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Introduction

A steel-concrete composite beam is obtained by connecting two beams, a metallic one and a reinforced concrete beam, by means of small metallic elements (connectors) which are welded on the top flange of the metallic beam and immersed in the concrete, in order to hinder sliding on the concrete-steel interface, see Figure 1. The infinitesimal free vibrations of a steel-concrete composite beam are modelled by the following system of partial differential equations:

                         ∂ ∂x a 1 ∂u 1 ∂x + k u 2 -u 1 + ∂v 2 ∂x e s = ρ 1 ∂ 2 u 1 ∂t 2 (x, t) ∈ (0, L) × (0, T ), ∂ ∂x a 2 ∂u 2 ∂x -k u 2 -u 1 + ∂v 2 ∂x e s = ρ 2 ∂ 2 u 2 ∂t 2
(x, t) ∈ (0, L) × (0, T ),

-∂ 2 ∂x 2 j 1 ∂ 2 v 1 ∂x 2 + ∂ ∂x ke 2 c 6 (2 ∂v 1 ∂x + ∂v 2 ∂x ) - -µ(v 1 -v 2 ) = ρ 1 ∂ 2 v 1 ∂t 2 ,
(x, t) ∈ (0, L) × (0, T ),

-∂ 2 ∂x 2 j 2 ∂ 2 v 2 ∂x 2 + ∂ ∂x ke 2 c 6 (2 ∂v 2 ∂x + ∂v 1 ∂x ) + + ∂ ∂x (k(u 2 -u 1 + ∂v 2 ∂x e s )e s ) + µ(v 1 -v 2 ) = ρ 2 ∂ 2 v 2
∂t 2 , (x, t) ∈ (0, L) × (0, T ), (1.1) see [START_REF] Dilena | A damage analysis of steel-concrete composite beams via dynamic methods: Part II. Analytical models and damage detection[END_REF]. Under the assumption that the system is at rest at t = 0, that is

u 1 | t≤0 = u 2 | t≤0 = v 1 | t≤0 = v 2 | t≤0 = 0 x ∈ (0, L), (1.2) 
we shall concerned with the following Dirichlet boundary conditions at x = 0 and x = L:

       u 1 | x=L = u 2 | x=L = v 1 | x=L = v 2 | x=L = ∂v 1 ∂x | x=L = ∂v 2 ∂x | x=L = 0, u 1 | x=0 = u 1 (t), u 2 | x=0 = u 2 (t), v 1 | x=0 = v 1 (t), v 2 | x=0 = v 2 (t), ∂v 1 ∂x | x=0 = ϕ 1 (t), ∂v 2 ∂x | x=0 = ϕ 2 (t).
(1.3) for t ∈ (0, T ). Hereinafter, the quantities relative to the concrete beam (the upper one in Figure 1) and the steel beam (the lower one) will be denoted by indices i = 1, 2, respectively. The functions u i = u i (x, t) and v i = v i (x, t) denote the longitudinal and transversal displacement, respectively, of the cross-section of abscissa x, evaluated at the moment of time t. In equations (1.1), the quantities j i = E i I i and a i = E i A i are the flexural and the axial stiffness of the cross-section, respectively, where I i and A i are the moment of inertia and the area of the transversal cross-section and E i , E i > 0, is the Young modulus of the ith material. The function ρ i = ρ i (x) is the linear mass density of the ith beam, ρ i > 0. Finally, e s is the half-height of the steel beam and e c ≡ e -e s , where e is the distance between the axes of the two beams forming the system. The two positive quantities k = k(x), µ = µ(x) express respectively the shearing and axial stiffness of the connection between the concrete slab and the steel beam. These coefficients define the mechanical properties of the connection and they contain direct information on its integrity. In particular, typical damage occurring in real steel-concrete systems involves a deterioration of the connection, causing a decrease in the stiffness coefficients k and µ. Since the inaccessibility of the connection from the exterior makes direct inspection difficult, an inverse problem interesting for applications consists in estimating the coefficients k, µ from suitable non destructive techniques.

In [START_REF] Morassi | An inverse dynamical problem for connected beams[END_REF] a diagnostic method based on dynamic data has been proposed for the simpler situation in which the coupling between bending and longitudinal motions is neglected. In this case, by formally taking v 1 = v 2 = 0 in the previous model, the system (1.1) simplifies into a two-velocity dynamical system. For this reduced problem it was proved that the shearing stiffness coefficient k can be uniquely determined from the measurement of the frequency response function of the composite system taken at one end of the beam. The strategy of the reconstruction procedure is based on a transformation of the equations governing the free longitudinal vibrations to an equivalent first order system and, subsequently, on the use of the progressive waves approach to reduce the local reconstruction of k to the resolution of a system of nonlinear Volterra integral equations. Finally, an iterative use of a layer stripping technique allows for a reconstruction, step by step, of the coefficient k on the whole interval [0, L]. We refer to [START_REF] Belishev | Recovering the parameters of the system of connected beams from dynamical boundary measurements[END_REF] for an interesting application of the Boundary Control Method to solve this inverse problem when measurements are taken at both the ends of the beam.

All the above results have been obtained for the simplified model where the coupling between longitudinal and transversal motions is neglected and only longitudinal motions are present. In the engineering applications, see, for example, [START_REF] Johnson | Composite structures of steel and concrete[END_REF], it is important to examine the full complete coupled system (1.1), which includes two fourth order and two second order differential operators coupled on a term of low order. Unfortunately, it seems rather involved to extend the techniques presented in [START_REF] Morassi | An inverse dynamical problem for connected beams[END_REF] and [START_REF] Belishev | Recovering the parameters of the system of connected beams from dynamical boundary measurements[END_REF] to this general case.

In this paper we study the inverse problem of reconstructing the stiffness coefficients of a steel-concrete composite beam by using a different approach. More precisely, we propose a variational procedure based on dynamical measurements taken at the boundary and at some interior portions of the system. Our inspiration comes from the recent paper [START_REF] Choi | Variational approach for identifying the coefficient of wave equation[END_REF] in which the authors proposed a variational approach for identifying the coefficient of some second order evolution equation based on dynamical boundary measurements.

Let us introduce the set C of pairs of coefficients (k, µ): 

C = {(k, µ) | k ∈ C 1 [0, L], µ ∈ C 0 [0, L], k(x) ≥ 0, µ(x) ≥ 0 for x ∈ [0, L]}. (1.4) Let us denote by Q(t) ≡ Q[k, µ](0,
J( k, µ) := T 0 |Q[ k, µ](0, t) -Q(t)| 2 dt+ + T 0 I 2 i=1 (v i [ k, µ](x, t) -v i (x, t)) 2 dx dt, (1.5) 
where Q[ k, µ](0, t) and v i [ k, µ](x, t) are respectively the Neumann data at x = 0 and the transversal displacements of the solution of (1.1) for (k = k, µ = µ).

The cost function J attains a global minimum when ( k = k, µ = µ) in [0, L]. Therefore, we expect to recover information on the unknown coefficients by minimizing J( k, µ) on C.

In this paper we present a projected gradient method which uses the analytical expressions of the first partial derivatives of J throughout the minimization process. More precisely, we give the complete form of the Gateaux partial derivatives of J with respect to the coefficients k and µ (see Theorem 3.1) and we present a numerical algorithm based on the complete form of the differential of J (see Section 5). The results of the numerical simulation are encouraging. The identified coefficients are in good agreement with the exact ones and the method seems to be sufficiently stable and robust with respect to errors on the measured data.

The rest of the paper is organized as follows. In Section 2 we discuss the well-posedness of the direct problem (1.1). The inverse problem is formulated in Section 3 and the complete form of the Gateaux derivatives of J are given in Theorem 3.1. In Section 4 we shall state some propositions which are useful in proving Theorem 3.1. In Section 5 we present the numerical algorithm and we some numerical results.

Well-posedness of the direct problem

In this section we shall introduce some notations and we shall study the well-posedness of the direct problem (1.1).

We rewrite the dynamical system (1.1) governing the infinitesimal vibrations w = (u 1 (x, t), u 2 (x, t), v 1 (x, t), v 2 (x, t)) of a composite beam in the following compact form

       Cw ,tt -A k,µ w = 0 (x, t) ∈ (0, L) × (0, T ), w| t=0 = 0, w ,t | t=0 = 0 x ∈ (0, L), Dw| x=0 = U t ∈ (0, T ), Dw| x=L = 0 t ∈ (0, T ), (2.1) 
where C is the 4 × 4 diagonal matrix

C = diag(ρ 1 , ρ 2 , ρ 1 , ρ 2 ), (2.2) 
A k,µ is the spatial differential operator defined by

A k,µ w =              (a 1 u 1,x ) ,x + k(u 2 -u 1 + v 2,x e s ) (a 2 u 2,x ) ,x -k(u 2 -u 1 + v 2,x e s ) -(j 1 v 1,xx ) ,xx + ( ke 2 c 6 (2v 1,x + v 2,x )) ,x -µ(v 1 -v 2 ) -(j 2 v 2,xx ) ,xx + ( ke 2 c 6 (2v 2,x + v 1,x )) ,x + (k(u 2 -u 1 + v 2,x e s )e s ) ,x + µ(v 1 -v 2 )              (2.3)
and D is the operator given by

Dw = {u 1 , u 2 , v 1 , v 2 , v 1,x , v 2,x } T .
(2.4)

In the above equation the function v i,x , i = 1, 2, expresses the rotation of the cross-section of the ith beam. The coefficients ρ i , a i , j i , i = 1, 2, are assumed to be positive and regular in [0, L]. More precisely, for i = 1, 2, we assume:

   ρ i ∈ C 0 ([0, L]), ρ i (x) ≥ ρ i0 > 0 in (0, L), a i ∈ C 1 ([0, L]), a i (x) ≥ a i0 > 0 in (0, L), j i ∈ C 2 ([0, L]), j i (x) ≥ j i0 > 0 in (0, L), (2.5) 
where ρ i0 , a i0 and j i0 are given constants.

Concerning the connection parameters, we shall assume:

k ∈ C 1 ([0, L]), k(x) ≥ 0 in [0, L], µ ∈ C 0 ([0, L]), µ(x) ≥ 0 in [0, L]. (2.6) 
The boundary data at x = 0 is assumed to be such that

U (t) := (u 1 (t), u 2 (t), v 1 (t), v 2 (t), ϕ 1 (t), ϕ 2 (t)) T , U (t) ∈ C 3 ([0, T ]) 6 , with U j,t i (t)| t=0 = 0, i = 0, 1, 2, 3, j = 1, ..., 6, (2.7) 
where hereinafter we shall denote f ,t i := ∂ i f (t) ∂t i , i integer and i ≥ 1. In order to study the well-posedness of the problem (2.1), we shall reduce it to an abstract evolution initial value problem with homogeneous boundary conditions by introducing a suitable inverse trace operator.

To this end, let us define the function Φ :

[0, L] × [0, T ] → R 4 such that Φ(x, t) =        u 1 (t)ϑ(x) u 2 (t)ϑ(x) ϕ 1 (t)ψ(x) + v 1 (t)ϑ(x) ϕ 2 (t)ψ(x) + v 2 (t)ϑ(x)        , (2.8) 
where

ψ(x) = x 1 - x L 2 , ϑ(x) = 2 x L 3 -3 x L 2 + 1.
(2.9)

The function Φ belongs to (C 3 ([0, T ]; C ∞ (0, L))) 4 and verifies the Dirichlet boundary conditions

DΦ| x=0 = U , DΦ| x=L = 0, (2.10) 
and, by (2.7), the initial conditions

Φ(x, t) ,t i | t=0 = 0 x ∈ [0, L], i = 0, 1, 2, 3. (2.11)
Therefore, the function ŵ :

[0, L] × [0, T ] → R defined as ŵ := w -Φ = (û 1 , û2 , v1 , v2 ) T (2.12) satisfies the problem    C ŵ,tt -A k,µ ŵ = f (x, t) ∈ (0, L) × (0, T ), ŵ| t=0 = ŵ0 , ŵ,t | t=0 = ŵ1 x ∈ (0, L), D ŵ| x=0 = D ŵ| x=L = 0 t ∈ (0, T ), (2.13) 
where

f = A k,µ Φ -CΦ ,tt (x, t) ∈ (0, L) × (0, T ), ŵ0 = -Φ| t=0 = 0 x ∈ (0, L), (2.14) 
ŵ1 = -Φ ,t | t=0 = 0 x ∈ (0, L).
To study the well-posedness of the evolution system (2.13), we introduce the following function spaces

V = H 1 0 (0, L)×H 1 0 (0, L)×H 2 0 (0, L)×H 2 0 (0, L) := (H 1 0 (0, L)) 2 ×(H 2 0 (0, L)) 2 , H = L 2 ρ 1 (0, L) × L 2 ρ 2 (0, L) × L 2 ρ 1 (0, L) × L 2 ρ 2 (0, L). (2.15)
Here, H 1 0 (0, L) and H 2 0 (0, L) are the standard Hilbert spaces and L 2 ρ i (0, L) is the space L 2 (0, L) endowed with the usual scalar product < f, g >= L 0 ρ i (x)f (x)g(x)dx, i = 1, 2. Let V ′ denote the dual of the space V .

The embedding i : V ֒→ H is continuous, injective, with image dense in H. Therefore, the dual i ′ : H ֒→ V ′ of i is continuous, injective and has a dense range. It follows that the triple (V, H, V ′ ) is a Gelfand triple.

Moreover, for our purposes it turns out to be useful to view a function u = u(x, t) as a function t → u(t) with values u(t) : x → u(x, t) in an appropriate Hilbert space of functions X. For example, for a measurable function u on (0, L) × (0, T ), we will indicate

u ∈ H k ((0, T ); X) ⇔ u ,t i ∈ L 2 ((0, T ); X) 0 ≤ i ≤ k, (2.16)
where k is a positive integer number and the differentiation in time is in the distributional sense. The norm of u ∈ H k ((0, T ); X) is given by u

2 H k ((0,T );X) = k i=0 T 0 u ,t i 2 X dt.
By multiplying equation (2.13) by any test function m = (g 1 , g 2 , h 1 , h 2 ), g i and h i ∈ C ∞ 0 ([0, T ]; V ), i = 1, 2, and integrating by parts on (0, L) × (0, T ) we find

T 0 (a k,µ ( ŵ, m) -c( ŵ′ , m ′ )) dt = T 0 < f, m > dt, ∀ m ∈ C ∞ 0 ((0, T ); V ), ( 2 
.17) where

a k,µ ( ŵ, m) := -(A k,µ ŵ, m) = α (0) ( ŵ, m) + α (1)
k ( ŵ, m) + α (2) µ ( ŵ, m), (2.18)

c( ŵ′ , m ′ ) = (C ŵ,t , m ,t ) = L 0 2 i=1 (ρ i ûi,t g i,t + ρ i vi,t h i,t ) dx, (2.19) < f, m >= L 0 4 i=1 f i m i dx.
(2.20)

The functions α (0) ( ŵ, m), α

k ( ŵ, m) and α

µ ( ŵ, m) appearing in (2.18) are defined as

α (0) ( ŵ, m) = L 0 2 i=1 (a i ûi,x g i,x + j i vi,xx h i,xx ) dx, α (1) 
k ( ŵ, m) = L 0 k(û 2 -û1 + v2,x e s )(g 2 -g 1 + h 2,x e s )dx+ + L 0 ke 2 c 6 (2v 1,x h 1,x + 2v 2,x h 2,x + v2,x h 1,x + v1,x h 2,x )dx, α (2) µ ( ŵ, m) = L 0 µ(v 1 -v2 )(h 1 -h 2 )dx. (2.21)
The two symmetric sesquilinear forms a k,µ (•, •) and c(•, •) are positive definite, that is

∃ α > 0 s.t. a k,µ (u, u) ≥ α u V ∀u ∈ V, ∃ β > 0 s.t. c(u, u) ≥ β u H ∀u ∈ H. (2.22)
Note that to derive the coercivity condition (2.22) 1 we have used the Poincaré inequality on H 1 0 (0, L) and on H 2 0 (0, L). With the above definitions, the evolution system (2.13) can be written as the following Cauchy problem for an abstract evolution equation:

C ŵ′′ -A k,µ ŵ = f (t) t ∈ (0, T ), ŵ(0) = ŵ0 , ŵ(0) = ŵ1 , (2.23) 
where equation (2.23) 1 is understood in the weak sense of equation (2.17).

To study (2.23) we will use the following well-known result, see, for example, [START_REF] Wloka | Partial Differential Equations[END_REF].

Theorem 2.1. Let us consider the evolution equation

C d 2 y(t) dt 2 -Ay(t) = f (t) t ∈ (0, T ), (2.24) 
with the initial conditions

y(0) = y 0 , dy dt (0) = y 1 .
(2.25)

Let V , H be two Hilbert spaces with V ֒→ H dense and V separable, such that (V, H, V ′ ) is a Gelfand triple. Let a(•, •) be the symmetric sesquilinear form on V associated to the operator -A and let c(•, •) be the symmetric sesquilinear form on H associated to the operator C. Assume that there exist

λ ∈ R, α > 0, β > 0 such that a(u, u) + λ u 2 H ≥ α u 2 V ∀u ∈ V (2.26) and c(u, u) ≥ β u 2 H ∀u ∈ H. (2.27) 
Moreover, let us assume that f ∈ H k-1 ((0, T ); H), k ≥ 1, (2.28)

and y 0 ∈ V (2.29)
are such that the compatibility condition of degree k -1 is satisfied, that is

C d j y dt j (0) ∈ V, j = 0, ..., k -1, C d k y dt k (0) ∈ H. (2.30)
Then, the Cauchy problem (2.24), (2.25) has a unique solution y(t) such that

y ∈ C 0 ([0, T ]; V ), dy(t) dt ∈ C 0 ([0, T ]; H), (2.31) 
with y and dy(t) dt which depend linearly and continuously on (f, y 0 , y 1 ) ∈ L 2 ((0, T ); H) × V × H. Moreover, we have

y ∈ H k-1 ((0, T ); V ), d k y(t) dt k ∈ L 2 ((0, T ); H), d k+1 y(t) dt k+1 ∈ L 2 ((0, T ); V ′ ).
(2.32) Remark 2.2. Differentiating equation (2.13) formally and substituting t = 0, we obtain

C d 2j-1 y dt 2j-1 (0) = d 2j-3 f dt 2j-3 (0) + A d 2j-5 f dt 2j-5 (0) + ... + A j-2 df dt (0) + A j-1 y 1 , (2.33) C d 2j y dt 2j (0) = d 2j-2 f dt 2j-2 (0) + A d 2j-4 f dt 2j-4 (0) + ... + A j-1 f (0) + A j y 0 . (2.34)
These expressions give a more explicit form of the compatibility condition (2.30) in terms of (f, y 0 , y 1 ).

We are now in position to consider the well-posedness of problem (2.1).

Theorem 2.3. Under the assumptions (2.5), (2.6) on the coefficients and on the assumptions (2.7) on the boundary data, the problem (2.1) has a unique solution

w ∈ H 2 ((0, T ); H 1 (0, L)) 2 × H 2 ((0, T ); H 2 (0, L)) 2 ,
such that w ,ttt ∈ L 2 ((0, T ); L 2 (0, L)) 4 .

Moreover, we have

w ∈ H 1 ((0, T ); H 2 (0, L)) 2 × H 1 ((0, T ); H 4 (0, L)) 2 .
Proof. 

, i = 1, 2.
Moreover, by (2.35) and recalling the initial conditions at t = 0, the inhomogeneous term f and the initial data ŵ0 , ŵ1 satisfy the compatibility conditions (2.30) up to k = 3.

Therefore, by Theorem 2.1, the problem (2.23) has a unique solution

ŵ ∈ {(H 2 ((0, T ); H 1 0 (0, L))) 2 ×(H 2 ((0, T ); H 2 0 (0, L))) 2 }∩(H 3 ((0, T ); L 2 (0, L))) 4 .
(2.36)

The regularity of ŵ with respect to the space variable can be improved by observing that

A k,µ ŵ = C d 2 ŵ dt 2 -f ∈ H 1 ((0, T ); L 2 (0, L)) 4 .
(2.37) Therefore, by regularity results for solutions to elliptic equations under Dirichlet boundary conditions, we have also

ŵ ∈ H 1 ((0, T ); H 2 (0, L)) 2 × H 1 ((0, T ); H 4 (0, L)) 2 .
(2.38)

Finally, from the definition (2.12) of ŵ, the theorem follows.

3 The main result

Let w ∈ (H 2 ((0, T ); H 2 (0, L))) 2 × (H 2 ((0, T ); H 4 (0, L))) 2 be the solution of problem (2.1) (see Theorem 2.3) and let m = (g 1 , g 2 , h 1 , h 2 ) ∈ C ∞ 0 [0, T ]; (H 1 L (0, L)) 2 × (H 2 L (0, L)) 2 ,
where H k L is the space of functions belonging to H k (0, L) such that the trace of their values and the values of their derivatives up to the order k -1, k ≥ 1, vanish at x = L.

Integrating by parts, we have

a k,µ (w, m) = b k (w, m) -(A k,µ w, m), (3.1) 
where the operator A k,µ is defined in (2.3) and the boundary term at x = 0 can be expressed as

b k (w, m) := -B k w • Dm| x=0 = - 2 i=1 (N i g i + T i h i -M i h ′ i )| x=0 , (3.2) 
where the boundary operator B k is such that

B k w =                  a 1 u 1,x := N 1 (0, t) a 2 u 2,x := N 2 (0, t) -(j 1 v 1,xx ) ,x + ke 2 c 6 (2v 1,x + v 2,x ) := T 1 (0, t) -(j 2 v 2,xx ) ,x + ke 2 c 6 (2v 2,x + v 1,x ) + k(u 2 -u 1 + v 2,x e s )e s := T 2 (0, t) -j 1 v 1,xx := M 1 (0, t) -j 2 v 2,xx := M 2 (0, t)                  . (3.3)
Note that the operator B k does not depend explicitly on the coefficient µ.

Since w ∈ (H 2 ((0, T )); H 2 (0, L))) 2 × (H 2 ((0, T )); H 4 (0, L)))
2 , the operator B k is well defined.

Let us denote by C the set of pairs of coefficients (k, µ):

C = {(k, µ) | k ∈ C 1 [0, L], µ ∈ C 0 [0, L], k(x) ≥ 0, µ(x) ≥ 0 for x ∈ [0, L]}.
(3.4) Moreover, let us introduce the following notations which will be useful in the sequel:

w[ k, µ] := w[ k, µ](x, t) solution of (2.1) for k = k and µ = µ, for given k, µ ∈ C; (3.5) Q[ k, µ](x, t) := -B k w[ k, µ](x, t), at x = 0 or x = L; (3.6) Q(t) := Q[k, µ](0, t), v i (x, t) := v i [k, µ](x, t), i = 1, 2, x ∈ [0, L], t ∈ [0, T ], (3.7 
) for some k, µ ∈ C.

For any k, µ ∈ C, we define the cost function J( k, µ) as

J( k, µ) := J 1 ( k, µ) + J 2 ( k, µ), (3.8) 
where

J 1 ( k, µ) := T 0 |Q[ k, µ](0, t) -Q(t)| 2 dt, (3.9) 
J 2 ( k, µ) := T 0 I 2 i=1 (v i [ k, µ](x, t) -v i (x, t)) 2 dx dt, (3.10) 
where

I is an open interval such that I ⊆ [0, L]. The cost function J( k, µ) attains a global minimum when k(x) = k(x) and µ(x) = µ(x) in [0, L].
Therefore, one reasonably expects to recover information on the unknown coefficients k(x) and µ(x) on the interval [0, L] by minimizing J on the set C. We will study the inverse problem of reconstructing k and µ from the boundary measurements {Q(t)}, t ∈ [0, T ], and from the interior measurement {v 1 (x, t), v 2 (x, t)}, (x, t) ∈ I ×[0, T ], by minimizing J via a projected gradient method.

In this section and next section we mainly provide a rigorous justification of the complete form of the Gateaux derivatives of J, which we use to give a numerical implementation scheme for minimizing J by the gradient method. We obtain the following result.

Theorem 3.1. Let the coefficients of problem (2.1) satisfy (2.5), (2.6) and let the assumptions (2.7) on the boundary data be satisfied.

Let k, µ, δk, δµ ∈ C. For any ǫ, γ ∈ R + such that ǫ 2 + γ 2 → 0 we have

J( k + ǫδk, µ + γδµ) -J( k, µ) = ǫ∂ 1 J( k, µ)δk + γ∂ 2 J( k, µ)δµ + o( ǫ 2 + γ 2 ), (3.11) where lim z→0 + o(z) z = 0. The Gateaux partial derivatives ∂ 1 J( k, µ), ∂ 2 J( k, µ
) of the functional J, evaluated at the point ( k, µ) with respect to the first and the second variable respectively, are given by

∂ 1 J( k, µ)δk = T 0 α (1) δk (w[ k, µ], V )dt+ < C∂ t U (k) δk (T ), W > + + T 0 < Z, F (δk)w[ k, µ] > dt, (3.12) ∂ 2 J( k, µ)δµ = T 0 α (2) δµ (w[ k, µ], V )dt+ < C∂ t U (µ) δµ (T ), W > + + T 0 < Z, G(δµ)w[ k, µ] > dt, (3.13)
where the bilinear forms α 

δµ (•, •) are defined in (2.21). Here, W ∈ (H 2 (0, L)) 2 × (H 4 (0, L)) 2 is the strong solution of the elliptic problem    A k,µ W = 0 x ∈ (0, L), DW | x=0 = 2(Q[ k, µ](0, T ) -Q(T )), DW | x=L = 0. (3.14) The function V ∈ (C 0 ([0, T ]; H 1 (0, L))) 2 × (C 0 ([0, T ]; H 2 (0, L))) 2 , with V, t ∈ (C 0 ([0, T ]; L 2 (0, L))) 2 × (C 0 ([0, T ]; L 2 (0, L))) 2 , is the weak solution of the ab- stract evolution problem        CV ,tt -A k,µ V = 0 (x, t) ∈ (0, L) × (0, T ), V | t=T = W, V ,t | t=T = 0 x ∈ (0, L), DV | x=0 = 2(Q[ k, µ](0, t) -Q(t)) t ∈ (0, T ), DV | x=L = 0 t ∈ (0, T ).
(3.15)

The function

U (k) := U (k) δk ∈ (C 0 ([0, T ]; H 1 0 (0, L))) 2 × (C 0 ([0, T ]; H 2 0 (0, L))) 2 , with U (k) , t ∈ (C 0 ([0, T ]; L 2 (0, L))) 2 × (C 0 ([0, T ]; L 2 (0, L))) 2 , is the weak solu- tion of the abstract evolution problem      CU (k) ,tt -A k,µ U (k) = F (δk)w[ k, µ] (x, t) ∈ (0, L) × (0, T ), U (k) | t=0 = 0, U (k) ,t | t=0 = 0 x ∈ (0, L), DU (k) | x=0 = 0, DU (k) | x=L = 0 t ∈ (0, T ).
(3.16)

The function

U (µ) := U (µ) δµ ∈ (C 0 ([0, T ]; H 1 0 (0, L))) 2 × (C 0 ([0, T ]; H 2 0 (0, L))) 2 , with U (µ) , t ∈ (C 0 ([0, T ]; L 2 (0, L))) 2 × (C 0 ([0, T ]; L 2 (0, L))) 2 , is the weak solu- tion of the abstract evolution problem      CU (µ) ,tt -A k,µ U (µ) = G(δµ)w[ k, µ] (x, t) ∈ (0, L) × (0, T ), U (µ) | t=0 = 0, U (µ) ,t | t=0 = 0 x ∈ (0, L), DU (µ) | x=0 = 0, DU (µ) | x=L = 0 t ∈ (0, T ).
(3.17) The operators F (δk) and G(δµ) appearing on the right hand side of (3.16) 1 and (3.17) 1 , respectively, are defined as follows:

The function Z ∈ (C 0 ([0, T ]; H 1 0 (0, L))) 2 × (C 0 ([0, T ]; H 2 0 (0, L))) 2 , with Z, t ∈ (C 0 ([0, T ]; L 2 (0, L))) 2 × (C 0 ([0, T ]; L 2 (0, L))) 2 , is the weak solution of the ab- stract evolution problem        CZ ,tt -A k,µ Z = 2(0, 0, (v 1 [ k, µ] -v 1 )χ I , (v 2 [ k, µ] -v 2 )χ I ) T , (x, t) ∈ (0, L) × (0, T ), Z| t=T = 0, Z ,t | t=T = 0 x ∈ (0, L), DZ| x=0 = 0, DZ| x=L = 0 t ∈ (0, T ), ( 3 
F (δk)w[ k, µ] =        δk(u 2 -u 1 + v 2,x e s ) -δk(u 2 -u 1 + v 2,x e s ) ( δke 2 c 6 (2v 1,x + v 2,x )) ,x ( δke 2 c 6 (2v 2,x + v 1,x )) ,x + (δk(u 2 -u 1 + v 2,x e s )e s ) ,x        , (3.19) G(δµ)w[ k, µ] =        0 0 -δµ(v 1 -v 2 ) δµ(v 1 -v 2 )        , (3.20) where w[ k, µ] = (u 1 , u 2 , v 1 , v 2 )
is the solution of (2.1) when the coefficients k, µ are replaced by k, µ, respectively.

Concerning the well-posedness of the auxiliary problem (3.14), by Theorem 2.3, the value of Q[ k, µ](x, t) at x = 0 is well defined in the sense of trace's theory for t ∈ [0, T ]. Moreover, since the solution w of (2.1) is continuous in time on the interval [0, T ], the value of Q[ k, µ](0, t) at t = T is well-defined. Then, by the coercivity of the sesquilinear form

a k,µ (•, •) associated to the operator A k,µ in (H 1 L (0, L)) 2 × (H 2 L (0, L)) 2 , we have W ∈ (H 1 (0, L)) 2 × (H 2 (0, L)) 2 .
4 Proof of Theorem 3.1

The proof of Theorem 3.1 is based on several preliminary results. In Section 4.1 we shall present an evaluation of the increment of the functional J in terms of the variations of the coefficients. In the subsequent Section 4.2 we shall recall some results of continuous dependence of the solution to an evolution problem on the coefficients of the equation. These results will be used in Section 4.3 to justify the asymptotic behaviour (3.11).

We start by introducing some notations. For any real numbers ǫ, γ ∈ R + small enough and given functions δk, δµ ∈ C, we define δw = δw(x, t) and δQ = δQ(x, t) as follows:

δw := w[ k + ǫ • δk, µ + γ • δµ] -w[ k, µ],
(x, t) ∈ (0, L) × (0, T ), (4.1)

δQ := Q[ k + ǫ • δk, µ + γ • δµ] -Q[ k, µ], t ∈ (0, T ), x = 0 or x = L, (4.2)
where Q is defined in (3.6).

Evaluation of the increment of J

In this Section we shall prove the following lemma.

Lemma 4.2. Under the assumptions of Theorem 3.1 and within the above notations, we have

J( k + ǫ • δk, µ + γ • δµ) -J( k, µ) =< Cδw, t (T ), W > + + ǫ T 0 α (1) δk (w[ k, µ], V )dt + γ T 0 α (2) δµ (w[ k, µ], V )dt+ + T 0 < Z, (Cδw, tt -A k,µ δw) > dt+ + ǫ T 0 α (1) δk (δw, V )dt + γ T 0 α (2) 
δµ (δw, V )dt+

+ T 0 δQ(0, t) • δQ(0, t)dt + T 0 2 i=1 < δv i , δv i > I dt, (4.3)
where < δv i , δv i > I := I (δv i ) 2 dx, i = 1, 2, and W , V , Z are the solutions of problems (3.14), (3.15), (3.18), respectively, and α

(1) δk , α (2) 
δµ are defined in (2.21).

Proof. To simplify the presentation, we shall consider separately the functionals J 1 and J 2 , see (3.8)-(3.10).

We begin with J 1 . By the definition (3.9) we have

J 1 ( k + ǫ • δk, µ + γ • δµ) -J 1 ( k, µ) = = T 0 Q[ k + ǫ • δk, µ + γ • δµ](0, t) -Q[ k, µ](0, t) • • Q[ k + ǫ • δk, µ + γ • δµ](0, t) + Q[ k, µ](0, t) -2Q(t) dt = = 2 T 0 δQ(0, t)(Q[ k, µ](0, t) -Q(t))dt + T 0 |δQ(0, t)| 2 dt. (4.4)
The main idea consists in introducing the auxiliary problems (3.14), (3.15), (3.18) so as to replace the first term in the right hand side of (4.4) by some integral involving the solutions of (3.14), (3.15), (3.18) and the functions w[ k, µ] and δw.

Recalling that w[ k, µ], t | t=0 = 0 and V | t=T = W , integrating by parts we get 

T 0 < Cw[ k, µ], t , V, t > dt =< Cw[ k, µ], t (T ), W > - T 0 < Cw[ k, µ], tt , V > dt,
T 0 a k,µ (w[ k, µ], V )dt = T 0 Q[ k, µ](0, t) • DV (0, t)-< A k,µ w[ k, µ], V > dt.
[ k, µ], tt -A k,µ w[ k, µ] = 0 for (x, t) ∈ (0, L) × (0, T ), we have T 0 < Cw[ k, µ], t , V, t > -a k,µ (w[ k, µ], V ) dt = =< Cw[ k, µ], t (T ), W > - T 0 Q[ k, µ](0, t) • DV (0, t). (4.7) Arguing similarly for w[ k + ǫ • δk, µ + γ • δµ], which is the solution of (2.1) for k = k + ǫ • δk, µ = µ + γ • δµ, we have T 0 < Cw[ k + ǫ • δk, µ + γ • δµ], t , V, t > dt- - T 0 a k+ǫ•δk,µ+γ•δµ (w[ k + ǫ • δk, µ + γ • δµ], V )dt = =< Cw[ k+ǫ•δk, µ+γ•δµ], t (T ), W > - T 0 Q[ k+ǫ•δk, µ+γ•δµ](0, t)•DV (0, t).
T 0 < C w[ k + ǫ • δk, µ + γ • δµ] -w[ k, µ] , t , V, t > dt- - T 0 a k+ǫ•δk,µ+γ•δµ (w[ k + ǫ • δk, µ + γ • δµ], V ) -a k,µ (w[ k, µ], V ) dt = =< C w[ k + ǫ • δk, µ + γ • δµ] -w[ k, µ] , t (T ), W > - - T 0 Q[ k + ǫ • δk, µ + γ • δµ](0, t) -Q[ k, µ](0, t) • DV (0, t), that is T 0 < Cδw, t , V, t > -a k+ǫ•δk,µ+γ•δµ (w[ k + ǫ • δk, µ + γ • δµ], V ) -a k,µ (w[ k, µ], V ) dt = =< Cδw, t (T ), W > - T 0 δQ(0, t) • DV (0)dt. (4.9)
We have δw(t = 0) = 0 and V, t (t = T ) = 0 in (0, L). Then, the first integral on the left-hand side of (4.9) becomes

T 0 < Cδw, t , V, t >= - T 0 < δw, CV, tt > dt.
(4.10)

We consider now the second integral on the left hand side of (4.9). To simplify the notations, we temporarily set w[ k +ǫ•δk, µ+γ •δµ] := w and w[ k, µ] := w. By the expression (2.18) of the sesquilinear form a(•, •) we have

a k+ǫ•δk,µ+γ•δµ ( w, V ) -a k,µ (w, V ) = = α (0) ( w, V ) + α (1) k+ǫ•δk ( w, V ) + α (2) µ+γ•δµ ( w, V )- -α (0) (w, V ) + α (1) k (w, V ) + α (2) µ (w, V ) . (4.11)
By the expressions of the terms α (1) 

(•, •) and α (2) (•, •), see (2.18), we observe that α (1) k+ǫ•δk ( w, V ) = α (1) k ( w, V ) + α (1) ǫ•δk ( w, V ), α (2) µ+γ•δµ ( w, V ) = α (2) µ ( w, V ) + α (2) γ•δµ ( w, V ). (4.12)
Therefore, by (4.11) and (4.12) we have

a k+ǫ•δk,µ+γ•δµ ( w, V ) -a k,µ (w, V ) = = a k,µ (δw, V ) + α (1) ǫ•δk ( w, V ) + α (2) γ•δµ ( w, V ). (4.13)
Let us consider a k,µ (δw, V ). Integrating by parts on (0, L) and recalling that δw| x=0 = 0 and DV | x=L = 0 for t ∈ (0, T ), by (3.1), (3.2) we have

T 0 a k,µ (δw, V )dt = - T 0 < δw, A k,µ V > dt. (4.14)
By inserting (4.10), (4.13), (4.14) in (4.9) and recalling that (CV, tt -A k,µ V ) = 0 for (x, t) ∈ (0, L) × (0, T ), we obtain

- T 0 α (1) ǫ•δk (w[ k + ǫ • δk, µ + γ • δµ], V ) + α (2) γ•δµ (w[ k + ǫ • δk, µ + γ • δµ], V ) dt = =< Cδw, t (T ), W > - T 0 δQ(0, t) • DV (0)dt. (4.15)
By recalling the boundary conditions (3.15) 3 for V at x = 0, i.e.

DV | x=0 = 2(Q[ k, µ](0, t) -Q(t)
), for t ∈ (0, T ), and observing that

α (1) ǫ•δk (w[ k + ǫ • δk, µ + γ • δµ], V ) = ǫα (1) 
δk (δw, V ) + ǫα

(1) (4.16) we can express the last integral of the right-hand side of (4.15) as

δk (w[ k, µ], V ), α (2) γ•δµ (w[ k + ǫ • δk, µ + γ • δµ], V ) = γα (2) δµ (δw, V ) + γα (2) δµ (w[ k, µ], V ),
2 T 0 δQ(0, t) • (Q[ k, µ](0, t) -Q(t))dt =< Cδw, t (T ), W > + + ǫ T 0 α (1) δk (δw, V ) + α (1) δk (w[ k, µ], V ) dt+ + γ T 0 α (2) δµ (δw, V ) + α (2) δµ (w[ k, µ], V ) dt. (4.17)
Finally, by using (4.17) in (4.4), we obtain the incremental form for J 1

J 1 ( k + ǫ • δk, µ + γ • δµ) -J 1 ( k, µ) = =< Cδw, t (T ), W > +ǫ T 0 α (1) δk (w[ k, µ], V )dt+ + γ T 0 α (2) δµ (w[ k, µ], V )dt + ǫ T 0 α (1) δk (δw, V )dt+ + γ T 0 α (2) δµ (δw, V )dt + T 0 δQ(0, t) • δQ(0, t)dt, k (4.18)
where, as it will be proved in Lemma 4.6, the last three terms are o( ǫ 2 + γ 2 ) as ǫ 2 + γ 2 → 0.

We come now to the functional J 2 . Proceeding as we did for J 1 , the increment of J 2 is given by 

J 2 ( k + ǫ • δk, µ + γ • δµ) -J 2 ( k, µ) = = 2 T 0 2 i=1 < (v i [ k, µ] -v i ), δv i > I dt + T 0 2 i=1 < δv i , δv i > I dt, (4.19) where δv i = v i [ k + ǫ • δk, µ + γ • δµ] -v i [ k, µ], i = 1,
J 2 ( k + ǫ • δk, µ + γ • δµ) -J 2 ( k, µ) = = T 0 < Z, (Cδw, tt -A k,µ δw > dt + T 0 2 i=1 < δv i , δv i > I dt.

Continuous dependence on the coefficients

To study the behaviour of the first and fourth term on the right-hand side of (4.3) when ǫ 2 + γ 2 → 0, as well as to show that the last four terms in the right-hand side of (4.3) are of higher order on ǫ 2 + γ 2 , we need to consider how the solutions of problem (2.1) depend on perturbations of the coefficients k, µ and on the source term. In Theorem 4.3 below it is shown that if the coefficients and the source term are convergent in a suitable sense, then the corresponding solutions will converge to the solution of the limit problem. In particular, we state the result in a form that will be useful to us in Section 4.3.

To simplify the notations we define the perturbed operator in (2.1) as

A ǫ,γ := C∂ tt -A k+ǫ•δk,µ+γ•δµ , (4.23) 
for ǫ, γ ∈ R + small numbers. Moreover, let us define

V = (H 1 0 (0, L)) 2 × (H 2 0 (0, L)) 2 , H = (L 2 (0, L)) 4 . (4.24)
We have the following result, see, for example, [START_REF] Stolk | On the modeling and inversion of seismic data[END_REF] ( §2.8).

Theorem 4.3. Let v ∈ C 0 ([0, T ]; V ) ∩ C 1 ([0, T ]; H) be the solution to    Av = f (x, t) ∈ (0, L) × (0, T ), v| t=0 = v 0 , v ,t | t=0 = v 1 x ∈ (0, L), Dv| x=0 = Dv| x=L = 0 t ∈ (0, T ), (4.25 
) 

and let v ǫ,γ ∈ C 0 ([0, T ]; V ) ∩ C 1 ([0, T ]; H) be the solution to    A ǫ,γ v ǫ,γ = f ǫ,γ (x, t) ∈ (0, L) × (0, T ), v ǫ,γ | t=0 = v 0 , v ǫ,γ , t | t=0 = v 1 x ∈ (0, L), Dv ǫ,γ | x=0 = Dv ǫ,γ | x=L = 0 t ∈ (0, T ), ( 4 
, f ǫ,γ ∈ C 0 ([0, T ]; H), L 0 |f ǫ (x, t)| 2 dx ≤ C f for every t ∈ [0, T ], with the constant C f > 0 independent of ǫ and γ, and v 0 ∈ V , v 1 ∈ H.
Assume that 

(A ǫ,γ -A)ϕ V ′ → 0 for every ϕ ∈ V as ǫ 2 + γ 2 → 0, f ǫ,γ -f L 2 (0,L) → 0 uniformly for t ∈ [0, T ] as ǫ 2 + γ 2 → 0. ( 4 
E(t) := 1 2 (a(v, v) + c(v ′ , v ′ )), E τ (t) := 1 2 (a(v τ , v τ ) + c(v ′ τ , v ′ τ )), (4.29)
be the energy for the problems (4.25) and (4.26), respectively. We have

dE(t) dt =< f, v ′ >, dE τ (t) dt =< f τ , v ′ τ >, t ∈ (0, T ), (4.30) where < f, v ′ >:= L 0 f v ′ dx and < f τ , v ′ τ >:= L 0 f τ v ′ τ dx. Since f τ L 2 (0,L) ≤ C f , with C f > 0 constant independent
from τ , by a standard argument based on Gronwall's inequality, we obtain

E(t) ≤ C (a(v 0 , v 0 ) + c(v 1 , v 1 ) + C f ) , E τ (t) ≤ C ′ (a(v 0 , v 0 ) + c(v 1 , v 1 ) + C f ) , ∀ |τ | small, t ∈ [0, T ], (4.31) 
where C, C ′ are two positive constants only depending on the coercivity constants α, β and on T . By (4.31) 2 and again by the coercivity conditions (2.22), it turns out that v τ and v ′ τ are uniformly bounded, with respect to τ , in L 2 ((0, T ); V ) and in L 2 ((0, T ); H), respectively. Therefore, by Kakutani's theorem, there exists a subsequence τ m = (ǫ m , γ m ) such that

v τm ⇀ v weakly in L 2 ((0, T ); V ), v ′ τm ⇀ v ′ weakly in L 2 ((0, T ); H), (4.32) 
as |τ m | → 0, where v ′ is to be understood in distributional sense. We now prove that v = v, that is v satisfies the differential equation (4.25) 1 , the initial conditions (4.25) 2 and the Dirichlet boundary conditions (4.25) 3 .

We start by showing that Av = f (in the weak sense of (2.17)). Let ϕ ∈ C ∞ 0 ([0, T ]; V ) be any test function and consider first the term involving the sesquilinear form a τ (•, •). Recalling that A = A T , we have

(A τm v τm , ϕ) = (Av, ϕ) + (v τm , (A τm -A)ϕ) + (v τm -v, Aϕ). (4.33) 
The second term tends to zero as |τ m | → 0 because v τm is bounded and (A τm -A)ϕ V ′ → 0 for every ϕ ∈ V as |τ m | → 0 by assumption (4.27). The third term of (4.33) tends to zero as |τ m | → 0 since v τm ⇀ v by (4.32) 1 .

Similarly, under our assumptions, we have

(Cv τm , ϕ) = (Cv, ϕ) + (v τm -v, Cϕ) → (Cv, ϕ), < f τ , ϕ >=< f, ϕ > + < f τ -f, ϕ >→< f, ϕ > as |τ m | → 0. (4.34)
Therefore, v satisfies the differential equation (4.25) 1 in distributional sense.

To verify the initial condition for v, let us consider a test function ϕ = hψ, where h ∈ V and ψ ∈ C ∞ ([0, T ]), with ψ(T ) = ψ ′ (T ) = 0. Integrating by parts we find We can argue similarly for the initial conditions on v, t . Let ϕ be chosen as before. By multiplying (4.26) by ϕ and integrating by parts on (0, L) × (0, T ) we obtain

T 0 (v τm , t , ϕ) + (v τm , ϕ, t ) = T 0 (v τm , ϕ) t = -(v τm , ϕ)| t=0 = -(v 0 , ϕ)| t=0 .
- T 0 (< A τm v τm , ϕ > + < Cv τm , t , ϕ, t >) dt = = T 0 < f τm , ϕ > dt + (Cv τm , t , ϕ)| t=0 . (4.36)
Taking the limit in (4.36) for |τ m | → 0, recalling that the weak limit (4.32) of v τm satisfies the equation (4.25) 1 and that v τm , t | t=0 = v 1 , we have

ψ(0) < C(v, t | t=0 -v 1 ), h >= 0 ∀ψ(0) and ∀h ∈ V, (4.37) 
and then v, t | t=0 = v 1 in (0, L). This shows that v satisfies problem (4.25). By the uniqueness of the solution we have v = v. We complete the proof by showing that, in fact, the convergence of

v τm to v is strong in C([0, T ]; V ) ∩ C 1 ([0, T ]; H) as |τ | → 0. Recall that dEτ m (t) dt =< f τm , v ′ τm > for t ∈ [0, T ]. Since we know that v ′ τm ⇀ v weakly in L 2 ((0, T ); H) and f τm → f strongly in L 2 (0, L) (and uniformly for t ∈ [0, T ]) as |τ m | → 0, then < f τm , v ′ τm >→< f, v ′ > as |τ m | → 0. Therefore, we have dEτ m (t) dt → dE(t)
dt in [0, T ] and, recalling that E τm (0) = E(0), we have

E τm (t) → E(t) t ∈ [0, T ] as |τ | → 0. (4.38)
We compute: 

a(v τm -v, v τm -v) + c(v ′ τm -v ′ , v ′ τm -v ′ ) = = 2E m (t) + 2E(t) -2 a(v τm , v) + c(v ′ τm , v ′ ) .
v τm → v strongly in L 2 ((0, T ); V ), v τm , t → v, t strongly in L 2 ((0, T ); H), (4.40) 
as |τ m | → 0, which imply (4.28).

Justification of the asymptotic expansion for J ′

We begin by considering the asymptotic behaviour of the first term in the right hand side of (4.3).

Lemma 4.4. Let the assumptions of Theorem 3.1 be satisfied. Let δw be defined as in (4.1) and let W ∈ (H 2 (0, L)) 2 × (H 4 (0, L)) 2 be the solution of (3.14). For ǫ 2 + γ 2 → 0 we have

< Cδw, t (T ), W >= ǫ < CU (k) , t (T ), W > +γ < CU (µ) , t (T ), W > + + o ǫ 2 + γ 2 , (4.41)
where

U (k) ∈ (C 0 ([0, T ]; H 1 0 (0, L)) 2 × (C 0 ([0, T ]; H 2 0 (0, L)) 2 is the solution of (3.16) and U (µ) ∈ (C 0 ([0, T ]; H 1 0 (0, L)) 2 ×(C 0 ([0, T ]; H 2 0 (0, L)) 2
is the solution of (3.17).

Proof. To simplify the notation we define

   w := w[ k, µ], w ǫ,γ := w[ k + ǫ • δk, µ + γ • δµ], A := A k,µ , A ǫ,γ := A k+ǫ•δk,µ+γ•δµ , A := C∂ tt -A, A ǫ,γ := C∂ tt -A ǫ,γ , (4.42) 
where w and w ǫ,γ are the solutions of (2.1) for given elliptic operators A and A ǫ,γ , respectively. By introducing a suitable trace operator Φ, see (2.8), as it was made in Section 2, the initial boundary value problem (2.1) for w and w ǫ,γ is reduced to an evolution problem of the form (2.23) with homogeneous Dirichlet boundary conditions in terms of the new functions

w := w -Φ, w ǫ,γ := w ǫ,γ -Φ. (4.43)
More precisely, w and w ǫ,γ , both belonging to {(H 2 ((0, T );

H 1 0 (0, L))) 2 × (H 2 ((0, T ); H 2 0 (0, L))) 2 } ∩ (H 3 ((0, T ); L 2 (0, L))) 4 , are respectively the solu- tions to    A w = -CΦ, tt +AΦ := f (x, t) ∈ (0, L) × (0, T ), w| t=0 = 0, w, t | t=0 = 0 x ∈ (0, L), D w| x=0 = D w| x=L = 0 t ∈ (0, T ), (4.44) and    A ǫ,γ w ǫ,γ = -CΦ, tt +A ǫ,γ Φ := f ǫ,γ (x, t) ∈ (0, L) × (0, T ), w ǫ,γ | t=0 = 0, w ǫ,γ , t | t=0 = 0 x ∈ (0, L), D w ǫ,γ | x=0 = D w ǫ,γ | x=L = 0 t ∈ (0, T ), (4.45) where f := f [ k, µ], f ǫ,γ := f [ k + ǫ • δk, µ + γ • δµ] are defined similarly to (2.14) 1 , f, f ǫ,γ ∈ (C 1 ([0, T ]; L 2 (0, L))) 4 .
Since δw := w ǫ,γ -w = w ǫ,γ -w =: δ w, we have where F (δk) and G(δµ) are defined in (3.19) and (3.20), respectively.

A ǫ,γ (w ǫ,γ -w) = A ǫ,γ ( w ǫ,γ -w) = (A -A ǫ,γ ) w + (f ǫ,γ -f ) = = (A ǫ,γ -A) w + (A ǫ,γ -A)Φ = (A ǫ,γ -A)w.
By the regularity of w = w[ k, µ] (see Theorem 2.3), it turns out that (ǫF (δk)w + γG(δµ)w) ∈ (H 2 ((0, T ); L 2 (0, L))) 4 for every ǫ and γ small and then, by Theorem 2.3, δ w ∈ (H 2 ((0, T );

H 1 0 (0, L))) 2 ×(H 2 ((0, T ); H 2 0 (0, L))) 2 . Now, since A ǫ,γ -A L ∞ (0,L) → 0 and ǫF (δk)w + γG(δµ)w L 2 (0,L) → 0 uniformly for t ∈ [0, T ] as ǫ 2 + γ 2 → 0, by Theorem 4.3 we have δ w → 0 strongly in C 0 ([0, T ]; V ) ∩ C 1 ([0, T ]; H) as ǫ 2 + γ 2 → 0. (4.48)
To study the asymptotic behaviour of δ w for ǫ 2 + γ 2 → 0, we introduce the functions 2 solutions to the problems (3.16) and (3.17), respectively. Then, the function δU ǫ,γ := δ w -ǫU (k) -γU (µ) (4.49)

U (k) ∈ (C 0 ([0, T ]; H 1 0 (0, L)) 2 × (C 0 ([0, T ]; H 2 0 (0, L)) 2 , U (µ) ∈ (C 0 ([0, T ]; H 1 0 (0, L)) 2 ×(C 0 ([0, T ]; H 2 0 (0, L))
solves the problem    AδU ǫ,γ = ǫF (δk)δ w + γG(δµ)δ w, (x, t) ∈ (0, L) × (0, T ), δU ǫ,γ | t=0 = 0, δU ǫ,γ , t | t=0 = 0 x ∈ (0, L), DδU ǫ,γ | x=0 = DδU ǫ,γ | x=L = 0 t ∈ (0, T ). (4.50)
The left-hand side of (4.50) 1 belongs to (H 2 ((0, T ); L 2 (0, L))) 4 for every ǫ, γ small and ǫF (δk)δ w + γG(δµ)δ w L 2 (0,L) ≤ C ǫ 2 + γ 2 r(ǫ, γ) uniformly for t ∈ [0, T ] as ǫ 2 + γ 2 → 0, where r(ǫ, γ) → 0 as ǫ 2 + γ 2 → 0. Then, by Theorem 4.3, we have

δU ǫ,γ ǫ 2 + γ 2 → 0 strongly in C 0 ([0, T ]; V ) ∩ C 1 ([0, T ]; H) as ǫ 2 + γ 2 → 0. (4.51)
By (4.49) and recalling that both the two functions U (k) , t and U (µ) , t are in (C 0 ([0, T ]; L 2 (0, L)) 4 , we can compute

δw, t | t=T = ǫU (k) , t | t=T + γU (µ) , t | t=T + o( ǫ 2 + γ 2 ) in H as ǫ 2 + γ 2 → 0, (4.52) with o( ǫ 2 + γ 2 )/ ǫ 2 + γ 2 → 0 as ǫ 2 + γ 2 → 0.
This immediately implies (4.41).

Next Lemma clarifies the asymptotic behavior of the fourth term in the right-hand side of (4.3) when ǫ 2 + γ 2 → 0. Lemma 4.5. Let the assumptions of Theorem 3.1 be satisfied. Let δw be defined as in (4.1) and let Z ∈ (C 0 ([0, T ]; H 1 0 (0, L)) 2 × (C 0 ([0, T ]; H 2 0 (0, L)) 2 be the weak solution of (3.18). For ǫ 2 + γ 2 → 0 we have Arguing as in Lemma 4.4, one can prove that

T 0 < Z, Cδw, tt -A k,µ δw > dt = ǫ T 0 < Z, F (δk)w[ k, µ] > dt+ + γ T 0 < Z, G(δµ)w[ k, µ] > dt + o( ǫ 2 + γ 2 ),
δ w := ǫU (k) + γU (µ) + o( ǫ 2 + γ 2 ), (4.55) 
as ǫ 2 + γ 2 → 0, where the functions

U (k) ∈ (C 0 ([0, T ]; H 1 0 (0, L)) 2 × (C 0 ([0, T ]; H 2 0 (0, L)) 2 , U (µ) ∈ (C 0 ([0, T ]; H 1 0 (0, L)) 2 × (C 0 ([0, T ]; H 2 0 (0, L))
2 are solutions to the problems (3.16) and (3.17), respectively, and o( ǫ 2 + γ 2 )/ ǫ 2 + γ 2 → 0 as ǫ 2 + γ 2 → 0. By (4.54) 1 and (4.55) the thesis of the Lemma follows.

Finally, next Lemma shows that the last four terms on the right-hand side of (4.3) are of higher order with respect to ǫ 2 + γ 2 when ǫ 2 + γ 2 → 0. Lemma 4.6. Let the assumptions of Theorem 3.1 be satisfied. Let δw, δQ be defined as in (4.1) and (4.2), respectively. Let V ∈ (C 0 ([0, T ]; H 1 (0, L)) 2 × (C 0 ([0, T ]; H 2 (0, L)) 2 be the solution of (3.15) and let α (i) , i = 1, 2, be defined as in (2.18). We have

ǫ T 0 α (1) δk (δw, V )dt + γ T 0 α (2) δµ (δw, V )dt+ + T 0 δQ(0, t) • δQ(0, t)dt + T 0 2 i=1 < δv i , δv i > dt = o( ǫ 2 + γ 2 ) (4.56) as ǫ 2 + γ 2 → 0.
Proof. Recalling that δw := w ǫ,γ -w = w ǫ,γ -w := δ w, by Lemma 4.5 (estimate (4.55)), one can easily show that the first two terms and the last term on the left hand side of (4.56) are o( ǫ 2 + γ 2 ) as ǫ 2 + γ 2 → 0.

Concerning the third term, by the definition of the boundary operator (3.3), (3.6) and (4.2) we have

δQ := δQ(0, t) = -B k+ǫ•δk w ǫ,γ + B k w = -B k δw -(B k+ǫ•δk -B k )w ǫ,γ , (4.57)
where we have used the notation (4.42).

By trace inequalities and (4.55) we have

B k δw (L 2 (0,T )) 4 ≤ C δw C 0 ([0,T ];V ) ≤ C ǫ 2 + γ 2 as ǫ 2 + γ 2 → 0, (4.58 
) where the constant C > 0 does not depend on ǫ and γ.

Finally, by the definition (3.3) of the boundary operator and the uniform boundedness of {w ǫ,γ }, we have

(B k+ǫ•δk -B k )w ǫ,γ (L 2 (0,T )) 4 ≤ C ǫ 2 + γ 2 as ǫ 2 + γ 2 → 0, (4.59)
where the constant C > 0 does not depend on ǫ and γ. By using inequalities (4.58), (4.59) in (4.57), we have that

T 0 δQ(0, t) • δQ(0, t)dt = o( ǫ 2 + γ 2 ) as ǫ 2 + γ 2 → 0.

Numerical algorithm and experiments

In this section we shall present a projected gradient method for the minimization of the cost function J = J( k, µ) defined in (3.8)-(3.10). The numerical algorithm is based on the complete form of the differential of J determined in Theorem 3.1. The identification technique is tested on dynamic test data coming from a real specimen of steel-concrete composite beam studied in [START_REF] Dilena | A damage analysis of steel-concrete composite beams via dynamic methods: Part II. Analytical models and damage detection[END_REF]. A more comprehensive study of the proposed numerical algorithm for solving this inverse dynamical problem will be presented in a forthcoming paper.

Numerical algorithm

We shall formulate the minimization problem for the function J by adapting the projected gradient method presented in [START_REF] Daniel | The Approximate Minimization of Functionals[END_REF]. In order to apply the minimization algorithm, it is useful to represent the Gateaux partial derivatives ∂ 1 J and ∂ 2 J, evaluated at the point ( k, µ), as

∂ 1 J( k, µ)δk =< ∂ k J( k, µ), δk >, (5.1) 
∂ 2 J( k, µ)δµ =< ∂ µ J( k, µ), δµ >, (5.2) 
for suitable operators ∂ k J( k, µ) and ∂ µ J( k, µ), where δk, δµ ∈ C. The expressions on the left hand side of (5.1), (5.2) have been determined in Theorem 3.1, see equations (3.12) and (3.13). By integrating by parts the third term of (3.12), we have

T 0 < Z, F (δk)w[ k, µ] > dt = - T 0 α (1) 
δk (w[ k, µ], Z)dt.

(

Concerning the second term of (3.12), by the boundedness of the linear func-

tional C 1 [0, L] ∋ K →< C∂ t U (k) 
K (T ), W >∈ R and the Sobolev imbedding theorem, we can write

< d k , δk >=< C∂ t U (k) δk (T ), W > (5.4) 
with some d k ∈ H 2 (0, L) * = H -2 0 (0, L). Therefore, by inserting (5.3) and (5.4) in (3.12), we have

∂ 1 J( k, µ) δk = T 0 α (1) δk (w[ k, µ], V -Z) dt+ < d k , δk > (5.5) 
and we can get the expression of ∂ k J( k, µ) as follows

∂ k J( k, µ) = T 0 (u 2 -u 1 + v 2,x e s ) {(p 2 -p 1 + q 2,x e s ) -(z 2 -z 1 + Z 2,x e s )} dt + T 0 e 2 c 6 {(2 v 1,x + v 2,x ) (q 1,x -Z 1,x ) + (2 v 2,x + v 1,x ) (q 2,x -Z 2,x )} dt (5.6) + d k , where V = (p 1 , p 2 , q 1 , q 2 ) T and Z = (z 1 , z 2 , Z 1 , Z 2 ) T .
By proceeding in a similar way for the partial derivative of J with respect to the variable µ, we have

∂ µ J( k, µ) = T 0 (v 1 -v 2 ) {(q 1 -q 2 ) -(Z 1 -Z 2 )} dt + d µ , (5.7) 
where

d µ ∈ H 1 (0, L) * = H -1 0 (0, L) is obtained by using the boundedness of the linear functional C 0 [0, L] ∋ M →< C∂ t U (µ)
M (T ), W >∈ R and the Sobolev imbedding theorem.

Since L 2 (0, L) is dense in H -1 0 (0, L) and H -2 0 (0, L), we can approximate them by L 2 functions. Hence, we have

< d k , K >= lim i ′ 2 h k →d k (h k , i 2 K) L 2 ∀ K ∈ H 2 (0, L), < d µ , M >= lim i ′ 1 hµ→dµ (h µ , i 1 M ) L 2 ∀ M ∈ H 1 (0, L),
where i j : H j (0, L) → L 2 (0, L) and i ′ j : L 2 (0, L) → H -j 0 (0, L) are continuous, injective embeddings (j = 1, 2). Hence, in our numerical algorithm, we try to find the approximations d k and d µ by solving the weak equations

L 0 K d k dx =< C∂ t U (k) K (T ), W > , (5.8) 
L 0 M d µ dx =< C∂ t U (µ) M (T ), W > (5.9) 
on the finite-dimensional subspaces of H 2 (0, L) and H 1 (0, L), respectively. These functions are used in (5.6) and (5.7) instead of the elements d k and d µ , respectively. Now, to implement the projected gradient method we need to introduce a projection operator. Throughout this part, beside conditions (2.6), we assume that the coefficients k and µ are bounded from above, i.e.

0 ≤ k(x) ≤ k , 0 ≤ µ(x) ≤ µ for x ∈ [0, L] , (5.10) 
where k and µ are given positive constants.

Numerical experiments

In this section we shall present some numerical results obtained by applying the above variational approach to identify the stiffness coefficients k and µ of a composite beam. In the following applications we shall refer to the specimen T 1P R of steel-concrete beam analyzed in the experimental study [START_REF] Dilena | A damage analysis of steel-concrete composite beams via dynamic methods: Part II. Analytical models and damage detection[END_REF]. In particular, the case of a damaged composite beam having initial constant elastic and inertial properties will be closely examined. This case is simple but rather meaningful for applications.

The physical constants of the reference configuration of the undamaged beam are summarized in Table 1. Here "d" means the physical dimension.

Table 1: Physical constants of the steel-concrete beam T1PR [START_REF] Dilena | A damage analysis of steel-concrete composite beams via dynamic methods: Part II. Analytical models and damage detection[END_REF]. To implement the identification algorithm, it is useful to introduce non-dimensional values for the geometrical and mechanical quantities, that is 

Physical constants Value

L = 1.0 , ρ i = ρ d i ρ d , a i = E d i A d i ρ d (η d ) 2 , j i = E d i I d i ρ d (η d ) 2 (L d
ρ d = ρ d 1 + ρ d 2 2 [kg m -1 ] , η d i = E d i A d i ρ d i [m s -1 ] , η d = η d 1 + η d 2 2 [m s -1 ] ,
where η d i is the velocity of the longitudinal elastic waves propagating through the ith beam.

We assume that our target coefficients k and µ for the damaged configuration of the composite beam are defined by (otherwise) for 0 ≤ x d ≤ L d , and the number of connectors of the beam n p = 16, see [START_REF] Dilena | A damage analysis of steel-concrete composite beams via dynamic methods: Part II. Analytical models and damage detection[END_REF]. The present case corresponds to a composite beam with a localized damage at mid-span. In fact, it has been shown that real damages in the connection of a steel-concrete beam can be described as a rather abrupt reduction of the stiffness coefficients k and µ in the damaged region, [START_REF] Dilena | A damage analysis of steel-concrete composite beams via dynamic methods: Part II. Analytical models and damage detection[END_REF].

k(x) = n p L d K(L d x) ρ d (η d ) 2 , µ(x) = n p L d E c (L d x)A c (L d x) e d c ρ d (η d ) 2 for 0 ≤ x ≤ L (see Figure 2
Concerning the boundary data, in our experiments we assume to fix both the longitudinal displacements u i (0, t) and the rotations v i,x (0, t) of the left end of the beam, i = 1, 2, and to assign the transversal displacement v i (x = 0, t), i = 1, 2, at the same cross-section, see Figure 1. Therefore, the vector U (t) of the Dirichlet boundary data is given by where

U (t) = 0, 0, C v B 5 (t) L d , C v B 5 (t) L d ,
C v = 1.5 × 10 -2 [m].
Here B 5 is a 5th order normalized B-spline function such that

B 5 (t) = ( t 5 -t 0 ) 5 j=0 ( t j -t) 4 + ω ′ 6 ( t j )
, where t j = η d (8.0 j × 10 -5 )/L d (j = 0, 1, ..., 5), and

t + =    t (t ≥ 0) 0 (t < 0) , ω 6 (t) = 5 j=0
(t -t j ) .

Then, B 5 ∈ C 3 (R) and B 5 ≡ 0 on (-∞, t 0 ) and ( t 5 , +∞), see [START_REF] Schumaker | Spline functions: Basic theory[END_REF]. Therefore, the coefficients and the Dirichlet boundary data satisfy the assumption of Theorem 3.1. The Neumann boundary data and the interior measured data are obtained by solving numerically the evolution problem (2.1) for the damaged beam with U given as above. To solve numerically the direct problem, we make use of the Newmark method for time integration, see, for example, [START_REF] Bathe | Numerical Methods in Finite Element Analysis[END_REF], and we introduce linear spline functions and cubic Hermite functions for approximating u i and v i in space, respectively, i = 1, 2, see [START_REF] Hilton | An Introduction to Finite Element Computations[END_REF]. Here, the intervals [0, L] and [0, T ] are divided into 1200 and 7200 equally spaced subintervals, respectively. We use the numerical integration to get the mass and the stiffness matrices in this calculation, and then, we only use the values of coefficient functions at the quadrature points on each element. We denote by Q = ( N 1 , N 2 , T 1 , T 2 , M 1 , M 2 ) and v i , i = 1, 2, the calculated Neumann data at x = 0 and the transversal displacements of the beams, respectively. Figures 3,4, and 5 show a comparison between the Neumann data evaluated at x = 0 for the damaged and the undamaged beam. The latter case corresponds to the solution of the evolution problem (2.1) with constant coefficients k 0 , µ 0 obtained by using K ≡ 2.3670 × 10 In order to solve numerically the initial-boundary value problems in our inverse analysis, we also use the Newmark method for time integration with linear elements for approximating u i and cubic Hermite elements for approximating v i in space. The intervals [0, L] and [0, T ] are divided coarsely into 600 and 3600 equally spaced, respectively. The values of updated coefficients on the quadrature points are employed to make the stiffness matrix on each step. Then, these quadrature points do not coincide with the points for generating the measured data. The second terms of the search directions are interpolated by the piecewise linear function before clipping and mollifying. We make use of the vertices and the quadrature points on each element to interpolate the second terms. To do approximately the mollifying, we use the Gauss-Legendre formula. Therefore, our target coefficients are identified approximately on a subspace of function space for calculating { Q, v 1 , v 2 }.

Here we notice that the updated coefficients depend on the finite elements for the inverse analysis, because we employ the interpolation technique with the vertices and the quadrature points on the elements. On the other hand, the exact coefficients do no depend on the finite elements for calculating the measured data, because we only use its values. Hence, from the above settings, we can avoid an inverse crime for our calculation. The upper bounds for the unknown coefficients appearing in (5.10) are supposed to be given by k ≡ k 0 and µ ≡ µ 0 in [0, 1]. The function for the mollifier is chosen as the normalized cubic B-spline function such that

s(x) = 4 4 j=0 (j -2 -x) 3 + ω ′ 4 (j -2) , ω 4 (x) = 4 j=0 (x -j + 2) .
Then, we know that supp s = [-2, 2] and s ∈ C 2 (R), see [START_REF] Schumaker | Spline functions: Basic theory[END_REF]. The parameter ǫ of our mollifier is picked as same value of the width of the finite elements in space, namely, ǫ = L/600. Moreover, we fix the parameter of the convergence criterion as ε = 1.0 × 10 -4 . Finally, we employ the Armijo criterion [START_REF] Armijo | Minimization of functions having Lipschitz continuous first partial derivatives[END_REF] to get the step size α l at every iteration. We start by showing some numerical results when the interior data v i , i = 1, 2, are measured in the whole interval I = [0, L]. We first assume that both the Neumann and the interior data are free of error, namely, Q(t) = Q(t) and v i (x, t) = v i (x, t) for (x, t) ∈ [0, L] × (0, T ), i = 1, 2. The initial guess in the minimization procedure is set as k 0 ≡ k and µ 0 ≡ µ in [0, L]. After 108 steps the convergence criterion is satisfied and the iteration stops.

Figures 6 (a) and (b) show the graph of identified coefficients k 108 and µ 108 , respectively, and a good agreement with the exact values can be observed. These results seem to suggest that the minimization algorithm is effective in the ideal situation when the data are free of error. Next, we perturb the Neumann data Q and the interior data (v 1 , v 2 ) by adding a random error of the Gaussian distribution with the mean value 0.0 and the variance (δ • (maximum value of each data)/100) 2 . We call this error δ% measurement error. At first of this case, having fixed δ = 1.0%, we get the identified coefficients k 99 and µ 99 shown in Figures 7 (a) and (b), respectively. We notice that the identified coefficient µ 99 is in good agreement with the exact one. The accuracy of the identified coefficient k is less accurate, especially near x = 0 and around the real damaged area, but it is still acceptable. The above results suggest that the identification procedure is also effective when the data are affected by small measurement errors.

Second, having fixed δ = 5.0%, the identified coefficients k 38 and µ 38 are obtained as shown in Figures 8 (a) and (b), respectively. The reconstruction of the coefficients k and µ is now less accurate. However, the results of identification can be still considered acceptable for a practical localization of damages in the connection of composite beams.

In several real applications, interior measurements are usually more difficult to make with respect to boundary measurements. Therefore, in order to discuss how the selection and the size of the interval I affect the results of identification, we have applied the variational algorithm for different choices of the interval I. Here, in particular, we present the results of identification for I = [0.25, 0.75] and I = [0, 0.25]. 

Value of µ

Step 99 Exact (b) Identified µ 99 In the first case the interval I includes the damaged region of the beam. The initial guess for the coefficients and the data (free of error) are chosen as before. The identified values obtained after 131 iterations are shown in Figures 9 (a) and (b). We can deduce that the accuracy of the identification is almost the same of the case in which the interior measurements were taken on the whole interval [0, 1].

In the second case, the interval I = [0, 0.25] does not include the damaged region in beam. By proceeding as before, after 173 iterations we obtain the optimal coefficients shown in Figures 10 (a) and (b). These results seem to confirm that the results of the identification procedure are not so much affected by the choice of the interval I.

Finally, Figure 11 shows the graph of the functional value. We can notice that the selection of the interval I has an influence on the rate of decreasing of the cost function. 

Value of µ

Step 173 Exact (b) Identified µ 173 

Concluding remarks

In this paper we have continued a line of research initiated in [START_REF] Morassi | An inverse dynamical problem for connected beams[END_REF] which aims to the identification of the stiffness coefficients of a steel-concrete composite beam from dynamical data. In [START_REF] Morassi | An inverse dynamical problem for connected beams[END_REF] a uniqueness result for the shearing stiffness of the connection was proved for the simpler situation in which the coupling between bending and longitudinal motions is neglected. Here, the full complete coupled system which includes two fourth order and two second order differential operators coupled on a term of lower order is examined. A variational procedure based on dynamic measurements taken at the boundary and, possibly, at some interior portions of the system is proposed for identifying the shearing and axial stiffness of the connection. A complete form of the Gateaux partial derivatives of the cost function is derived and used to implement a projected gradient method for solving iteratively the inverse problem. The method is tested on a composite beam with localized damage in the connection for exact data and for data perturbed by some random error. A concise account of numerical simulations has been presented in this paper. The results are encouraging and the method seems to be sufficiently stable with respect to errors on the data. However, real applications require a detailed investigation on the sensitivity of the procedure to the choices of various parameters affecting the identification, such as, for example, the selection of the initial point in the minimization process or the influence of boundary and interior measurements on the final results. This is an important direction of further investigation. Finally, we would like to remark that it remains an open question to establish what set of dynamic data is needed for the unique reconstruction of the stiffness coefficients for the full coupled system. New ideas and techniques are likely to be necessary for solving this inverse problem.
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  t) the vector of Neumann data for the system (1.1) evaluated at x = 0, t ∈ [0, T ] (see (3.3) and (3.6)) and by v i (x, t) ≡ v i [k, µ](x, t) the transversal displacements on [0, L] × [0, T ]. Now, suppose we do not know the coefficients k(x) and µ(x), but we are given the Neumann data Q(t) on [0, T ] and the displacements v i (x, t) on I × [0, T ], for T large enough. Here, I is an open interval of [0, L]. For every k, µ ∈ C we define the following cost function:

  .18) where χ I is the characteristic function of the interval I, i.e. χ I (x) = 1 for x ∈ I and χ I (x) = 0 for x ∈ [0, L] \ I.

Definition 4 . 1 .

 41 Under the assumptions of Theorem 3.1 and with the notation of Section 2, let w[ k, µ] := w[ k, µ](x, t) be the weak solution of (2.1) in (0, L) × (0, T ) when k(x) = k(x) and µ(x) = µ(x) in [0, L].

( 4

 4 .5) where we recall that < f, g >= L 0 f • gdx for given vectors f and g. By (3.1), with m replaced by V , and recalling the definition (3.6), we have

( 4 . 6 )

 46 By (4.6) from (4.5) and by considering that Cw

( 4 . 8 )

 48 By subtracting (4.7) from (4.8) we obtain

2 . 0 <

 20 Let us recall that v i 's are the components of w[ k, µ]'s which solve the problem (2.1) for k = k and µ = µ. Since δw| t=0 = 0, δw, t | t=0 = 0, Z| t=T = 0, Z, t | t=T = 0, C = C T , by recalling (3.18) and integrating by parts twice we have T CZ, tt , δw > dt = T 0 < Z, Cδw, tt > dt. (4.20) Now, since D(δw)| x=0 = D(δw)| x=L = 0, DZ| x=0 = DZ| x=L = 0 and A k,µ = A T k,µ , by integrating by parts twice we get T 0 < A k,µ Z, δw > dt = T 0 < Z, A k,µ δw > dt. (4.21) By inserting (4.20) and (4.21) in (4.19) we have

  (4.22) By (4.18) and (4.22) the expression (4.3) follows.

  .27) Then we havev ǫ,γ → v strongly in C 0 ([0, T ]; V ) ∩ C 1 ([0, T ]; H) as ǫ 2 + γ 2 → 0. (4.28) Proof. Let us denote the pair (ǫ, γ) by τ and define |τ | := ǫ 2 + γ 2 . Let

( 4 .

 4 35)The left hand side of (4.32) tends to T 0 (v, ϕ) = -(v, ϕ)| t=0 by (4.32) and therefore, by the arbitrariness of h and ψ, we have v| t=0 = v 0 .

  (4.39) By (4.32) we have a(v τm , v) + c(v ′ τm , v ′ ) → 2E as |τ m | → 0 and then the left hand side of (4.39) tends to zero as |τ m | → 0. Finally, by the coercivity of the sesquilinear forms a(•, •) and c(•, •), we obtain

  (4.46) By recalling the definition (2.3) of A and A ǫ,γ , δ w solves the evolution problem    A ǫ,γ δ w = ǫF (δk)w + γG(δµ)w, (x, t) ∈ (0, L) × (0, T ), δ w| t=0 = 0, δ w, t | t=0 = 0 x ∈ (0, L), Dδ w| x=0 = Dδ w| x=L = 0 t ∈ (0, T ),(4.47) 



  (4.53) where F and G are the operators defined in(3.19) and (3.20), respectively.Proof. We shall use the notation introduced at the beginning of the proof of Lemma 4.4. The function δw := w ǫ,γ -w = w ǫ,γ -w =: δ w satisfies the problem   Cδ w, tt -A k,µ δ w = ǫF (δk)w ǫ,γ + γG(δµ)w ǫ,γ := f ǫ,γ , (x, t) ∈ (0, L) × (0, T ), δ w| t=0 = δ w, t | t=0 = 0x ∈ (0, L), Dδ w| x=0 = Dδ w| x=L = 0 t ∈ (0, T ), (4.54) where F and G are defined in(3.19) and (3.20), respectively.

× 10 -2 m 2 I d 1 9.00 × 10 -6 m 4 ρ d 1 73.19 kg m - 1 E d 1 4.2292 × 10 10 N m - 2 A d 2 1.64 × 10 -3 m 2 I d 2 5.41 × 10 -6 m 4 ρ d 2 12.90 kg m - 1 E d 2 2. 1 ×

 10211011110221022102121 10 11 N m -2In our numerical experiments we suppose that the length of observation time is T d = 4.0 × 10 -3 s.

  + 0.59175 cos 4 π (x d -1.5) × 10 8 [N m -1 ] (1.5 < x d < 2.0) 2.36700 × 10 8 [N m -1 ] (otherwise) , E c (x d )A c (x d ) + 2.14750 cos 4 π (x d -1.5) × 10 8 [N m -1 ] (1.5 < x d < 2.0) 8.59000 × 10 8 [N m -1 ]
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 2 Figure 2: Exact coefficients for the damaged beam.

Figure 4 :

 4 Figure 4: Calculated shear force T 1 and T 2 at x = 0.

Figure 5 :

 5 Figure 5: Calculated bending moment M 1 and M 2 at = 0.
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 6 Figure 6: Calculated coefficients for I = [0, L] without measurement error.
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 7 Figure 7: Calculated coefficients for I = [0, L] with 1.0% measurement error.
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 8 Figure 8: Calculated coefficients for I = [0, L] with 5.0% measurement error.
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 10 Figure 10: Calculated coefficients for I = [0, 0.25] without measurement error.
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 11 Figure 11: Functional value.
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  Nm -1 , E c A c /e d c ≡ 8.5900 × 10 8 Nm -1 in [0, L], and with Dirichlet data U given at x = 0.
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Figure 3: Calculated axial force N 1 and N 2 at x = 0.
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  Figure 9: Calculated coefficients for I = [0.25, 0.75] without measurement error.

		16.00			Step 131 Exact		55.00			Step 131 Exact
		14.00						50.00				
	Value of k	8.00 10.00 12.00					Value of µ	30.00 35.00 40.00 45.00				
								25.00				
		6.00										
								20.00				
		4.00						15.00				
		0.00	0.20	0.40	0.60	0.80	1.00	0.00	0.20	0.40	0.60	0.80	1.00
			(a) Identified k 131				(b) Identified µ 131	
		16.00			Step 173 Exact		55.00				
		14.00						50.00				
	Value of k	8.00 10.00 12.00						30.00 35.00 40.00 45.00				
								25.00				
		6.00										
								20.00				
		4.00						15.00				
		0.00	0.20	0.40	0.60	0.80	1.00	0.00	0.20	0.40	0.60	0.80	1.00
			(a) Identified k 173							

ported by Grant-in-Aid for Young Scientists (B) (No. 17740046) of Japan Society for Promotion of Science. The forth author is supported by Japan Society for Promotion of Science and IIRC of Kyung Hee University, Korea, via the SRC/ERC program of MOST/KOSEF (R11-2002-103).

Let P k and P µ be the clip-off operators such that

Then, we cannot guarantee that

In order to keep the smoothness of the function, we employ the mollifier as follows:

for bounded functions f defined on (0, L), where the function f is an extension of f to (-cǫ,

Then we have

By using the above operators, we define an iterative descent procedure as follows:

for l = 0, 1, 2, ..., where

Here α l is a suitable step size which satisfy 0 < α l ≤ 1.

From the above discussion for the derivatives, the approximations of the derivatives ∂ k J( k, µ) and ∂ µ J( k, µ) belong to H 1 (0, L) in our numerical experiment. Therefore we notice that, by the definition of the projections and mollifier, the updated coefficients belong to C and satisfy the conditions

in our experiments, whenever the initial guess ( k 0 , µ 0 ) ∈ C satisfies the same bounds.

We can summarize the algorithm of our variational approach to the inverse problem for composite beams as follows.

Numerical algorithm for coefficient identification 1. Set an initial guess ( k 0 , µ 0 ) which satisfies the a priori conditions (5.10).

2. For l = 0, 1, 2, ...:

(a) Solve the evolution problem (2.1) with (k, µ) = ( k l , µ l ) to find w, v

(b) Solve the elliptic problem (3.14) with ( k l , µ l ) to get W .

(c) Solve the evolution problem (3.15) with ( k l , µ l ) to find V and q i,x , i = 1, 2.

(d) Solve the evolution problem (3.18) to find Z and Z i,x , i = 1, 2.

(e) Solve the weak equations (5.8) and (5.9) to obtain the functions d k and d µ .

(f ) Calculate the derivatives ∂ k J( k l , µ l ) and ∂ µ J( k l , µ l ) by (5.6) and (5.7), respectively.

(g) Set the search direction s (k) l and s (µ) l by (5.12) and (5.13), respectively.

(h) Get the step size α l by using the line search algorithm.

(i) Update the coefficients by (5.11).

(j) If the updated coefficients satisfy the condition J( k l+1 , µ l+1 ) -J( k l , µ l ) J( k l+1 , µ l+1 ) < ε , for a small given control parameter ε, then stop the iterations.