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COMPLEXITY OF 4-MANIFOLDS

We define and study a notion of complexity for smooth, closed and orientable 4manifolds. This notion, based on the theory of Turaev shadows, represents the 4-dimensional analogue of Matveev's complexity of 3-manifolds. We classify complexity 0 and 1 four manifolds and provide examples of manifolds of higher complexity.

Introduction

A natural notion of complexity of a P L n-dimensional manifold is the minimal number of highestdimensional simplices in a triangulation of the manifold. Such a complexity is an integer valued function and is finite (for each k ≥ 0 there are only finitely many manifolds whose complexity is up to k). In order to find all the n-manifolds of complexity k, one has to identify all the possible gluings of k copies of the n-simplex such that the link of each point is a n -1-sphere. Hence, producing lists of low-complexity n-manifolds can be a difficult task if n ≥ 3 because of the sphere recognition problem. In dimension 3, S. Matveev ([13]) defined an alternative notion of complexity which, for "most" 3-manifolds is equivalent to the above defined one. Matveev's complexity is based on a combinatorial description of 3-manifolds by means of 2-polyhedra (their "spines") and turns out to be strictly related to the topological properties of the manifolds: for instance, it is additive under connected sums and is finite when restricted to irreducible manifolds. Its combinatorial nature, makes it a computable invariant: using the stratification of the set of 3-manifolds induced by Matveev's complexity it is possible to produce a list of 3-manifolds up to complexity 10 by means of computer-based computations ( [START_REF] Martelli | Three-manifolds having complexity at most 9[END_REF]). More than this, the new techniques and tools set up ( [START_REF] Matveev | Algorithmic topology and classifications of 3-manifolds[END_REF]) to study the topology of 3-manifolds in order to produce these lists, allowed the creation of computer programs "recognizing" 3-manifolds ( [START_REF] Matveev | Three-manifold Recognizer[END_REF]).

On the other side, the existence of "exotic" spaces makes smooth topology of 4-manifolds an intriguing and still rather mysterious subject. It is our hope that a combinatorial "complexitybased" approach could produce new examples of 4-manifolds, sufficiently "simple" to be studied directly. Hence, we define a notion of complexity of 4-manifolds based on the theory of Turaev's shadows ( [START_REF] Turaev | Quantum invariants of knots and 3-manifolds[END_REF]), which represents an analogue in dimension 4 of Matveev's complexity. Roughly speaking, shadows of 4-manifolds can be viewed as simple polyhedra equipped with integer colorings on the regions, which can be canonically thickened to smooth (or, equivalently, P L) 4-manifolds. To clarify the reasons why we use shadows instead of triangulations in order to define a complexity of closed 4-manifolds, let us note that a triangulation contains a full description of a handle decomposition of the manifold itself, while it is known that the union of the handles of index up to 2 is sufficient to reconstruct the manifold. Hence, in a sense, the information contained in a triangulation is redundant; on the contrary, it can be shown that a shadow of a 4-manifold encodes combinatorially only the union of handles of index up to 2. Moreover, as in the 3-dimensional case with Matveev's complexity, it is straightforward to prove that shadow complexity is subadditive under connected sum; whilst the same is not obvious a priori for the triangulation-based complexity.

In Section 2 we recall the basic definitions and results on shadows which we will need later; no new result is proved in that section. In Section 3, we introduce two notions of complexity of a closed 4-manifold X: the complexity, denoted c(X) and the special complexity, denoted c sp (X). The former represents the direct analogue of Matveev's complexity and has the drawback that infinitely many 4-manifolds have complexity 0: this is related to the problem of restricting to irreducible (in a smooth sense!) manifolds; further comments on these aspects will be provided in Section 3. On the other-side special complexity, obtained by restricting the set of shadows used to encode 4-manifolds, turns out to be finite. In particular we prove the following (Theorem 3.10 below): Theorem 1.1. If a closed, smooth and orientable 4-manifold X has special complexity c sp (X) ≤ 1 then X is diffeomorphic to one of the following manifolds:

S 4 , CP 2 , CP 2 , CP 2 #CP 2 , S 2 × S 2 , CP 2 #CP 2 , CP 2 #CP 2 .
In Subsection 3.3 we provide some examples of complexity 2 manifolds and provide a lowcomplexity example of homeomorphic but non-diffeormorphic 4-manifolds with boundary. We furthermore give an upper estimate for the complexity of the elliptic surfaces E(n); as a consequence, an upper estimate for the minimal complexity of a pair of homeomorphic but non-diffeomorphic closed 4-manifolds is deduced.
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A crash course on shadows of 4-manifolds

In this section we recall the basic definition and results about shadows; no new result is proven. For a more detailed account, see [START_REF] Turaev | Quantum invariants of knots and 3-manifolds[END_REF] and [START_REF] Costantino | A short introduction to shadows of 4-manifolds[END_REF].

2.1. Simple polyhedra. Definition 2.1. A simple polyhedron P is a 2-dimensional CW complex whose local models are those depicted in Figure 1; the set of points whose neighborhoods have models of the two rightmost types is a 4-valent graph, called singular set of the polyhedron and denoted by Sing(P ). The connected components of P -Sing(P ) are the regions of P . A simple polyhedron whose regions are all discs is called special 1 . The complexity of a simple polyhedron P , denoted c(P ), is its number of vertices.

Vertex Edge Region

Standard polyhedra can be described in a combinatorial way by decomposing them into the blocks of Figure 1. One can always "build up" a special polyhedron as exemplified in Figure 2: the central block corresponds to the rightmost block of Figure 1, the curved blocks to the central one of Figure 1 and the regions are discs glued along the boundary of the resulting polyhedron. The resulting diagram, unambiguously defines the initial special polyhedron, but different diagrams could encode the same polyhedron. In Figures 7 and8, we draw all the possible special polyhedra having at most one vertex (in the figures, discs are to be glued along the boundary components of the polyhedra in order to get special polyhedra).

2.2. Decorations on polyhedra. We describe now the basic decorations we need in order to thicken to a 4-manifold a special polyhedron P , for a more detailed account see [START_REF] Turaev | Quantum invariants of knots and 3-manifolds[END_REF]. Let us denote Z 2 the group of integer multiples of 1 2 . There are two canonical colorings on the regions of P , i.e. assignments of elements of Z 2 or Z 2 (the integer multiples of 1 2 ), the second depending on a flat embedding of P in an oriented 4-manifold. They are:

The Z 2 -gleam of P , constructed as follows. Let D be a (open) region of P and D be the natural compactification of the (open) surface represented by D. The embedding of D in P extends to a map i : D → P which is injective in int(D), locally injective on ∂D and which sends ∂D into Sing(P ). Using i we can "pull back" a small open neighborhood of D in P and construct 1 According to our definition a polyhedron can be special even if it does not contain any vertices. a simple polyhedron N (D) collapsing on D and such that i extends as a local homeomorphism i ′ : N (D) → P whose image is contained in a small neighborhood of the closure of D in P . When i is an embedding of D in P , then N (D) turns out to be homeomorphic to a neighborhood of D in P and i ′ is its embedding in P . In general, N (D) has the following structure: each component of ∂D is glued to the core of an annulus or of a Möbius strip and some small discs are glued along half of their boundary on segments which are properly embedded in these annuli or strips and cut transversally once their cores. We define the Z 2 -gleam of D in P as the reduction mod 2 of the number of Möbius strips used to construct N (D). This coloring only depends on the combinatorial structure of P .

The gleam of P , constructed as follows. Let us now suppose that P is flat in an oriented 4-manifold M , with D, D and i : D → P as above. Pulling back through i a small neighborhood of i(N (D)) in M , we obtain a 4-dimensional oriented neighborhood B of N (D) over which we fix an auxiliary riemannian metric. Since N (D) is locally flat in B, N (D) -D well defines a line normal to D in B along ∂D and hence a section of the projectivized normal bundle of D (see Figure 3). Let then gl(D) be equal to 1 2 times the obstruction to extend this section to the whole D; such an obstruction is an element of H 2 (D, ∂D; π 1 (S 1 )), which is canonically identified with Z since B is oriented. Note that the gleam of a region is integer if and only if its Z 2 -gleam is zero.

Using the fact that the Z 2 -gleam is always defined, Turaev generalized [START_REF] Turaev | Quantum invariants of knots and 3-manifolds[END_REF] the notion of gleam to non-embedded polyhedra as follows: Definition 2.2. A gleam on a simple polyhedron P is a coloring on the regions of P with values in Z 2 such that the color of a region is integer if and only if its Z 2 -gleam is zero. 2.3. The canonical thickening procedure. We now describe how any simple polyhedron equipped with gleams (P, gl) can be canonically thickened to a smooth 4-manifold collapsing on it. From now on, all the 4-manifolds will be smooth, compact and orientable and all the polyhedra will be flatly embedded unless explicitly stated. Let P ′ be the the regular neighborhood of Sing(P ) in P ; when P is special, P ′ is obtained by puncturing P once along each region. To thicken P :

(1) Thicken P ′ to a (possibly non-orientable) 3-manifold L collapsing on it.

(2) Thicken L to an oriented 4-manifold H made up only of 0 and 1-handles.

(3) Glue suitable blocks to H corresponding to the regions of P .

Step 1. To thicken P ′ and get L, glue copies of the two rightmost blocks of Figure 4 according to the combinatorics of P ′ . The result is a pair (L, P ′ ) where P ′ is a properly embedded copy of P ′ in L. Step 2. To thicken L and get H, one takes the total space of the determinant fiber bundle of

L: for instance if L is orientable, H = L × [-1, 1]
. More in general, fix an arbitrary orientation on each of the blocks of Figure 4 and glue their products with [-1, 1] using the attaching maps of L along the blocks ×{0} and gluing the fibers by multiplying them by -1 iff the gluing maps between the 3-dimensional blocks are orientation reversing.

The resulting manifold H is canonically oriented (it admits an orientation reversing diffeomorphism), collapses over P ′ (which is properly embedded in it), and so, in particular is made of 0 and 1-handles. Moreover ∂P ′ is a link in ∂H and has a canonical framing induced by its regular neighborhood in ∂L ⊂ ∂H. Indeed such a neighborhood is a union of bands collapsing on ∂P ′ so that any curve running parallel to a component c of ∂P ′ can be described by an integer if the neighborhood of c in ∂L is an annulus and by an half-integer otherwise.

Step 3. To each region R i we associate the block R i × D 2 (if R i is not orientable one chooses the twisted disc bundle over R i , which is unique since R i collapses on a graph). Then we glue it along ∂R i × D 2 on ∂H, by sending ∂R i × {0} into the corresponding component of ∂P ′ . The gluing map is then completely described once one determines how many twists the image of the framing ∂R i × {1} performs with respect to the framing of ∂P ′ ⊂ ∂H, and this is specified by the gleam of R i .

The above thickening procedure proves part of the following:

Theorem 2.3 (Turaev [START_REF] Turaev | Quantum invariants of knots and 3-manifolds[END_REF]). Let P be a simple polyhedron and P ′ be the regular neighborhood of Sing(P ) in P . It is possible to canonically thicken P ′ to an oriented 4-manifold M (P ′ ,∅) composed of 0 and 1-handles in which P ′ is locally flat and properly embedded. If P is equipped with gleams gl, it is possible to extend the thickening to P in a canonical way obtaining a flat embedding in an oriented 4-manifold M (P,gl) collapsing on P . Moreover, if P is embedded in a 4-manifold M , and gl is the gleam induced on P by its embedding (see 2.2) then M (P,gl) is diffeomorphic to a neighborhood of P in M .

Example 2.4. If P is a spine of an orientable 3-manifold N , its mod 2 gleam has to be zero. By performing the construction above, using as gleam on P the 0 gleam over all the regions, we get the manifold

N × [-1, 1].
Example 2.5. To construct a surgery presentation of the pair (∂M (P ′ ,∅) , ∂P ′ ) it is sufficient to start from a diagram of P constructed as explained in Subsection 2.1, choose a maximal tree T in Sing(P ) = Sing(P ′ ), and encircle with 0-framed meridians all the three-uples of strands running over edges not belonging to the tree (see Figure 5). It is remarkable that the choice of the over/under crossings in the construction does not affect the resulting pair. If P is special, ∂M (P,gl) is then obtained by integral Dehn surgery over the so-constructed pair. Remark 2.6. All the 4-manifolds obtained by thickening the polyhedra equipped with gleams as in Theorem 2.3 admit a handle decomposition containing no handles of index greater than 2. It can be shown that also the reverse holds: any manifold admitting such a handle decomposition can be obtained by applying Theorem 2.3 to a suitable polyhedron equipped with gleams (see [START_REF] Costantino | Shadows and branched shadows of 3 and 4-manifolds[END_REF]) .

Definition 2.7. A polyhedron equipped with gleam (P, gl) is a shadow of a 4-manifold M if M is diffeomorphic to the thickening M (P,gl) of (P, gl) obtained through Theorem 2.3.

2.4. Shadows of closed 4-manifolds. By Remark 2.6, shadows can be used to describe combinatorially only a subset of all the smooth 4-manifolds not including closed ones. To obviate to this apparent weakness of the theory, let us recall the following result due to F. Laudenbach and V.

Poenaru ( [START_REF] Laudenbach | A note on 4-dimensional handlebodies[END_REF]):

Theorem 2.8. Let M be an oriented, smooth and compact 4-manifold with boundary equal to S 3 or to a connected sum of copies of S 2 × S 1 . Then, up to diffeomorphisms, there is only one closed, smooth and oriented 4-manifold obtained by "closing M ", that is, by attaching to M some 3 and 4-handles.

Roughly speaking, the above result states that when a manifold is closable, then it is in a unique way. This allows us to describe all the closed 4-manifolds by means of polyhedra with gleams: given a closed manifold equipped with an arbitrary handle decomposition, considering the union of all handles of index strictly less than 3 we get a new manifold M which admits a shadow and can be described combinatorially as explained in Subsection 2.3. The initial manifold can be then uniquely recovered from M because of Theorem 2.8. With a slight abuse of notation, we then give the following definition: Definition 2.9 (Shadows of closed manifolds). A polyhedron with gleams (P, gl) is a shadow of a closed 4-manifold X if and only if X can be obtained by attaching 3 and 4-handles to the 4-manifold M P obtained from P through the reconstruction map of Theorem 2.3.

A necessary and sufficient condition for a pair (P, gl) to be a shadow of a closed 4-manifold, is that ∂M (P,gl) is either S 3 or a connected sum of copies of S 2 × S 1 .

We will often use the two simplifying moves of Figure 6 whose effect on a polyhedron P is to produce a simpler polyhedron (possibly with boundary and hence retractible on some subpolyhedron) whose thickening is diffeomorphic to M (P,gl) . 0 1/2 0 +1 1/2 Figure 6. Two simplificating tricks removing a vertex. The first one produces a region with boundary which can then be collapsed, the remaining two region are locally capped with two 0-gleam discs. In the lower part of the figure, the rectangular boxes contain the change in the total gleam of the corresponding region after the modification.

Complexity of 4-manifolds

Definition 3.1 (Complexity of closed 4-manifolds). Let X be a closed, orientable, smooth 4manifold. The complexity of X, denoted c(X), is the least number of vertices in a shadow of X.

The above definition is quite natural and represents the straightforward translation to the 4dimensional case of Matveev's complexity of 3-manifolds ( [START_REF] Matveev | Complexity theory of 3-dimensional manifolds[END_REF]), based on spines. One of its fundamental properties is indeed shared by this notion:

Proposition 3.2. Complexity is sub-additive under connected sum, that is if X 1 and X 2 are closed 4 manifolds then c(X 1 #X 2 ) ≤ c(X 1 ) + c(X 2 ).
Proof of 3.2. Let (P i , gl i ), i = 1, 2 be shadows of X i . Connecting them through an arc whose endpoints are in the interior of two regions and then "pushing our fingers along the arc", we produce a new (connected) shadow, called P 1 + P 2 from Turaev ( [START_REF] Turaev | Quantum invariants of knots and 3-manifolds[END_REF]) and containing c(P 1 ) + c(P 2 ) vertices. It is not difficult to guess what the gleam of P should be and to prove then that M (Pg l) = M (P1,gl1) # ∂ M (P2,gl2) (where # ∂ is boundary connected sum), so that closing M (P,gl) produces X 1 #X 2 .

3.2

We will prove that CP 2 has 0-complexity; infact, it can be easily proved that any product F × S 2 or F ×S 2 with F orientable surface or F ×S 2 (with F non orientable) has complexity 0. As a consequence, the following holds: Corollary 3.3. There are infinitely many non-diffeomorphic 4-manifolds of complexity 0.

Remark 3.4. The fact that c(CP 2 ) = 0 also implies that complexity cannot be additive under connected sum: indeed, for each closed 4-manifold X, there exists an integer k such that X#kCP 2 is diffeomorphic to nCP 2 #mCP 2 for some n, m, and c(nCP 2 #mCP 2 ) = 0.

We stress here that the non-finiteness above described is common to Matveev's complexity. Indeed, in dimension 3, there are infinitely many manifolds having 0 complexity, e.g. any connected sums of L(3, 1) with himself. The main problem is that in dimension 3 it makes sense to restrict to irreducible 3-manifolds, while in dimension 4, smooth irreducibility is an ugly property (see [START_REF] Stipsicz | Geography of irreducible 4-manifolds[END_REF]). In order to keep complexity finite, the proof of Proposition 3.2 suggests to restrict to special polyhedra. In dimension 3, this is a consequence of restricting to irreducible manifolds, so we ask the following: Question 3.5. What is the class of 4-manifolds admitting a special minimal shadow?

Even if one restricts to special shadows, it is not obvious that there are only a finite number of 4-manifolds having a fixed complexity. Indeed, a priori, there could exist infinitely many gleams on the same polyhedron P such that ∂M (P,gl) = S 3 # k S 2 × S 1 , and this is indeed the case! But, fortunately, the following remarkable result of B. Martelli [START_REF] Martelli | Links, 2-handles and four-manifolds[END_REF] ensures finiteness of complexity on special polyhedra: Theorem 3.6. Let N and N ′ be two closed 3-manifolds and L ⊂ N a framed link. Up to diffeomorphism, there exist only finitely many cobordisms from N to N ′ constructed by gluing 2-handles to N along L.

We stress here that the above result does not claim that there are finitely many slopes on L surgering over which produces N ′ : it only claims for finiteness of the resulting 4-cobordisms.

Corollary 3.7. Let P be a special polyhedron, P ′ be the polyhedron obtained by puncturing once P over each region; let furthermore be (N, L) . = (∂M (P ′ ,∅) , ∂P ′ ). There are only finitely many closed 4-manifolds admitting a shadow whose underlying polyhedron is P .

In what follows, we restrict to special shadows of 4-manifolds and classify all the 4-manifolds admitting a special shadow with 0 or 1 vertex (Theorem 3.10 below). Definition 3.8 (Special complexity). Let X be a closed and oriented 4-manifold. The special complexity of X, denoted c sp (X) is the least number of vertices of a special shadow of X. Theorem 3.9. If a closed 4-manifold X has a shadow with k vertices and r regions which are not discs and whose total Euler characteristic is e, then c sp (X) ≤ k + 2(r + 2e). Moreover the following holds:

(1) For each integer k there exists only a finite number of smooth, closed and oriented 4manifolds having special complexity ≤ k. (2) If X 1 and X 2 are closed, oriented 4-manifolds, then c sp (X 1 #X 2 ) ≤ c sp (X 1 ) + c sp (X 2 ) + 4.

(3) c sp (X) = c sp (X), where X is X with the opposite orientation. Proof of 3.9. The first statement is a standard fact: it is sufficient to apply some local modifications called "0 → 2-moves" to the initial shadow in order to split the non disc regions into discs. Each of these moves creates 2 vertices, and the total number of these moves is bounded above by r + 2e. Fact 1 is a direct consequence the result of Corollary 3.7 and of the fact that there are only finitely many special polyhedra with no more than k vertices. To prove Fact 2, it is sufficient to repeat the construction of the proof of Proposition 3.2 and add two "lune moves" producing 4 new vertices, to ensure that the final polyhedron is special. Fact 3 is a direct consequence of the fact that, if (P, gl) is a shadow of M then, (P, -gl) is a shadow of M .

3.9

The main reason why it is interesting to restrict to special shadows is that the number of special polyhedra with less than k vertices is finite for every k. In particular, Figures 7 and8 summarize respectively the complexity 0 and 1 special polyhedra. 1.12 1.5 . All the closed 4-manifolds having a shadow with 1-vertex, also admit one without vertices, in particular they all belong to the above list.

To prove Theorem 3.10, for each polyhedron P of Figures 7 and8, we find all the gleams such that ∂M (P,gl) is S 3 # k S 2 × S 1 for some k ≥ 0. Then, for each of these gleams, we prove that the closed 4-manifold obtained by closing M (P,gl) belongs to the list above. To do that, we use a series of results ranging from classical topology, to hyperbolic geometry to quantum topology. The next subsection is devoted to recall these results, suitably adapted to our needs.

3.1. Useful tools.

"Classical" facts.

Proposition 3.11. Let (P, gl) be a polyhedron, (R i , gl i ), i = i . . . n be its regions equipped with gleams and oriented arbitrarily, and let M = M (P,gl) . The following holds:

(1) H * (P, Z) ∼ = H * (M, Z), π * (P, x 0 ) ∼ = π * (M, x 0 ), for each basepoint x 0 ∈ P .

(2) If H 2 (M ; Z) = 0, and T ors(H 1 (M )) = 0 then ∂M = S 3 , # k S 2 × S 1 .

(3) If H 2 (M ; Z) = 0 and H 1 (M ; Z) is free then H 1 (∂M ; Z) ∼ = H 1 (M ; Z). (4) Each element of H 2 (M (P,gl) ; Z) can be represented in a unique way as a sum i k i R i , with k i ∈ Z. (5) Given a basis of c 1 . . . c k of H 2 (M (P,gl) ; Z) with c j = 1≤i≤n c j i R i , the self-intersection form of M (P,gl) can be represented by an integer matrix Q(P, gl) whose (j, k)th entry is given by 1≤i≤n gl(R i )c j i c k i . (6) Suppose that H 1 (P ; Z) = 0; then, if det(Q(P, gl)) = 0 then #H 1 (∂M (P,gl) ; Z) = |det(Q(P, gl))|, otherwise H 1 (∂M (P,gl) ; Z) is infinite.

Proof of 3.11. Facts 1 and 4 are a consequence of the fact that M retracts on P and P is a CW-complex without 3-cells. Facts 2 and 3 result from H 3 (M ; Z) = 0 (P contains no 3cells), H 1 (M, ∂M ; Z) = 0 (P has codimension 2 in M ), from the isomorphism

H 2 (M, ∂M ) ∼ = F ree(H 2 (M )) ⊕ T ors(H 1 (M ))
, and from the exact homology sequence of the pair (M, ∂M ):

0 → H 3 (M, ∂M ) → H 2 (∂M ) → H 2 (M ) → H 2 (M, ∂M ) → H 1 (∂M ) → H 1 (M ) → 0
Fact 5 was proved by Turaev ([18]), and the last is a consequence of 2) and of a classical result of Fox ([6]).

3.11

We will also use the following strong result due to Gordon-Luecke for the part regarding S 3 ([8]) and to Gabai ([7]) for the part regarding S 2 × S 1 . Theorem 3.12. No integer Dehn filling on a non trivial knot in S 3 produces S 3 or S 2 × S 1 .

3.1.2. Hyberbolic 3-manifolds and shadows. Let P be a special polyhedron containing at least a vertex and let P ′ be the regular neighborhood of Sing(P ) in P . By Theorem 2.3, P ′ can be thickened (without the need of any gleams!) to a 4-manifold M (P ′ ,∅) diffeomorphic to a regular neighborhood of a graph in R 4 so that ∂P ′ ⊂ ∂M is a link in ∂M ∼ = # k S 2 × S 1 (for a suitable k).

To each component of ∂P ′ we associate its valence equal to the number of vertices of P ′ touching the region containing the component and its Z 2 -gleam (the Z 2 -gleam of the region of P containing the component). The following was proved by the author and D.P. Thurston ( [START_REF] Costantino | 3-manifolds efficiently bound 4-manifolds[END_REF]): Theorem 3.13.

(1) The 3-manifold ∂M (P ′ ,∅) is a connected sum of -χ(P ′ ) copies of S 2 × S 1 in which the link ∂P ′ has hyperbolic complement whose volume is 2|χ(P ′ )|V ol oct , where V ol oct is the volume of the regular hyperbolic octahedron.

(2) There is a maximal set of sections of the cusps of ∂M (P ′ ,∅) -∂P ′ such that the torus corresponding to a component of ∂P ′ whose valence is q is the one depicted in the left part of Figure 9 if its Z 2 -gleam is zero and in the right part otherwise. (3) The manifold M (P,gl) is obtained by attaching 2-handles to M (P ′ ,∅) along ∂P ′ , and hence ∂M (P,gl) is obtained by an integer Dehn filling of ∂M (P ′ ,∅) -∂P ′ . Theorem 3.14. Let N be a hyperbolic 3-manifold with cusps and let c be a fixed section of a cusp of N . Gluing a solid torus to c through an homeomorphisms sending the meridian of the torus to a geodesic whose length is > 6, produces a 3-manifold N ′ which is hyperbolike.

Theorem 3.15 ([1]

). Let N be a hyperbolic 3-manifold with cusps, C i , i = 1, . . . n be embedded sections of all the cusps cutting out volumes v i , . . . v n and sl i , i = 1, . . . n be minimal length geodesics in C i . Let s be any subset of {1, . . . n} and N s be a Dehn filling on N along the cusps C i , i ∈ s. If for each i ∈ s the distance between the i-th slope of the Dehn filling and sl i is greater than 18 vi then N s is hyperbolike. The following was proved in [START_REF] Costantino | Triangulations of 3-manifolds, hyperbolic relative handlebodies, and Dehn filling[END_REF] as a corollary of Theorem 3.13 and Theorem 3.14:

Corollary 3.16 ([2]
). Let (P, gl) be a standard shadow such that for each region R of P it holds |gl(R)| + v(R) ≥ 6. Then the manifold ∂M (P,gl) is Haken or word hyperbolic, and hence is not

S 3 or # k S 2 × S 1 .
3.1.3. State-sum quantum invariants. Given a shadow (P, gl) it is fairly easy to compute Reshetikhin-Turaev invariants of ∂M (P,gl) as combinatorial state sums. Instead of plunging into the theoretical aspects of these invariants we limit ourselves to define these invariants through explicit coefficients in C (see [START_REF] Turaev | Quantum invariants of knots and 3-manifolds[END_REF] for a complete account). Let r ≥ 3 be an integer and t . = e 2πi r ∈ C; for each n ∈ N let:

[n] . = t n -t -n t -t -1 , [0] . = [1] . = 1 [n]! . = 0≤i≤n [i]
Let us define complex-valued functions on N 2 as follows:

w j . = ( √ -1) 2j [2j + 1]
We say that a triple (i, j, k) of elements of N 2 is admissible if the following conditions are satisfied:

|i + j| ≤ k, |i + k| ≤ j, |j + k| ≤ i i + j + k ≤ r -2, i + j + k ∈ N For any triple of elements of N 2 we define ∆(i, j, k) . = [i + j -k]![i + k -j]![j + k -i]! [i + j + k + 1]
if the triple is admissible and zero otherwise. Finally, for any 6-uple of elements of N 2 we define its 6j-symbol as follows:

i j k l m n = z∈Z ( √ -1) -2(i+j+k+l+m+n) ∆(i, j, k)∆(i, m, n)∆(j, l, n)∆(k, l, m)(-1) z [z + 1]! [z-i-j-k]![z-i-m-n]![z-j-l-n]![z-k-l-m]![i+j+l+m-z]![i+k+l+m-z]![j+k+m+n-z]!
where the sum is taken over all z such that all the arguments of the "quantum factorials" in the denominator of the r.h.s. are non negative. Let furthermore:

W . = √ 2r t -t -1 S . = W -1 0≤i≤ r-2 2 (w i ) 4 e 2π √ -1(i-(i+1) r )
We define a coloring on a special polyhedron (P, gl) as an assignment of an element of N 2 to each region of P . Given a coloring on P , for each region R let w

[R] . = w j e 2π √ -1gl(R)(i-i(i+1) r
) where j is the color of R i ; similarly, to each vertex we associate its 6j-symbol where (i, j, k, l, m, n) are the colors of the regions around the vertex and (i, l) (j, m) and (k, n) are the pairs of colors corresponding to regions which, near the vertex, intersect only in the vertex itself. Finally, let sign(P, gl) be the signature of the self intersection form of H 2 (M (P,gl) ; Z), nul(P, gl) be the dimension of the maximal real subspace of H 2 (M (P,gl) ; R) contained in the annihilator of the form and b 1 (P ) teh first betti number of P . The state sum of (P, gl) is:

|(P, gl)| r .
= W 1-χ(P )-nul(P,gl)-b1(P ) S -sign(P,gl)

colorings regions w[R] vertices i j k l m n
Theorem 3.17 (Turaev [18]). Let N be a 3-manifold and (P, gl) be such that N = ∂M (P,gl) .

Then

|(P, gl)| r is an invariant of N denoted |N | r : if (P ′ , gl ′ ) is another polyhedron such that N = ∂M (P ′ ,gl ′ ) then |(P ′ , gl ′ )| r = |(P, gl)| r . Moreover, if N = S 3 # k S 2 × S 1 for some k ≥ 0 then |N | r = 1, ∀r ≥ 3.
Remark 3.18.

(1) The normalization we used, slightly differs from Turaev's original one to better suit our need of identifying polyhedra with gleams describing "closable" 4-manifolds.

(2) The gleam of P is irrelevant for the selection of the admissible colorings so that the explicit form of the state sum |(P, gl)| does not change if one changes gl. This allowed us to perform extensive computer based calculations of Reshetikhin-Turaev invariants of ∂M (P,gl) for a fixed polyhedron with varying gleams.

3.2. Classification of low-complexity 4-manifolds.

3.2.1. 0-complexity 4-manifolds. In this subsection we prove the first part of Theorem 3.10 by means of a case by case analysis. More precisely, for each polyhedron P of Figure 7 we will list all the possible gleams such that ∂M (P,gl) = S 3 # k S 2 × S 1 . Then for each of these gleams we identify the 4-manifold obtained by closing M (P,gl) . Case 0.1. In that case π 1 (P ) = Z 3 and H 2 (P ) = 0, so, by Proposition 3.11, ∂M (P,gl) cannot have the form S 3 # k S 2 × S 1 for any gleam on P .

Case 0.2. In that case P has two regions: let R 1 be the one passing once over Sing(P ) and R 2 the other one; let moreover P ′ be a regular neighborhood of Sing(P ) in P and P ′ i the polyhedra obtained by gluing the regions R i to P ′ . It can be checked that if R 1 is equipped with gleam gl 1 (necessarily an half integer) then the pair (∂M (P ′ 1 ,gl1) , ∂P ′ ) is (S 3 , T (2gl 1 , 2)), where T (p, q) is the (p, q)-torus knot. In particular, ∂P ′ 1 is a trivial knot in S 3 only if gl 1 = ± 1 2 and so by Theorem 3.12, if (P, gl) produces a "closable" 4-manifold, then gl(R 1 ) = ± 1 2 . Hence let us now suppose that gl(R 1 ) = 1 2 (up to reversing the orientation of M (P,gl) we can do that); notice that H 2 (P ; Z) = Z and is generated by the cycle represented by 2R 1 + R 2 whose self intersection is gl(R 2 ) + 4gl(R 1 ) (see Proposition 3.11). Hence by Fact 6 of Proposition 3.11 it must hold: 2 + gl(R 2 ) = ±1 or 2 + gl(R 2 ) = 0, and so gl(R 2 ) is in {-1, -2, -3}. It is not difficult to check that in these cases, using the tricks of Figure 6, P can be simplified to a sphere with gleam respectively 1, 0, -1. Such spheres are shadows respectively of CP 2 , S 4 and CP 2 . Hence P with gleam ( 1 2 , -1) is a shadow of CP 2 , with gleam ( 12 , -2) of S 4 and with gleam ( 1 2 , -3) of CP 2 .

Case 0.3. Let R 1 , R 2 and R 3 be the regions of P oriented so that R 1 +R 3 and R 2 +R 3 are cycles and gl i , i = 1, 2, 3 be their (integer) gleams. It can be checked that ∂M (P,gl) is the Seifert manifold S 2 (gl 1 , 1)(gl 2 , 1)(gl 3 , 1), which, according to the classification of Seifert 3-manifolds, can be S 3 or S 2 × S 1 only if |gl i | ≤ 3 ∀i. Moreover, in the chosen basis of H 2 (M (P,gl) ) the self intersection matrix of M (P,gl) is (see Proposition 3.11):

gl 1 + gl 3 gl 3 gl 3 gl 2 + gl 3
Hence, by Fact 4 of Proposition 3.11, it must hold (gl 1 + gl 3 )(gl 2 + gl 3 )gl 3 2 = ±1, 0. In particular it turns out that, up to symmetries of P and multiplication by -1 of gl (which changes the orientation of M (P,gl) ), the only cases are: (k, 0, 0), (1, ±1, k), with k ∈ {-3, -2, -1, 0, 1, 2, 3}. A case by case study shows that in the first family, k has to be in {-1, 0, 1} producing respectively CP 2 , S 4 , CP 2 ; the only interesting cases of the second family turn out to be ( is hyperbolic with n cusps and gluing back a region R i to P ′ corresponds to performing an integer Dehn filling along the i-th cusp. We want to list all the possible gleams on P such that ∂M (P,gl) is S 3 # k S 2 × S 1 for some k ≥ 0: this brings us produce a finite list of non-hyperbolic (possibly partial) Dehn fillings of P ′ by recursively applying Theorem 3.15; our main tool is Jeff Week's Snappea [START_REF] Weeks | SnapPea", The hyperbolic structures computer program[END_REF]. So, starting from the hyperbolic manifold ∂M (P ′ ,∅) (s = ∅), we iterate the following algorithm:

(1) Choose sections C i , i / ∈ s of the given hyperbolic manifold, let v i , i / ∈ s be the volumes they cut out of the manifold and let g i , i / ∈ s be the gleams on the regions R i corresponding to integer Dehn fillings along shortest geodesics in C i .

(2) For each cusp C i , i / ∈ s, perform the following steps. Let s i = s ∪ {i} and for each integer j such that -18 vi ≤ j ≤ 18 vi , let gl(R i ) = g i + j and gl si be the set of gleams on the regions with indices in s ∪ {i}:

• If ∂M (Ps i ,gls i ) is not hyperbolic, add (P si , gl si ) to the list of non-hyperbolic fillings of M (P ′ ,∅) . • If it is hyperbolic and has non empty boundary, apply Step 1 to ∂M (Ps i ,gls i ) otherwise, if j < 18 vi increase j, otherwise choose another cusp C k with k ∈ {1, . . . , n}i and follow Step 2.

The result of the above algorithm will be in general a finite list of non hyperbolic 3-manifolds possibly with boundary. If all the manifolds in the list are closed, one has a finite number of cases to check: in particular, we did it using Theorem 3.17. In what follows, a clever use of the tools of Subsection 3.1 allowed us to treat the cases when some element of the list has non-empty boundary and show that in fact if a 4-manifold has a complexity 1 special shadow, then it also has a complexity 0 one. It is worth to note that the above general algorithm was necessary only in few cases since most of the polyhedra of Figure 8 can be studied "by hand": let us then start from the easiest cases.

Cases 1.1-. . . -1.5. In all these cases H 1 (P ) is a finite, non-trivial group an so by Proposition 3.11 there is no gleam on P such that ∂M (P,gl) = S 3 # k S 2 × S 1 for some k ≥ 0.

Cases 1.6-1.7. In these cases P has only one region whose valency is 6. By Corollary 3.16 there is no gleam on P such that ∂M (P,gl) = S 3 # k S 2 × S 1 .

Case 1.8. Let R 1 be the region whose valency is 5, R 2 the other one and gl i , i = 1, 2 their gleams. Since the Z 2 -gleams of R 1 and R 2 are respectively 1 and 0, then gl 1 ∈ Z 2 and gl 2 ∈ Z.

Following the general algorithm, we obtain a finite list of pairs (gl 1 , gl 2 ) such that M (P,gl) is closed and non-hyperbolic and only one non-closed case: (P ′ 2 , gl 2 = 0). Using our state-sum formulation using Reshetikhin-Turaev invariants with r = 5, 7, 9 (see Theorem 3.17) we excluded all the closed cases. The non-closed case corresponds to the infinite family of gleams on P of the form gl = (gl 1 , 0), gl 1 ∈ Z 2 all of which can be simplified by the upper trick of Figure 6 obtaining a contractible shadow of S 4 .

Case 1.9. This case is similar to the preceding one. Let R 1 and R 2 be respectively the valency 5 and 1 regions of P , and gl i , i = 1, 2 be their gleams (note that in this case gl i ∈ Z, i = 1, 2). The general algorithm gives a list containing only two non-closed non-hyperbolic manifolds and a finite number of closed ones. As in the preceding case, using Theorem 3.17 we excluded all the closed ones. The first non closed non-hyperbolic manifold is ∂M (P ′ 2 ,0) whose Dehn fillings correspond to pairs (P, gl) with gl = (gl 1 , 0), gl 1 ∈ Z which can be simplified to a contractible shadow of S 4 using the upper trick of Figure 6. The second non-hyperbolic manifold is ∂M (P ′ 1 ,0) ; using S.Matveev's Recognizer [START_REF] Matveev | Three-manifold Recognizer[END_REF], we checked that this manifold has JSJdecomposition D 2 (2, 1)(3, -2) ∪ N 2 ∪ D 2 (2, 1)(3, -2), and contains two incompressible tori which can be compressed only if the Dehn-filling on the boundary corresponds to the 0 gleam on R 2 . But since S 3 # k S 2 × S 1 are atoroidal, gl 2 = 0 which falls in the preceding case.

Case 1.10. Let R 1 be the valency 4 region, R 2 and R 3 the remaining two (they are exchangeable through a symmetry of P ). It is easy to check that H 1 (P ; Z) = 0 and H 2 (P ; Z) = Z with generator represented by R 1 . By Proposition 3.11, it must hold gl 1 = 0 ∨ gl 1 = ±1. Then, up to multiplying gl by -1, we reduce to study two manifolds: ∂M (P ′ 1 ,0) and ∂M (P ′ 1 ,1) . Using S.Matveev's Recognizer, one sees that the first one has JSJ decomposition N 2 ∪ N 2 , and contains two incompressible tori, which can be compressed only if at least one of gl 2 and gl 3 is zero, in which case (P, gl) can be simplified using the upper trick of Figure 6 obtaining a shadow which is a sphere equipped with a gleam equal to gl 1 . On the contrary, ∂M (P ′ 1 ,1) is hyperbolic and can be treated using the general algorithm. The result is a finite list of closed non-hyperbolic manifolds which can be excluded using Theorem 3.17, and two non-closed non-hyperbolic manifolds corresponding respectively to (P ′ 1,2 , (1, 0, ∅)) and (P ′ 1,3 , (1, ∅, 0)) which can be simplified using the trick of Figure 6. Case 1.11. Let R i i = 1, 2, 3 be the region of valency i in P . The 4-manifold M (P,gl) has a handle decomposition induced by P such that the two 1-handles induced by the edges of P are annihilated by the two 2-handles corresponding to R 1 and R 2 . Hence ∂M (P ′ 1,2 ,(gl1,gl2,∅)) is the complement of a knot k in S 3 , so, by Theorem 3.12, we search for the cases when k is the trivial knot. To do this, we calculated the Alexander polynomial of k using gl 1 and gl 2 as parameters and Turaev's surgery formulas for Reidemeister torsion ( [START_REF] Turaev | Torsions of 3-dimensional manifolds[END_REF]). It holds: ∆(k) = t + t 2 + t 3c1 + t (3c1+2c2+1) + t (6c1+2c2-1) + t (6c1+2c2) (1 + t)(1 + t + t 2 )

c 1 . = gl 1 + 1 2 , c 2 . = gl 2 - 1 2
It is easy to check that the above fraction defines an element of Z[t, t -1 ] well defined up to products by t ±1 . Then, to find the cases when k is an unknot we study when ∆(k) = t r for some r. To do that, we associate to ∆(k) its span, that is, the (well defined) difference between the highest and the lowest degree in any of its expressions as an element of Z[t, t -1 ]. It is simple to see that this span depends on gl 1 and gl 2 as a piecewise affine function; a careful analysis of all the possible combinations of (gl 1 , gl 2 ) shows that span(∆(k)) = 0 only in four cases: (-1 2 , 3 2 ), (-1 2 , 1 2 ), ( 1 2 , -1 2 ), ( 1 2 , -3 2 ). But in each of these cases |gl 1 | = 1 2 , using the lower trick of Figure 6, the polyhedron can be simplified obtaining the polyhedron 0.2 of Figure 7.
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 1 Figure 1. The three local models of a simple polyhedron.
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 2 Figure 2. How to build up a special polyhedron from its local models.
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 3 Figure 3. The picture sketches the position of the polyhedron in a 3-dimensional slice of the ambient 4-manifold. The direction indicated by the vertical double arrow is the one along which the two regions touching the horizontal one get separated.
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 4 Figure 4. In this picture we show the blocks used to thicken a polyhedron to a 3-manifold.
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 5 Figure 5. How to pass from a diagram of P ′ to a surgery presentation of (∂M (P ′ ,∅) , ∂P ′ ).
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 7 Figure 7. The three complexity 0 special polyhedra.
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 9 Figure 9. The shapes of the section of a cusp of ∂M (P ′ ,∅) -∂P ′ . Let us recall the following results of I. Agol ([1]) and M. Lackenby ([10]):

  Complexity 1 four manifolds. Let us first clarify the general strategy we follow for each polyhedron P of Figure8. Let R 1 , . . . R n be the regions of P , P ′ the regular neighborhood of Sing(P ) in P and, for each subset s of {1, . . . n}, let P s be the polyhedron obtained by gluing to P ′ each region R i with i ∈ s. By Theorem 3.13 the manifold ∂M (P ′ ,∅)
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Case 1.11. Let R 1 and R 2 be the two valency 2 regions of P and R 3 and R 4 the remaining two: it is easy to see that there are symmetries of P exchanging them in pairs. If either gl 3 = ± 1 2 or gl 4 = ± 1 2 then P can be simplified obtaining the special complexity 0 polyhedron, hence, we exclude from now on all the quadruples of gleams satisfying one of the above equalities. The application of the general algorithm produces again a finite list of closed non-hyperbolic Dehn fillings of ∂M (P ′ ,∅) and of non-closed ones. The former can be shown to be different from S 3 # k S 2 × S 1 by means of Theorem 3.17. To exclude that the latter have integer Dehn fillings of that form, we use the following facts:

(1) If S is a Seifert 3-manifold having the homology of S 3 (S 2 ×S 1 ), then S = S 3 (S = S 2 ×S 1 ) iff its base orbifold is S 2 , its singular fibers are not more than 3 and their degree of singularity is at most 3. (2) The determinant of the self-intersection matrix of M (P,gl) is (gl 1 + gl 3 + gl 4 )(gl 2 + gl 3 + gl 4 ) -(gl 3gl 4 ) 2 and, by Proposition 3.11, it has to be either 0 or ±1. (3) gl 1 , gl 2 ∈ Z and gl 3 , gl 4 ∈ Z 2 . Up to symmetries of P and multiplication of gl by -1, the list of (partial) non-closed non-hyperbolic Dehn-fillings is encoded by the following quadruples of gleams on

, where we denoted by ∅ the nonfilled regions. Using S.Matveev's Recognizer, one sees that the integer Dehn fillings of the first two quadruples are S 2 (gl 2 , -1)(2gl 3 , -gl 3 + 1

2 )(2gl 4 , -gl 4 + 1 2 ) and S 2 (2, 1)(2gl 3 , 2)(2gl 4 , 2) respectively. Using the above three facts, one can show that these Dehn fillings are "closable" if and only if either gl 3 = ± 1 2 or gl 4 = ± 1 2 which we excluded from the beginning. Similarly, a Dehn filling corresponding to (1, gl 2 , gl 3 , gl 4 ) gives D 2 (gl 3 + 1 2 , -1)(gl 4 + 1 2 , -1) ∪ D 2 (2, 1)(gl 2 + 1, 1) which contains an incompressible torus unless either gl 3 or gl 4 are ± 1 2 . The quadruples (2, gl 2 , -3 2 , gl 4 ), (2, -3, - 5 2 , gl 4 ), (2, -3, 3 2 , gl 4 ) satisfy the equation of Fact 2 above, only in a finite number of cases, all of which can be excluded by means of Theorem 3.17. The last quadruple (3, 3, - 3 2 , gl 4 ) satisfies the determinant equation for all gl 4 , but it can be checked that H 1 (∂M (P,gl) ; Z) has always torsion unless gl 4 = - 3 2 or gl 4 = -5 2 ; these two cases can then be excluded by means of Theorem 3.17.

3.3. Some higher complexity manifolds. Let us first provide some examples of 4-manifolds having higher special complexity. Some "trivial" examples can be obtained by applying Theorem 3.9: each connected sum of a pair of special complexity 0 manifolds has special complexity at most 4; more in general, the special complexity of kCP 2 #hCP 2 is bounded above by 2k + 2h. A first non-trivial example is RP 2 ×S 2 : his special shadow with 2-vertices can be constructed by applying Theorem 3.9 to its non special shadow whose underlying polyhedron is obtained from 0.3 of Figure 7 by gluing two discs with gleams ±1 and one Möbius strip. More in general, if F is a genus g-surface, the manifold F × S 2 has special complexity bounded above by 4g if F is orientable and by 4g + 2 otherwise. It is not difficult to provide upper estimates for the complexity of another class of notable closed 4-manifolds: the elliptic surfaces E(n). Using a Kirby-calculus presentation of these manifolds (see [START_REF] Gompf | 4-manifolds and Kirby calculus[END_REF], Theorem 8.3.2), one can check that c(E(n)) ≤ 6n+ 2. Then, an example of "exotic" 4-manifold with complexity ≤ 14 is E(2)#CP 2 which is homeomorphic but not diffeomorphic to 3CP 2 #20CP 2 (whose complexity is 0). On the contrary, examples of homeomorphic but non diffeomorphic 4manifolds with boundary are much easier to provide: the 4-thickening of the polyhedron 1.10 of Figure 8 equipped with gleams (-1, 1, 2) (using the notation of Subsection 3.2.2) admits a nondiffeomorphic model having a special shadow with 3-vertices (see [START_REF] Gompf | 4-manifolds and Kirby calculus[END_REF], Theorem 11.4.8).