f ) = g(0, x 0 ). We next prove that, for r sufficiently large, one has |z

(x) α | ≤ 1, |z(u) β | ≤ 1, |z(t) k | ≤ 1,
for every k, and |y α | ≤ 1. We only provide the details of the proof for z(x), the arguments being similar for z(u), z(t) and y.

Let Σ 2 ⊂ R[x] be the space of sums of squares (s.o.s.) polynomials, and let Q ⊂ R[x] be the quadratic modulus generated by the polynomials v j ∈ R[x] that define X, i.e.,

Q := { σ ∈ R[x] | σ = σ 0 + j∈J σ j v j with σ j ∈ Σ 2 , ∀ j ∈ {0} ∪ J}.
In addition, let Q(t) ⊂ Q be the set of elements σ of Q which have a representation σ 0 + j∈J σ j v j for some s.o.s. family {σ j } ⊂ Σ 2 with deg σ 0 ≤ 2t and deg σ j v j ≤ 2t for every j ∈ J.

Let r ∈ N be fixed. Since X ⊂ [-1, 1] n , there holds 1 ± x α > 0 on X, for every α ∈ N n with |α| ≤ 2r. Therefore, since X satisfies Putinar' condition (see Definition 3.4), the polynomial x → 1 ± x α belongs to Q (see Putinar [START_REF] Putinar | Positive polynomials on compact semi-algebraic sets[END_REF]). Moreover, there exists l(r) such that x → 1 ± x α ∈ Q(l(r)) for every |α| ≤ 2r. Of course, x → 1 ± x α ∈ Q(l) for every |α| ≤ 2r, whenever l ≥ l(r).

For every feasible solution z of Q l(r) one has

|z(x) α | = | L z (x α ) | ≤ z 0 = 1, |α| ≤ 2r.
This follows from z 0 = 1, M l(r) (z) 0 and M l(r)-r(vj ) (v j z(x)) 0, which implies

z 0 ± z(x) α = L z (1 ± x α ) = L z (σ 0 ) + m j=1 L z(x) (σ j v j ) ≥ 0.
With similar arguments, one redefines l(r) so that, for every couple (y, z) satisfying the contraints of Q l(r) , one has

0 ≤ z k (t) ≤ 1 and |z(x) α |, |z(u) β |, |y α | ≤ 1, ∀ k, |α|, |β| ≤ 2r.
From this, and with l(r) := 2l(r), we immediately deduce that |z γ | ≤ 1 whenever |γ| ≤ 2r. In particular, L y (H) + L z (h) ≥β |H β |γ |h γ |, which proves that inf Q l(r) > -∞, and so inf Q r > -∞ for r sufficiently large.

Let ρ := inf P = min P (by Theorem 2.3), let r ≥ l(r 0 ), and let (z r , y r ) be a nearly optimal solution of Q r with value (5.8) inf Q r ≤ L z r (h) + L y r (H)

≤ inf Q r + 1 r ≤ ρ + 1 r .
Complete the finite vectors y r and z r with zeros to make them infinite sequences. Next, let r be fixed arbitrarily. Observe that M r k (y r k ) 0 implies M r (y r k ) 0 whenever r k ≥ r, and similarly, M r (z r k ) 0. Therefore, from (5.9) and M r (y r k ) 0, we deduce that M r (y) 0, and similarly M r (z) 0. Since this holds for arbitrary r, and |y α |, |z γ | ≤ 1 for all α, γ, one infers from Proposition 3.2 that y and z are moment sequences of two measures ν and µ with support contained in [-1, 1] n and [0, 1] × [-1, 1] n × [-1, 1] m respectively. In addition, from the equalities y r k 0 = 1 and z r k 0 = 1 for every k, it follows that ν and µ are probability measures on [-1, 1] n , and [0

, 1] × [-1, 1] n × [-1, 1] m .
Next, let (t, α) ∈ N × N n be fixed, arbitrarily. From L y r k (g 1 ) -g(0, x 0 ) -L z r k (∂g/∂t + ∇ x g, f ) = 0, with g = (t p x α ), and the convergence (5.9), we obtain L y (g 1 ) -g(0, x 0 ) -L z (∂g/∂t + ∇ x g, f ) = 0, with g = (t p x α ), that is, Lg, (µ, ν) = g, δ (0,x0) . Since (t, α) ∈ N × N n is arbitrary, we have g, L * (µ, ν) = L g, (µ, ν) = g, δ (0,x0) ∀ g ∈ R[t, x],

which implies that L * (µ, ν) = δ (0,x0) . Let z(x), z(u) and z(t) denote the moment vectors of the marginals of µ with respect to the variables x ∈ R n , u ∈ R m and t ∈ R, respectively, i.e., z(x) α = x α µ(d(t, x, u)) ∀ α ∈ N n , z(u) β = u β µ(d(t, x, u)) ∀β ∈ N m , and z(t) k = t k µ(d(t, x, u)) for every k ∈ N.

With r fixed arbitrarily, and using again (5.9), we also have M r (θ j y) 0 for every j ∈ J T , and M r (v j z(x)) 0 ∀ j ∈ J, M r (w k z(u)) 0 ∀k ∈ W, M r (t(1 -t) z(t)) 0. Since X, K and U satisfy Putinar's condition (see Definition 3.4), from Theorem 3.5 (Putinar's Positivstellensatz), y is the moment sequence of a probability measure ν supported on K ⊂ [-1, 1] n . Similarly, z(x) is the moment sequence of a measure µ x supported on X ⊂ [-1, 1] n , z(u) is the moment sequence of a measure µ u supported on U ⊂ [-1, 1] m , and z(t) is the moment sequence of a measure µ t supported on [0, 1]. Since measures on compact sets are moment determinate, it follows that µ x , µ u , and µ t are the marginals of µ with respect to x, u and t respectively. Therefore, µ has its support contained in S, and from L * (µ, ν) = δ (0,x0) it follows that (µ, ν) satisfies all constraints of the problem P. Hence, (µ, ν) is an optimal solution of P, and min Q r ↑ min P (the sequence is monotone nondecreasing). Item (i) is proved. Item (ii) follows from Theorem 2.3 (iii).

5.6. Proof of Theorem 4.1. It suffices to prove that v p → v as p → +∞. For every integer p, v p = min P p is attained for a couple of measures (µ p , ν p ). As in the proof of Theorem 2.3, the sequence {(µ p , ν p )} p∈N is bounded in M(S) + × M(K) + , and hence, along a subsequence, it converges to an element (µ, ν) of this space for the weak ⋆ topology.

On the one hand, by definition, L * p (µ p , ν p ) = δ (0,x0) for every p. On the other, L * p tends strongly to L * , and so L * (µ, ν) = δ (0,x0) . Moreover, since (h p , H p ) tends strongly to (h, H) in C 1 (S) × C 1 (K), one has v p = (µ p , ν p ), (h p , H p ) -→ (µ, ν), (h, H) , and so v ≤ (µ, ν), (h, H) . We next prove that v = (µ, ν), (h, H) .

Since (µ p , ν p ) is an optimal solution of P p , (µ p , ν p ), (h p , H p ) ≤ (μ, ν) , (h p , H p ), ∀(μ, ν) | L * p (μ, ν) = δ (0,x0) . Hence, passing to the limit, (µ, ν), (h, H) ≤ (μ, ν) , (h, H), ∀(μ, ν) | L * (μ, ν) = δ (0,x0) , and so, (µ, ν) is an optimal solution of P, i.e., v = (µ, ν), (h, H) .

  11) for all rectangles (A × B × C), with (A, B, C) ∈ A × B n × B m , and where B n (resp. B m ) denotes the usual Borel σ-algebra associated with R n (resp. R m ), and A the Borel σ-algebra of [0, T ], and I B (•) the indicator function of the set B.
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 32 If y = {y α } α∈N n satisfies |y α | ≤ 1 for every α ∈ N n , and M r (y) 0 for every integer r, then y has a representing measure on R n , with support contained in the unit ball [-1, 1] n .

Theorem 4 . 1 .

 41 Let X, K ⊂ [-1, 1] n , and U ⊂ [-1, 1] m be compact semi-algebraicsets respectively defined by (3.1), (3.2) and (3.3). Assume that X, K and U satisfy Putinar's condition (see Definition (3.4)). Then, (i) v = lim p→+∞ lim r→+∞ 2r>p v r,p = lim p→+∞ sup r>p/2 v r,p ≤ J * (0, T, x 0 ).
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 23 Figure 2. Double integrator: level sets inf Q 3 /T (x 0 )

Figure 4 .

 4 Figure 4. Double integrator: level sets Λ 5 (x) -T (x) and optimal trajectory starting from x 1 (0) = x 2 (0) = 1.

Figure 5 .

 5 Figure 5. Zermelo problem: uncontrollable states with Q 1
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 6254 Figure 6. Zermelo problem: uncontrollable states with Q 2

  Since for arbitrary s ∈ N one has |y r α |, |z r γ | ≤ 1 whenever |α|, |γ| ≤ 2s, provided r is sufficiently large, by a standard diagonal argument, there exists a subsequence {r k } and two infinite sequences y and z, with |y α | ≤ 1 and |z γ | ≤ 1, for all α, γ, and such that (5.9) lim k→∞ y r k α = y α ∀α ∈ N n ; lim k→∞ z r k γ = z γ ∀γ ∈ N × N n × N m .

  Moreover, one haslim k→∞ inf Q r k = lim k→∞ L z r k (h) + L y r k (H)(by (5.8))= L z (h) + L y (H) (by (5.9)) = h dµ + H dν ≤ ρ = min P.

Table 1 .

 1 Double integrator: data initial state x 0 = (x 01 , x 02 )

	x 01 0.0	0.2	0.4	0.6	0.8 1.0 1.2 1.4 1.6 1.8 2.0
	x 02 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

Table 2 .

 2 Double integrator: ratio inf Q 2 /T (x 0 )

	second LMI-relaxation: r=2
	0.4598 0.3964 0.3512 0.9817 0.9674 0.9634 0.9628 0.9608 0.9600 0.9596 0.9595
	0.4534 0.3679 0.9653 0.9347 0.9355 0.9383 0.9385 0.9386 0.9413 0.9432 0.9445
	0.4390 0.9722 0.8653 0.8457 0.8518 0.8639 0.8720 0.8848 0.8862 0.8983 0.9015
	0.4301 0.7698 0.7057 0.7050 0.7286 0.7542 0.7752 0.7964 0.8085 0.8187 0.8351
	0.4212 0.4919 0.5039 0.5422 0.5833 0.6230 0.6613 0.6870 0.7121 0.7329 0.7513
	0.0000 0.2238 0.3165 0.3877 0.4476 0.5005 0.5460 0.5839 0.6158 0.6434 0.6671
	0.4501 0.3536 0.3950 0.4403 0.4846 0.5276 0.5663 0.5934 0.6204 0.6474 0.6667
	0.4878 0.4493 0.4699 0.5025 0.5342 0.5691 0.5981 0.6219 0.6446 0.6647 0.6824
	0.5248 0.5142 0.5355 0.5591 0.5840 0.6124 0.6312 0.6544 0.6689 0.6869 0.7005
	0.5629 0.5673 0.5842 0.6044 0.6296 0.6465 0.6674 0.6829 0.6906 0.7083 0.7204
	0.6001 0.6099 0.6245 0.6470 0.6617 0.6792 0.6972 0.7028 0.7153 0.7279 0.7369

Table 3 .

 3 Double integrator: ratio inf Q 3 /T (x 0 )

Table 5 .

 5 Brockett integrator: LMI-relaxations: inf Q r

	first LMI-relaxation: r=1
	0.0000 0.9999 1.9999 2.9999
	0.0140 1.0017 2.0010 3.0006
	0.0243 1.0032 2.0017 3.0024
	0.0295 1.0101 2.0034 3.0040
	Second LMI-relaxation: r=2
	0.0000 0.9998 1.9997 * 2.9994 *
	0.2012 1.1199 2.0762 3.0453
	0.3738 1.2003 2.1631 3.1304
	0.4946 1.3467 2.2417 3.1943
	Third LMI-relaxation: r=3
	0.0000 0.9995 1.9987 * 2.9984 *
	0.7665 1.3350 2.1563 3.0530
	1.0826 1.7574 2.4172 3.2036
	1.3804 2.0398 2.6797 3.4077
	Fourth LMI-relaxation: r=4
	0.0000 0.9992 1.9977 2.9952
	1.2554 1.5925 2.1699 3.0478
	1.9962 2.1871 2.5601 3.1977
	2.7006 2.7390 2.9894 3.4254
	Optimal time T *
	0.0000 1.0000 2.0000 3.0000
	2.5066 1.7841 2.1735 3.0547
	3.5449 2.6831 2.5819 3.2088
	4.3416 3.4328 3.0708 3.4392

Table 6 .

 6 Brockett integrator: inf Q 4 with x 01 = 1

	fourth LMI-relaxation: r=4
	1.7979 2.3614	3.2004
	2.3691 2.6780	3.3341
	2.8875 3.0654	3.5337
	Optimal time T *
	1.8257 2.3636	3.2091
	2.5231 2.6856	3.3426
	3.1895 3.1008	3.5456

GloptiPoly 3 can be downloaded at www.laas.fr/∼henrion/software
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