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Abstract This paper addresses the inverse obstacle scattering problem. In the recent
years several non-iterative methods have been proposed to reconstruct obstacles
(penetrable or impenetrable) from near or far field measurements. In the chronologi-
cal order, we cite among others the linear sampling method, the factorization method,
the probe method and the singular sources method. These methods use differently
the measurements to detect the unknown obstacle and they require the use of many
incident fields (i.e. the full or a part of the far field map). More recently, two other
approaches have been added. They are the no-response test and the range test. Both
of them use few incident fields to detect some informations about the scatterer. All the
mentioned methods are based on building functions depending on some parameter.
These functions share the property that their behaviors with respect to the parame-
ter change drastically. The surface of the obstacle is located at most in the interface
where these functions become large. The goal of this work is to investigate the relation
between some of the non-iterative reconstruction schemes regarding the convergence
issue. A given method is said to be convergent if it reconstructs a part or the entire
obstacle by using few or many incident fields respectively. For simplicity we consider
the obstacle reconstruction problem from far field data for the Helmholtz equation.
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1 Introduction

Let D be a bounded domain in R
3 with C2 boundary ∂D. We consider the acoustic

inverse scattering problem. The propagation of time-harmonic acoustic fields in a
homogeneous media is governed by the Helmholtz equation

�u + κ2u = 0 in R
3 \ D (1.1)

where κ is the real positive wave number. At the boundary of sound-soft scatterers
the total field u satisfies the Dirichlet boundary condition

u = 0 on ∂D. (1.2)

Given an incident field ui which satisfies�ui + κ2ui = 0 in R
3 we look for solutions

u := ui + us of (1.1) and (1.2) where the scattered field us is assumed to satisfy the
Sommerfeld radiation condition

lim
r→∞ r

(
∂us

∂r
− iκus

)
= 0, (1.3)

r = |x| and the limit is uniform with respect to all the directions θ := x
|x| . It is well

known (see [6] or [18]) that this reflected field satisfies the following asymptotic
property,

us(x) = eiκr

r
u∞(θ , ui)+ O(r−2), r → ∞, (1.4)

where the function u∞(·, ui) defined on the unit sphere S is called the far-field associ-
ated to the incident field ui. Taking particular incident fields given by the plane waves,
ui(x, d) := eiκd·x, d ∈ S, we define the far-field pattern u∞(θ , d) for (θ , d) ∈ S×S. Note
that we changed in the notation of u∞ the argument ui by the direction of incidence
d. We will keep this notation for the rest of the paper. Analogously, for an incident
point source �(·, z), where

�(x, y) := 1
4π

eiκ|x−y|

|x − y| , x �= y, x, y ∈ R
3.

is the fundamental solution of �+ κ2 on R
3, we denote the scattered field by �s(·, z)

and its far field pattern by �∞(·, z). The problem we are concerned with is the
following

Shape reconstruction problem Given u∞(·, ·) on S × S for the scattering problem
(1.1), (1.2), (1.3) find the obstacle D.

This problem has been well studied, see [6] or [18] for more details. Several meth-
ods have been created to solve this problem. Often, the methods are classified into the
categories of iterative methods and non-iterative methods. We are concerned with the
non-iterative methods as linear sampling method [5], factorization method [11], probe
method [7], singular sources method [18], no-response test [13] and range test [19]. All
these methods make different use of the given data. The four first methods require the
far field map (or its restriction to some part of S) and reconstruct the entire obstacle.
The two last methods, as proposed in [13] and [19], use few incident fields and detect
some informations about the unknown scatterer. In this sense, a method using many
incident fields or waves (i.e. the full or part of the far field map) is called a multi-wave
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method while if it is using few incident waves it is called a one-wave method. Our
study is motivated by the following facts. All the mentioned methods are based on
the use of some functions which depend on some parameter. These functions share
the property that their behaviors change drastically with respect to the parameter
and they split the ambient space, R

3, into two separated parts. The believe is that the
surface of the unknown obstacle is located in the interface of these two parts. These
functions are called indicator functions and a given method is said to be convergent
if this believe is justified.

The goal of this paper is to clarify the relation between the mentioned methods
by giving some links between the corresponding indicator functions. In Sect. 2, we
give the first version of the no-response test, which is the multi-wave version of the
one-wave method given in [13], and justify its convergence.

To deal with this inverse scattering problem via the probe method, in [8] the author
proceeds in two steps. The first step is to compute the near field from the far field and
the second step is to detect the obstacle from this near field. The near field is given by
the Dirichlet to Neumann map of the boundary problem stated on some artificially
introduced domain � containing the unknown obstacle. In this paper, we state the
natural far field version of the probe method. This version uses directly the far field
(in one step) to detect the obstacle. We show also that the indicator of this far field
version and the (original) one of near field version are equivalent regarding the blow
up property.

The singular sources method computes the scattered field �s(·, z) of the incident
point sources�(·, z) from the far field where z is outside the obstacle D. We reformu-
late the singular sources method in a way which enables us to compute its indicator
function for any point z inside or outside D. For z outside D, it coincides with the
original one, i.e. �s(z, z).

We find out that the indicator function of the far field version of probe method and
the one of the reformulated singular sources method coincide. The obstacle D should
be characterized by the set of points z for which this indicator function blows-up. The
behavior of this indicator function with respect to the parameter z is similar to the one
of the linear sampling method or the factorization method [11]. But it has an opposite
behavior in the sense that it is bounded outside the obstacle D and becomes large
when approaching D and stay unbounded inside D. This is the object of Sect. 3.

In Sect. 4, we introduce a second version of the no-response test for reconstruct-
ing the obstacle D from the knowledge of the far-field pattern. We base this second
version on a combination of the superposition principle with the range test idea given
in [19]. This second version of the no-response test can also be seen as a multiwave
version of the range test which is different from the multiwave range test as described
in [20]. We give the justification of its convergence.

In Sect. 5, we recall the linear sampling method, see [5] and [4], and show how it is
related to the two proposed methods by explaining how the convergence of the linear
sampling method implies the convergence of the second version of the no-response
test. That is, we will show that the singular sequence (for its definition, see the caption
of Fig. 1) creating the blow-up for the linear sampling method can be used to create
the blow-up for the no-response test.

Finally, in Sect. 6, we show that the two versions of the no-response test are equiv-
alent with respect to their convergence. Precisely, we give a link between the singular
sequences creating the blowup property for the indicator functions of both the two
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Fig. 1 The Diagram shows the relation between the two versions of the no-response test and several
non-iterative methods for the inverse scattering theory. All these methods are based on indicator
functions which depend on a parameter. The convergence of these methods is interpreted by the
existence of sequences of functions which approximate a singular solution of the Helmholtz equation
and create the blowup property for the corresponding indicator functions. We call these sequences
singular sequences. In this sense, the words “implies” and “equivalent” mean that knowing the singu-
lar sequence for one method, we can know the corresponding singular sequence for the other method,
and viceversa. The word “equality” means that effectively the two methods have equal indicator func-
tions. Finally, the word “version” means that, based on the no-response idea, we build two methods
using two different indicator functions

methods. Altogether, the relations between the different methods are graphically
displayed in Fig. 1.

In the next sections, we make use of the following definition.

Definition 1.1 We call a bounded domain B, with C2 regular boundary, such that R
3 \B

is connected a non-vibrating domain if κ2 is not a Dirichlet eigenvalue for (−�). If this
last condition is not satisfied, we say B is vibrating.

It is well known that if κ > 0 and u ∈ C2(R3 \ B) satisfies (� + κ)u = 0 in R
3 \ B,

u = 0 on ∂B and the Sommerfeld radiation conditions (1.3) then u = 0 in R
3 \ B, see

for instance [6]. It is also worth noticing that the set of vibrating domains included
in given bounded domain � is “negligible”. This is due to the facts that (1) for any
fixed B, the sequence of eigenvalues is tending to infinity and (2) by increasing strictly
B every eigenvalue strictly decreases. A justification of this second property can be
found in ([22], page 29). We also want to mention that we can always test whether any
given domain is non-vibrating by using the Courant min–max principle.

Some of these results have been announced in [15].
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2 The first version of the no-response test for the scattering problem

The goal of this section is to develop a multi-wave formulation for the no response
test (NRT) for the acoustic scattering problem. We will introduce the basic idea of the
NRT and then prove its convergence. We start with some preparations. We set S to be
the unit sphere in R

3.
Let g ∈ L2(S). It is well known (see [6] and [18]) that the scattered field associated

with the Herglotz incident field vi
g := vg defined by

vg(x) :=
∫
S

eiκx·dg(d) ds(d), x ∈ R
3, (2.5)

is given by

vs
g(x) :=

∫
S

us(x, d)g(d) ds(d), x ∈ R
3 \ D, (2.6)

and its far field is given by

v∞
g (θ) :=

∫
S

u∞(θ , d)g(d) ds(d), θ ∈ S. (2.7)

We base the method on the representation

u∞(θ , d) = 1
4π

∫
∂D

{
∂us(y, d)
∂ν

e−iκθ ·y − ∂e−iκθ ·y

∂ν
us(y, d)

}
ds(y) (2.8)

given by using the Green’s formula in R
3 \ D for us(·, d) and �(·, y) and their asymp-

totic behavior at infinity (see [6], Theorem 2.5) where the normal is directed into
inside D. The representation of the scattered field �s(x, z) for x, z ∈ R

3 \ D is given
by Green’s formula

�s(x, z) =
∫
∂D

{
∂�s(y, z)
∂ν(y)

�(x, y)−�s(y, z)
∂�(x, y)
∂ν(y)

}
ds(y), x, z ∈ R

3 \ D. (2.9)

Using

0 =
∫
∂D

{
∂�(y, z)
∂ν(y)

�(x, y)−�(y, z)
∂�(x, y)
∂ν(y)

}
ds(y), x, z ∈ R

3 \ D (2.10)

this can be transformed into

�s(x, z) =
∫
∂D

∂(�s +�)(y, z)
∂ν(y)

·�(x, y) ds(y), x, z ∈ R
3 \ D. (2.11)
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Now, consider a couple of densities (f , g) ∈ L2(S) × L2(S). We replace θ by −θ in
Eq. (2.8), multiply the result by f (θ)g(d) and integrate on S × S to calculate∫

S

∫
S

u∞(−θ , d)f (θ)g(d) ds(θ)ds(d)

= 1
4π

∫
∂D

⎧⎪⎨
⎪⎩
∫
S

∂us(y, d)
∂ν

g(d) ds(d) ·
∫
S

eiκθ ·yf (θ) ds(θ)

−
∫
S

∂eiκθ ·y

∂ν
f (θ) ds(θ) ·

∫
S

us(y, d)︸ ︷︷ ︸
=−ui(y,d)

g(d) ds(d)

⎫⎪⎬
⎪⎭ ds(y)

= 1
4π

∫
∂D

{
∂vs

g

∂ν
(y)vi

f (y)+
∂vi

f

∂ν
(y)vi

g(y)

}
ds(y). (2.12)

Now, we state the definition of the first version of the no-response test.

Definition 2.1 (The first version of the no response method) Let B be any non-
vibrating domain. We define the indicator function for the multi-wave no-response
test by

I1(B) := lim
ε→0

sup{I1,ε(f , g) : ||vf ||L2(∂B) < ε, ||vg||L2(∂B) < ε} (2.13)

with

I1,ε(f , g) :=
∣∣∣∣∣∣
∫
S

∫
S

u∞(−θ , d)f (θ)g(d) ds(θ)ds(d)

∣∣∣∣∣∣ . (2.14)

For the set G of non-vabriting domains B no response test calculates the indicator
function I1(B) and builds the intersection

Drec,1 :=
⋂

B∈B1

B, (2.15)

where

B1 := {B ∈ G : I1(B) = 0}. (2.16)

After the above preparations we can prove the following characterization of D
from the far field pattern, which provides a convergence result for the no response
test for reconstructing the inclusion D.

Theorem 2.2 (Convergence of the first version) Let G as in Definition 2.1. We have

1. If D ⊂ B then I1(B) = 0.
2. If D �⊂ B then I1(B) = ∞.

Thus the unknown scatterer is given by the intersection of all test domains B for which
I1(B) is zero, i.e

D = Drec,1.
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Proof First, consider the case where D ⊂ B. For ||vg||L2(∂B) < ε then from the reg-
ularity theory of the very weak solutions of the elliptic problems, see [16], we have
||vg||L2(B) < cε. Hence by interior estimates we have ||vg||C1(∂D) < c′ε and then

||vs
g||C(∂D) < c1ε,

∣∣∣
∣∣∣∂vs

g

∂ν

∣∣∣
∣∣∣
C(∂D)

< c2ε (2.17)

with some constants c, c′, c1 and c2. Using (2.12) and the fact that ||vf ||C1(D) < c̃ε, we
obtain

|I1,ε(f , g)| ≤ Cε2 (2.18)

with some constant C and thus

I1(B) = lim
ε→0

sup{I1,ε(f , g) : ||vg||L2(∂B) < ε, ||vf ||L2(∂B) < ε} = 0. (2.19)

Second, D �⊂ B. Let z ∈ ∂D such that z is on the boundary of the unbounded
component of R

3 \ D ∪ B. Then, there exists a sequence of points

(zp)p∈N ⊂ R
3 \ (B ∪ D) (2.20)

such that zp tends to z. We consider the sequence of point sources �(·, zp). We set
Bp as a sequence of non-vibrating domains such that B ∪ D ⊂ Bp and zp ∈ R

n \ Bp.
In this case, due to the denseness property of the Herglotz wave operator (see [18],
Lemma 3.1.3) we take gp

n as a sequence such that for every p fixed∣∣∣
∣∣∣vgp

n
− ε

2
αp�(·, zp)

∣∣∣
∣∣∣
L2(∂Bp)

→ 0, n → ∞, (2.21)

where

αp := ||�(·, zp)||−1
L2(∂B)

. (2.22)

Hence, by a combination of (2.21) and (2.22) and the well-posedness of the interior
Dirichlet problem in Bp we derive that for every p fixed we have

||vgp
n
||L2(∂B) < ε, (2.23)

for n large enough. On the other hand, from (2.12), replacing (f , g) by (gp
n, gp

n), we
deduce that

lim
n→∞

∫
S

∫
S

u∞(−θ , d) gp
n(θ) gp

n(d) ds(θ)ds(d)

= ε2α2
p

16π

∫
∂D

∂(�s +�)(y, zp)

∂ν(y)
·�(y, zp) ds(y) (2.24)

= ε2α2
p

16π
�s(zp, zp). (2.25)

Hence using the property

|�s(zp, zp)| ≥ c1[d(zp, ∂D)]−1 (2.26)

as shown in Theorem 2.1.15 of [18] and the fact that

α2
p := ||�(·, zp)||−2

L2(∂B)
≥ c2[ln(d(zp, ∂B))]−1 (2.27)
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for some positive constants c1, c2, we deduce that

lim
p→∞ lim

n→∞

∫
S

∫
S

u∞(−θ , d)gp
n(θ)g

p
n(d)dθds(d) = ∞. (2.28)

Then I1(B) = ∞.
From the points 1 and 2, I1 may have only the values 0 and +∞. In addition, I1, as

set function, is monotonically decreasing. From such properties, we get D = Drec,1. 
�

3 The probe and singular sources methods for far field data coincide

3.1 Singular sources method

The idea of the singular sources method is firstly to compute�s(z, z) from the far field
and secondly to evaluate its behavior with respect to the parameter z. The observation
is that when z approaches ∂D then�s(z, z) blows-up. To compute�s(z, z) from the far
field pattern, in [18], the author uses the so-called back-projection operator, see ([18],
Definition 3.1.5 and Theorem 3.1.6). Its derivation is based on a mixed reciprocity
relation. However, the calculation of�s(z, z) can be justified directly by the use of the
identity (2.8) and arguing as in (2.21)–(2.25). Indeed, let the sequence (gz

n)n∈N ⊂ L2(S)

be constructed as we did for (gp
n)n∈N in the proof of Theorem 2.2, where the point z

plays the role of the point zp, with the slight difference in (2.21) where we replace
ε
2αp�(·, zp) by �(·, z).

We obtain the following proposition

Proposition 3.1

�s(z, z) = 4π lim
n→∞

∫
S

∫
S

u∞(−θ , d) gz
n(θ) gz

n(d) ds(θ)ds(d). (3.29)

Note that here we obtain an approximation with the quadratic form, whereas in [18],
Theorem 3.1.6, one needs the full bilinear form∫

S

∫
S

u∞(−θ , d) g(θ) f (d) ds(θ)ds(d) (3.30)

with f , g ∈ L2(S) chosen appropriately to obtain the approximation of �s(z, z). Thus,
the proof via equation (2.8) yields better results than the application of the mixed
reciprocity relation. But the computation of �s(z, z) is meaningful only if z ∈ R

3 \ D.
To state the singular sources method for any point z ∈ R

3, we reformulate it in the
following way:

Definition 3.2 (The indicator function) Let� be a large but bounded domain contain-
ing the unknown obstacle D. Let z ∈ �. We denote Cz to be the set of continuous curves
cz which join the point z to the boundary ∂�. For any curve cz ∈ Cz, we define�z to be
a C2-regular domain contained strictly in � \ cz.

Let vgz
n

be a sequence of Herglotz waves which approximate �(·, z) and set

Issm(z, cz,�z) := 4π lim
n→∞

∫
S

∫
S

u∞(−θ , d)gz
n(θ)g

z
n(d)ds(θ)ds(d).
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Then, we define the indicator function I(z) by

I(z) := inf{cz∈Cz}
sup

{�z⊂(�\cz)}
{|Issm(z, cz,�z)|}

Remark 3.3 In the last definition if�z is a vibrating domain, then we replace it with a
larger non-vibrating domain �̃z such that z �∈ �̃z, then we approximate �(·, z) on �̃z
and then we get also the same approximation on �z. This means that we can define
the functional Issm(z, cz,�z) for any C2−regular domains.

We state the following conjecture as a claim. Its full proof is not achieved yet. In
Sect. 3.3, we give some comments on its justification.

Claim 3.4 Let z ∈ � and cz ∈ Cz.

1. If the domain �z is such that �z ⊂ �z ⊂ � \ cz and D ⊂ � \ cz then we have:

Issm(z, cz,�z) = �s(z, z).

2. If the domain �z is such that �z ⊂ �z ⊂ � \ cz and D �⊂ � \ cz, then

Issm(z, cz,�z) = ∞.

This claim implies the following theorem.

Theorem 3.5 The indicator function I(·) satisfies the two properties:

1. If z ∈ � \ D, then

I(z) = |�s(z, z)|.
2. If z ∈ D, then

I(z) = ∞.

As a conclusion, the obstacle D is characterized by the indictor function I(·) as follows:

D = {z ∈ �/I(z) = ∞}.
Proof of Theorem 3.5 We assume Claim 3.4 to be true.

1. Let z ∈ � \ D and any piecewise curve cz in Cz. For any domain �z such that
�z ⊂ �z ⊂ � \ cz the claim implies that either we have Issm(z, cz,�z) = �s(z, z)
or Issm(z.cz,�z) = ∞. Since cz and �z are arbitrary then I(z) = |�s(z, z)|.

2. If z ∈ D, then for any cz in Cz and any �z such that �z ⊂ � \ cz, we have
D �⊂ � \ cz. Hence the point (2) of the claim implies that Issm(z, cz,�z) = ∞ and
as a consequence I(z) = ∞.

3.2 Probe method

Consider a non-vibrating domain � containing the obstacle D such that κ2 is not a
Dirichlet eigenvalue of (−�) on � \ D. As we mentioned in the introduction, in [8]
the author proceeds in two steps to detect the obstacle from the far field. The first one
is to go from the far field to the near field on ∂� i.e. the boundary of �. In the second
one, from this computed near field the author detects the obstacle.
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The near field is given by the Dirichlet–Neumann map:

�D : H
1
2 (∂�) ⇒ H− 1

2 (∂�),

where �Df := ∂uf

∂ν
|∂�, ν on ∂� is oriented to outside of �, and uf ∈ H1(� \ D)

satisfies ⎧⎨
⎩
�uf + k2uf = 0 in � \ D,
uf = f on ∂�,
uf = 0 on ∂D.

(3.31)

From this data, the indicator function of the probe method is related to the following
quadratic form: ∫

∂�

(�D −�∅)f (x) · f (x)ds(x) (3.32)

where �∅ is the Dirichlet–Neumann map for (3.31) when D = ∅.
For z ∈ � \ D, we take cz and �z as in the subsection concerning the singular

sources method. We approximate�(·, z) on ∂�z by a sequence of Herglotz waves vgn
z

(which is a reconstructive version of the Runge approximation used in the original
probe method [7]).

Evaluating the probe functional (3.32) for f = vgz
n

|∂�, using the Alessandrini
identity on � \ D (see, [1] or [10], Chap. 3), we find:

Ipb(z, cz,�z) := lim
n→∞

∫
∂�

(�D −�∅)vgz
n
(x) · vgz

n
(x)ds(x)

= − lim
n→∞

∫
∂D

(
∂vs

gz
n

∂ν
(x)− ∂vgz

n

∂ν
(x)

)
· vgz

n
(x)ds(x),

and taking the limit with respect to n, we find:

Ipb(z, cz,�z) = −
∫
∂D

{
∂�̃�

∂ν
(x, z)− ∂�

∂ν
(x, z)

}
·�(x, z)ds(x)

where we denoted by vs
gn

z
and �̃ the solutions of (3.31) replacing f by vgn

z |∂� and
�(·, z)|∂�, respectively. The function

�s
�(x, z) := �̃(x, z)−�(x, z)

is called the reflected solution for the problem (3.31). It is a solution to the problem:
⎧⎨
⎩
��s

� + k2�s
� = 0 in � \ D,

�s
�(·, z) = 0 on ∂�,

�s
�(·, z) = −�(·, z) on ∂D.

(3.33)

Using the Green’s formula on � \ D for �s
�(·, z) and �(·, z) we deduce that

Ipb(z, cz,�z) = −�s
�(z, z)+

∫
∂�

∂

∂ν
�s
�(x, z)�(x, z)ds(x).
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We are interested with z in � \ D. Since �s
�(·, z)+�(·, z) satisfies⎧⎨

⎩
(�+ k2)(�s

�(·, z)+�(·, z)) = −δ(· − z) in � \ D,
�s
�(·, z)+�(·, z) = �(·, z), on ∂�,

�s
�(·, z)+�(·, z) = 0, on ∂D

(3.34)

then the function �s
�(·, z) + �(·, z) can be seen as a sum of the Dirichlet Green’s

function of�+ k2 on � \ D and the solution of (3.34) replacing δ by zero. Since both
of these two functions are bounded with respect to z, in � \ D and near ∂D, with
values in C1(∂�), we deduce that∫

∂�

∂

∂ν
�s
�(x, z)�(x, z)ds(x)

is bounded with respect to z. This means that

|Ipb(z, cz,�z)+�s
�(z, z)| = O(1) for z in � \ D. (3.35)

Let us now compare �s
�(z, z) with �s(z, z). We set 
(x, z) := �s

�(x, z) + �s(x, z).
Then 
(·, z) satisfies: ⎧⎨

⎩
�
 + k2
 = 0 in � \ D,

(·, z) = �s(·, z) on ∂�,

(·, z) = 0 on ∂D.

(3.36)

For z in� \ D and near ∂D,�s(·, z) is bounded in C2(∂�). We can see it by remarking
that �s(x, z) + �(x, z) is the Dirichlet Green’s function of our equation on R

3 \ D .
Then the wellposedness of the problem (3.31) implies that
(·, z) is bounded in C2(�)

hence 
(z, z) is bounded. This means that

|�s
�(z, z)+�s(z, z)| = O(1) for z in � \ D and near ∂D. (3.37)

As we mentioned in the paragraph after (3.32) the indicator function of the original
probe method, i.e. Ipb(z, cz,�z), is constructed from the Dirichlet–Neumann map by
using a sequence of functions approximating the fundamental solution and the Ales-
sandrini identity.

Now, in place of using the Dirichlet to Neumann map as a starting point, we use
the far field data u∞(θ , d), (θ , d) ∈ S

2. Using the same sequence of functions approxi-
mating the fundamental solution and the identity (2.12), which is the far field counter
part of the Alessandrini identity, we end up with

Issm(z, cz,�z) = �s(z, z).

In addition, we have the following proposition

Proposition 3.6

|Ipb(z, cz,�z)− Issm(z, cz,�z)| = O(1),

for z in � \ D and near ∂D.

Proof of Proposition 3.6 From Proposition 3.1 and the combination of (3.35) and
(3.37) we get

|Ipb(z, cz,�z)− Issm(z, cz,�z)| = |Ipb(z, cz,�z)−�s(z, z)| = O(1).
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This proposition and the comments before suggest that the natural far field version of
the probe method is the one given in Definition 3.2.

3.3 Conclusion and some comments

From the singular sources method in Sect. 3.1 and the probe method in Sect. 3.2, we
deduce the following theorem.

Theorem 3.7 The natural far field versions of the probe method and the singular sources
method are identical. This common version is given by Definition 3.2.

1. The full convergence proof of this natural far field version is not achieved yet. The
first point of the claim is shown to be true, see (2.25) and we have �s(z, z) → ∞
when z → ∂D (see [18]). The justification of the second point of the claim is not yet
proven. A partial result in this direction is the recent work [9], where the obstacle
boundary value problem is considered. It is proved under some assumptions on
the smallness of the frequency κ .

2. For the method based on the indicator given Definition 3.2, we need to take some
domain � containing the unknown obstacle. This is also the case for the linear
sampling and the factorization methods. But such domain � can always be found
using the first version of the no response test. Indeed, it is given by testing if for
any � we have I1(�) = 0. This shows how the combination of these methods can
be useful.

3. The way of defining the set�z in Definition 3.2 is nothing but the needle approach
introduced in [7].

4 The second version of the no-response test

In this section, we develop the second version of the no-response test which combines
the superposition principle and the range test idea introduced in [19].

Again, consider a bounded domain B ⊂ R
3 with boundary of class C2. The basic

idea of the range test is to test the solvability of the equation

1
4π

∫
∂B

e−iκθ ·xψ(x)ds(x) = u∞(θ , d), (θ , d) ∈ S × S. (4.38)

Here, we will use this technique applied to the far field pattern v∞
g of the Herglotz

wave functions used in the definition of the no response test above.
For regularization of the ill-posed integral Eq. (4.38) we use the Tikhonov regular-

ization scheme

ψα := (α + S∞,∗S∞)−1S∞,∗u∞ (4.39)

with regularization parameter α > 0 and the far field operator S∞ : L2(∂B) → L2(S)

is given by

(S∞ϕ)(θ) := 1
4π

∫
∂B

e−iκθ ·yϕ(y) ds(y), θ ∈ S. (4.40)
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Definition 4.1 (The second version of the no-response method) For a non-vibrating
domain B we define the indicator function

I2(B) := lim
ε→0

sup
{

lim
α→0

||ψαg ||L2(∂B) : ψαg is the regularized solution (4.39)

of (4.38) with u∞ = v∞
g , g ∈ L2(S) and ||vg||L2(∂B) < ε

}
(4.41)

For the set G of non-vibrating domains B, this second version of no response test
calculates the indicator function I2(B) and builds the intersection

Drec,2 :=
⋂

B∈B2

B, (4.42)

where

B2 := {B ∈ G : I2(B) = 0}. (4.43)

The convergence of the no response test is given by the following result.

Theorem 4.2 (Convergence of the second version) Let G be as in Definition 4.1. We
have

1. If D ⊂ B then I2(B) = 0.
2. If D �⊂ B then I2(B) = ∞.

Thus, the obstacle D can be characterized by

D = Drec,2.

The following lemmas are the key tools to prove Theorem 4.2. The proof of the
first one can be found in [6] and [19].

Lemma 4.3 Let B be a domain with boundary of class C2. We consider an injective
integral operator with continuous kernel and dense range

(Aψ)(θ) :=
∫
∂B

k(θ , y)ψ(y)ds(y), θ ∈ S (4.44)

from L2(∂B) to L2(S). Then the Tikhonov regularized solution of the equation Aψ = f
given by

ψα := (αI + A∗A)−1A∗f (4.45)

where α is the regularized parameter and A∗ is the adjoint of A satisfies

lim
α→0

‖ψα‖L2(∂B) =
{∞, if f is not inA(L2(∂B)),

‖ψ∗‖L2(∂B), if Aψ∗ = f .
(4.46)

From Rellich’s Lemma we immediately obtain the following result.

Lemma 4.4 If the Eq. (4.38) is solvable, i.e. there exists ψ ∈ L2(∂B) such that

S∞ψ = u∞
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then the scattered field us of u∞ is given by

us =
∫
∂B

�(·, y)ψ(y)ds(y) in R
3 \ (B ∪ D).

Also, we collect basic mapping properties of the single-layer operator.

Lemma 4.5 The operator S : L2(∂B) → H1(∂B) defined by:

(Sψ)(x) :=
∫
∂B

�(x, y)ψ(y)ds(y), x ∈ ∂B (4.47)

is an isomorphism if B is a non-vibrating domain.

Proof of Lemma 4.5 In [12], Theorem 7.17, it is proved that for such regular domains
B the operator S : L2(∂B) → H1(∂B) is Fredholm with index zero. The injectivity
and hence the surjectivity of S is given by the assumption that B is a non-vibrating
domain.

Lemma 4.6 The operator S∞ : L2(∂B) → L2(S) has a dense range if B is a non-
vibrating domain.

Proof of Lemma 4.6 We define FB : H
1
2 (∂B) → L2(S) to be the far field map for the

artificial obstacle B, i.e for u ∈ H
1
2 (∂B), FBu is the far field of the solution us of the

(�+ κ2)us = 0 satisfying the Sommerfeld radiation condition and us = u on ∂B.
In terms of the isomorphism S : H− 1

2 (∂B) → H
1
2 (∂B), see [12], we can write

S∞ = FBS. We set also the Herglotz wave operator H : L2(S) → H
1
2 (∂B), Hg := vg|∂B

where vg is the Herglotz wave function (2.5). We denote by H∗ its dual operator from

H− 1
2 (∂B) → L2(S). Let φ ∈ L2(∂B). By (4.40), we have

H∗φ =
∫
∂B

φ(x)e−ikd·xds(x) = 4πS∞φ

which means that

S∞φ = FBSφ = 1
4π

H∗φ (4.48)

for every φ ∈ L2(∂B) and hence for every φ ∈ H− 1
2 (∂B) by the continuity of FB, S,

H∗ and the denseness of L2(∂B) in H− 1
2 (∂B).

Now since B is a non-vibrating domain then H is injective and hence H∗ has a
dense range. From (4.48), we see that the operator S∞ stated on H− 1

2 (∂B) has a
dense range. Finally, S∞ stated on L2(∂B) has a dense range, because L2(∂B) is dense
in H− 1

2 (∂B) and S∞ is continuous on H− 1
2 (∂B) (since FB : H

1
2 (∂B) → L2(S) and

S : H− 1
2 (∂B) → H

1
2 (∂B) are continuous). 
�

Proof of Theorem 4.2 We will investigate the two cases D ⊂ B and D �⊂ B in two
steps.

I Case 1 Consider the case when D ⊂ B. We take any g ∈ L2(S) satisfying
||vg||L2(∂B) < ε. As for the case one of the first version, using the regularity of very
week solution for elliptic problems and interior estimates, this implies that

||vg||C1(∂D) < cε (4.49)
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with some positive constant c. Since D ⊂ B the scattered field vs
g has a trace on ∂B

which is in C1(∂B) and ||vs
g||C1(∂B) < Cε with some appropriate constant C depending

on the scatterer and on ∂B. In this case, by lemma 4.5 the single-layer equation

Sψ = vs
g on ∂B (4.50)

has a solution ψ ∈ L2(∂B) which satisfies

||ψ ||L2(∂B) ≤ c̃ε (4.51)

with a further constant c̃. Hence, also the Eq. (4.38) with u∞ = v∞
g is solvable with ψ

as the solution and we obtain I2(B) = 0.
II Case 2 Assume that D �⊂ B. II.A) We first assume that D �⊂ B. Then, there

is a point z ∈ ∂D \ B. We choose some arbitrary ε > 0. As in section 2, we take a
sequence of points zp ∈ R

3 \ (D ∪ B) such that zp → z and construct Herglotz wave
functions which approximate ε/2 ·αp times the point source�(·, zp) in L2(∂Bp)where
D ∪ B ⊂ Bp and zp /∈ Bp. We recall that αp := (||�(·, zp)||L2(∂B))

−1. Also, using the
well-posedness of the scattering problem we obtain that

v∞
gp

n
→ ε

2
αp�

∞(·, zp), n → ∞, (4.52)

in L2(S).
Next, we need to consider the solvability of the Eq. (4.38) with right-hand side

u∞ = v∞
gp

n
. Here, we will distinguish two possibilities:

II.A.α There exists a couple (p0, n0) such that ‖vg
p0
n0

‖L2(∂B) < ε and (4.38) is not

solvable. In this case by the Tikhonov regularization, we find a regularized sequence
of solutions ψα

g
p0
n0

of (4.38) such that ‖ψα
g

p0
n0

‖L2(∂B) tends to ∞ as α tends to zero, where

α is the regularization parameter. Hence we obtain the desired statement.
II.A.β For every couple (p, n) such that ‖vgp

n
‖L2(∂B) < ε the Eq. (4.38) is solvable.

By Lemma 4.4 for every such couple (p, n), vs
gp

n
is extendable up to ∂B such that its

trace is in H1(∂B). Now solving the equation (4.50) with right-hand side vs
gp

n
we get a

sequence of solutions ψgp
n

of (4.38), with right-hand side given by v∞
gp

n
i.e.

S∞ψp
n = v∞

gp
n
. (4.53)

We distinguish two cases. The first one is that there exists p0 such that the sequence
‖ψg

p0
n

‖L2(∂B) is unbounded. In this case we obtain the desired statement. The second
case is that for every p the sequence ||ψgp

n
||L2(∂B) is bounded. In this case for every p

fixed we can find a function ψp ∈ L2(∂B) such that ψgp
n

tends weakly to ψp in L2(∂B).
For every p fixed, we take the limit in (4.53) with respect to n. We obtain,

S∞ψp = ε

2
αp�

∞(·, zp) (4.54)

on S. This means that (4.38) is solvable for u∞ being the far field pattern of �s(·, zp).
Hence using again Lemma 4.4, we deduce that �s(·, zp) is extendable up to ∂B with
boundary values in H1(∂B). The solution of (4.54) is then given by the solution of

Sψp = ε

2
αp�

s(·, zp) on ∂B. (4.55)
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In this case the sequence αp is bounded from below by a positive constant, because
(zp)p∈N is in ∂D \ B. We show that �s(·, zp) is unbounded in H1(∂B). Indeed suppose
that ||�s(·, zp)||H1(∂B) is bounded. Since�s(x, zp) satisfies −��s(x, zp)+κ2�s(x, zp) =
0 in R

3 \ B then �s(·, zp) is bounded in H
3
2
loc(R

3 \ B) hence also in H1(∂D ∩ (R3 \ B)).
But �s(·, zp) = �(·, zp) on ∂D and �(·, zp) in unbounded in H1(∂D ∩ (R3 \ B)). This
gives a contradiction.

II.B) We now assume that D ⊂ B. From D �⊂ B we obtain that there is a point
z ∈ ∂B ∩ ∂D. Let zp be a sequence of points in R

3 \ (B ∪ D) tending to z. Applying
the Green’s Theorem on R

3 \ B for �s(·, zp) and �(·, zp), we get

αp

∫
∂B

�s(·, zp)
∂�

∂ν
(·, zp)ds(x)− αp

∫
∂B

�(·, zp)
∂�s

∂ν
(·, zp)ds(x) = αp�

s(zp, zp). (4.56)

Hence if αp�
s(·, zp) is bounded in H1(∂B) then αp

∂�s

∂ν
(·, zp) is also bounded in L2(∂B).

Using the estimate
∣∣∣∣
∣∣∣∣∂�∂ν (·, zp)

∣∣∣∣
∣∣∣∣
H−1(∂B)

≤ ||�(·, zp)||L2(∂B) (4.57)

the second member of (4.56) behaves like ||�(·, zp)||L2(∂B) ≈ (ln(d(zp, ∂B)))
1
2 . This

fact and the estimate

�s(zp, zp) = O
[

1
d(zp, ∂B)

]

(see Theorem 2.1.15 of [18]) imply that the left hand side of (4.56) is of the order
O(
√

ln(d(zp, ∂B))) while the right hand side behaves as O( 1
d(zp,∂B) ), which is impossi-

ble. Thus, we have

||αp�
s(·, zp)||H1(∂B) → ∞, p → ∞. (4.58)

Then, also ψp = ε
2αpS−1�s(·, zp) cannot be bounded in L2(∂B).

Finally in all these cases, we constructed sequences gp
n such that ‖vgp

n
‖L2(∂B) < ε

and limα→0‖ψαgp
n
‖L2(∂D) is unbounded. This means that I2(B) = ∞.

As for the proof of Theorem 2.2 the properties 1. and 2. imply that D = Drec,2. 
�

Remark 4.7 In the definition of the two versions of the no-response test, we can
replace in (2.13) and (4.41) the L2(∂B) norm by the C1(∂B) norm. For these changes,
the convergence of these two methods is as follows:

1. If D ⊂ B then I1(B) = I2(B) = 0.
2. If D �⊂ B then I1(B) = I2(B) = ∞.

The difference with the original versions is that D ⊂ B implies that I1(B) = I2(B) =
0. This means that if ∂D �⊂ B then I1(B) = I2(B) = 0 which is not the case for original
versions we gave. This is due to (2.12) and (4.50) respectively and the fact that the
C1(∂B)-norm estimate of vg implies the C1(∂B)-norm estimate of vs

g.
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5 Convergence of the linear sampling method implies the convergence of the no
response method

In this section we recall the linear sampling method and show how its convergence
implies the convergence of the second version of the no response test.

The linear sampling method The fundamental object of the linear sampling
method is the following linear integral operator F : L2(S) → L2(S), given by

Fg(θ) :=
∫
S

u∞(θ , d)g(d)ds(d), θ ∈ S.

This operator is called the far-field operator. Let g ∈ L2(S) and vg := ∫
S

eiκd·xg(θ)ds(θ),
x ∈ R

3. From the asymptotic behavior of this fundamental solution we know that the
far-field of �(·, z), z ∈ R

3, is given by

�∞(θ , z) = 1
4π

e−iκθ ·z, θ ∈ S.

When z ∈ D, then �∞(x̂, z) = �∞(x̂, z), where we used �∞(x̂, z) to be the far field
pattern of the scattered field �s(x, z) created by the obstacle D using �(x, z) as the
incident wave.

The idea of the linear sampling method is to approximately solve the following
integral equation, called the far field equation:

Fgz = �∞(·, z) (5.59)

for a grid of points z and to look at the behavior of the norms of gz. It is observed that
these norms blow up near and outside ∂D. The behavior of the norms of gz given for
a grid of points z is used to localize D.

A detailed version is given in the following theorem, see [4].

Theorem 5.1 Assume that κ2 is not a Dirichlet eigenvalue of −� in D. We have

1. If z ∈ D, then for every ε > 0 there exists a solution gε(·, z) in L2(S) of the inequality

‖Fgε(·, z)−�∞(·, z)‖L2(S) < ε

such that

lim
z→∂D

‖gε(·, z)‖L2(S) = lim
z→∂D

‖vgε (·, z)‖H1(D) = ∞.

2. If z ∈ R
3 \ D, then for every ε > 0 and δ > 0 there exists a solution gε,δ(·, z) in

L2(S) of the inequality

‖Fgε,δ(·, z)−�∞(·, z)‖L2(S) < ε + δ

such that

lim
δ→0

‖gε,δ(·, z)‖L2(S) = lim
δ→0

‖vgε,δ (·, z)‖H1(D) = ∞.
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Using the density g of the linear sampling method for the second version To prove
the convergence of the linear sampling method one has to assume that κ2 is not a
Dirichlet eigenvalue for −� on D, i.e D is a non-vibrating domain. With this assump-
tion, from Theorem 5.1 we have a sequence gε which creates the blow-up. Using this
sequence gε we will now justify the blow-up in the case two of the second version of
the no-response test. As we will see, the arguments we use do not depend on the type
of equation nor the type of obstacle (penetrable or not). This means that in any case
where the linear sampling method converges then the no-response converges too.

Let us now explain how we can use the singular sequence gε of the linear sampling
method to create the blow-up for the no-response test. To this end we will go into the
explicit construction of the sequence as carried out in [4] and use its properties. Note
that for some general solution gε of (5.59) it is not yet proven that it will coincide with
this particular solution whose existence is stated by the above theorem. However, our
assumption will be that the linear sampling method is convergent in the sense that it
picks this particular solution. For more precision about this fact and the mathematical
justification of the linear sampling method, we refer the reader to the work [3].

Theorem 5.2 Consider a non-vibrating domain B such that D �⊂ B. Given the densities
gε(·, z) provided by Theorem 5.1 as the basic ingredient for the indicator function of the
linear sampling method, there is a density g̃(·, z) such that the Herglotz wave function
vg̃(·,z) is bounded in a neighbourhood of z and the density gRT(·, z) := gε(·, z)+ g̃(·, z)
leads to a blow-up of the functional I2 of the second version of the no-response test.

Remark The modification by g̃ is necessary only to tailor the Herglotz wave func-
tion of the linear sampling method to the normalization assumptions on B demanded
by the no-response test. Alternatively, we could just neglect the normalization assump-
tion of the no response test and feed the density gε(·, z) into the functional I1,ε defined
in (2.14). We consider this to be an interesting question for the further analysis of the
linear sampling method in its connection to the no response test.

Proof By assumption we have a non-vibrating domain B such that D �⊂ B. The
situation D �⊂ B means that either ∂D \ B �= ∅ or ∂D ⊂ B.

I. We consider first the case where ∂D \ B �= ∅. For this case, we may choose a
point a ∈ ∂D \ B and a sequence zp → a for p → ∞ with zp ∈ D. From the part 1) of
Theorem 5.1, there is a sequence gε(·, zp) such that we have

‖Fgε(·, zp)−�∞(·, zp)‖L2(S) < ε,

and
lim

zp→a
‖vgε (·, zp)‖H1(D) = ∞. (5.60)

In [4], page 416, the sequence vgε (·,zp) is constructed such that it tends to some single
layer potential

Sφzp(x) :=
∫
∂D

�(x, y)φzp(y)ds(y), x ∈ ∂D, (5.61)

in H
1
2 (∂D) where φzp is the solution of the integral equation Sφzp(x) = −�(x, zp).

Let us now consider the sequence (v∞
gε (·, zp))p∈N. Taking this sequence as the right

side of (4.38) either the Eq. (4.38) is not solvable for some p0 and hence its regularized
solution ψεp0,α satisfies
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lim
α→0

‖ψεp0,α‖L2(∂B) = ∞

or (4.38) with right-side v∞
gε (·, zp) is solvable for every p and then via Lemma 4.4 the

scattered fields vs
gε (·, zp) will be extendable up to ∂B such that its trace is in H1(∂B).

Now the corresponding sequence of solutions ψεp of (4.38) satisfies the equation
∫
∂B

�(x, y)ψεp(y)ds(y) = vs
gε (x, zp) on ∂B. (5.62)

Next, we will prove that the sequence vs
gε (·, zp) is not bounded in H

1
2 (∂B) (and hence

also in H1(∂B)). Indeed, suppose that the sequence (vs
gε (·, zp))p∈N is bounded in

H
1
2 (∂B). The wellposedness of the forward scattering problem on R

3\B
implies that (vs

gε (·, zp))p∈N is bounded in H1
loc(R

3 \ B) hence vgε (·, zp) |∂D∩V(a) (=
−vs

gε (·, zp) |∂D∩V(a)), where V(a) is a neighborhood of a such that V(a) ∩ B = ∅, is

bounded in L2(∂D ∩ V(a)). We recall that vgε (·, zp) approximates Sφzp in H
1
2 (∂D),

hence also in L2(∂D ∩ V(a)). Since Sφzp = −�(·, zp) on ∂D, we deduce that the se-
quence (�(·, zp))p∈N is bounded in L2(∂D∩V(a)), which is not true. Then the sequence

(vs
gε (·, zp))p∈N is unbounded in H

1
2 (∂B).

From (5.62), the sequence of solutions, ψεp , satisfies

lim
p→∞ ‖ψεp‖L2(∂B) = ∞. (5.63)

Normalization of the sequence vgε (·, zp). To finish the proof for this case, we need
to normalize the sequence vgε (·, zp), i.e. to have ||vgε (·, zp)||L2(∂B) ≤ ε. It is enough to
prove that this sequence is bounded. Hence, since every step in the argument is linear,
multiplying it by ε we get the desired property.

We start by proving that vgε (·, zp) is bounded in H1(D ∩ K), for any C2-regu-
lar domain K not containing a neighborhood of the point a. Indeed, The function
Wzp := Sφzp +�(·, zp) satisfies

{
�Wz + κ2Wz = −δ(z) in D,
Wz = 0 on ∂D,

(5.64)

i.e Wz is the Green’s function on D. From the estimates of this Green’s function,
we deduce that the sequence ‖Wzp‖H1(D∩K), p ∈ N, is bounded. Hence Sφzp also has
the same property since the sequence �(·, zp) does. This implies that for ε fixed the
sequence ‖vgε (·,zp)‖H1(D∩K) is bounded.

Let us now consider its L2(∂B)-norm. The only information we know is that
||vgε (·, zp) − Sφzp ||H1(D) ≤ ε and we have no information on the behavior of the
sequence (gε(·, zp))p in B \ D. Thus we cannot affirm its boundedness in L2(∂B). For
this reason, we modify it by another sequence which has this property and which
behaves as vgε (·, zp) near the point a.

Let E be any C2-regular domain containing D∪B such that V(a) ⊂ ∂E∩(∂D\B). We
also assume that E is a non-vibrating domain. We take any C∞(R3) function χ equal
to 1 in a domain containing V(a) and zero in a domain containing some neighborhood
V(B) of B. We set ṽgε (·, zp) := χvgε (·, zp). For p fixed, let (vp

n)n∈N be a sequence of
Herglotz functions approximating ṽgε (·, zp) in L2(∂E).
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The sequence (ṽgε (·, zp)− vp
n)(p,n)∈N2 satisfies

�[ṽgε (·, zp)− vp
n] + k2[ṽgε (·, zp)− vp

n] = �χvgε (·, zp)+ 2∇χ · ∇vgε (·, zp) in E.

(5.65)

Since ∇χ = 0 in a neighborhood of V(a) and in a neighborhood of B and vgε (·, zp)

is bounded in H1(D ∩ K), for every domain K such that K ∩ V(a) = ∅, we deduce that
the right hand side of (5.65) is bounded in L2(E). Using the regularity of the week
solution for elliptic problems with L2− Dirichlet boundary condition the sequence
(ṽgε (·, zp) − vp

n)p,n is bounded in L2(E) (see [16]). Again from (5.65) and using the
interior estimates, we conclude that the sequence (ṽgε (·, zp) − vp

n)n,p is bounded in
H2(B) and in H2(D).

Since ṽgε = 0 in V(B), the sequence (vp
n)n,p is bounded in H2(B), and in partic-

ular in L2(∂B). Also, since vgε (·, zp) = ṽgε (·, zp) in a neighborhood of a, i.e. V(a),
[vp

n − vgε (·, zp)]n,p is bounded in H2(V(a)). We set gRT := gp
n.

Now repeating the arguments applied for v∞
gε (·, zp) before replacing it by v∞

gRT
, we

deduce that I2(B) = ∞.
This gives a justification of the second case of Theorem 4.2.
II. Consider now the case where ∂D ⊂ B and assume that a ∈ ∂D ∩ ∂B. We have

||vgε (·, zp)+�(·, zp)||
H

1
2 (∂D)

< ε.

The wellposedness of the forward scattering problem gives

||vs
gε (·, zp)+�(·, zp)||

H
1
2 (∂B)

< Cε (5.66)

with some positive constant C. From this estimate we deduce that

||vs
gε (·, zp)||H1(∂B) → ∞ (zp → a).

This property gives the justification of the convergence of the second version of the
no-response test. But as for the case I, we need to normalize it in the L2(∂B)-norm.
In this case the argument given in I. does not work. We give another way to justify it
which uses the information ∂D ⊂ B. For this, we argue as follows. We take a particular
sequence zp := a + 1

pν(a), where a ∈ ∂D ∩ ∂B and ν(a) is the exterior unit normal at

a of ∂B. We set z∗
p := a − 1

pν(a). We need the following lemma.

Lemma 5.3 There exists a constant C > 0 such that

||�(·, zp)−�(·, z∗
p)||H 1

2 (∂B)
≤ C, ∀p ∈ N (5.67)

Proof of Lemma 5.3 We set 
κ(·, zp) := �κ(·, zp) −�κ(·, z∗
p). The index κ is used to

distinguish between the fundamental solution of the Helmholtz equation and the one
of the Laplace equation, i.e κ = 0.

The distribution 
(·, zp) := 
κ(·, zp)−
0(·, zp) satisfies

(�+ κ2)
(·, zp) = κ2[�0(·, z∗
p)−�0(·, zp)] in R

3 (5.68)

where�0(x, zp) := 1
|x−zp| . We take a large domain K containing the sequences (zp)p∈N

and (z∗
p)p∈N. Hence from (5.68), we obtain that
(·, zp) is bounded in H1(K), because

the second member of (5.68) is bounded in L2(K) and the boundary conditions on ∂K



The no-response approach and its relation to non-iterative methods for the inverse scattering

are bounded in Cm(∂K), for any m in N, which is due to the fact that the sequence zp
is away from ∂K.

This implies that 
 |∂B is bounded H
1
2 (∂B). Then it is enough to prove (5.67) for


0(·, zp).
We consider ||
0(·, zp)||L2(∂B).∣∣∣∣∣

1
|x − zp| − 1

|x − z∗
p|

∣∣∣∣∣ =
∣∣∣∣ |x − z∗

p| − |x − zp|
|x − zp||x − zp|

∣∣∣∣ ≤ |zp − z∗
p|

|x − zp||x − z∗
p| .

Hence

∫
∂B

∣∣∣∣∣
1

|x − zp| − 1
|x − z∗

p|

∣∣∣∣∣
2

ds(x) ≤ |zp − z∗
p|2
∫
∂B

1
|x − zp|2|x − z∗

p|2

≤ C|zp − z∗
p|2 1

|zp − z∗
p| = C|zp − z∗

p|.

Then
||
0(·, zp)||2L2(∂B) ≤ C|zp − z∗

p| (5.69)

with some constant C > 0.
We consider now ||
0(·, zp)||2H1(∂B)

. It is enough to consider the estimate of the
tangential derivative ||∇T
0(·, zp)||L2(∂B). We have

∇
0(·, zp) = (x − zp)

|x − zp|3 − (x − z∗
p)

|x − z∗
p|3 = (x − zp)

|x − zp|3 + (zp − z∗
p)

|x − zp|3 − (x − z∗
p)

|x − z∗
p|3

= (zp − z∗
p)

|x − zp|3 + (x − z∗
p)[

|x − z∗
p|3 − |x − zp|3

|x − z∗
p|3|x − zp|3 ].

Hence the tangential derivative satisfies

|∇T
0(·, zp)| ≤ |zp − z∗
p|

|x − zp|3 + |x − z∗
p| C1|zp − z∗

p|
|x − z∗

p|2|x − zp|3

where c1 > 0 is a constant. Then, the square integrals of the first and the second terms
of the left hand side of the last inequality imply

∫
∂B

|∇
0(·, zp)|2ds(x) ≤ C2

|zp − z∗
p|

which means that

||
0(·, zp)||2H1(∂B) ≤ C3

|zp − z∗
p| (5.70)

with some positive constants C2, C3. From (5.69) and (5.70) and the interpolation
theorem between L2(∂B) := H0(∂B) and H1(∂B), we get

||
0(·, zp)||
H

1
2 (∂B)

≤ C4

with some positive constant C4. This ends the proof of Lemma 5.67.
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From (5.67) and (5.66), we deduce that

||vs
gε (·, zp)+�(·, z∗

p)||H 1
2 (∂B)

≤ C5 (5.71)

for some positive constant C5.
For every p fixed, let vgp

n
be a Herglotz sequence of functions tending to vs

gε (·, zp)

in H
1
2 (∂B), i.e.

∀p ∈ N, ∃N(p)/∀n ≥ N(p) we have ||vgp
n
− vs

gε (·, zp)||
H

1
2 (∂B)

≤ ε (5.72)

From (5.67) and (5.72), we have

∀p ∈ N, ∃N(p)/∀n ≥ N(p) we have ||vgp
n
−�(·, z∗

p)||H 1
2 (∂B)

≤ C6. (5.73)

Hence, from ∂D ⊂ B and by the wellposedness of the scattering problem we obtain

||vs
gp

n
−�s(·, z∗

p)||H 1
2 (∂B)

≤ C7,

where C6, C7 > 0 are constants. From (5.73), we have ||vgp
n
||2

L2(∂B)
≤ C8 ln p for p large

enough and C8 > 0 is a constant. By setting βp := ||vgp
n
||−1

L2(∂B)
we have

||βpvs
gp

n
(·, zp)||2

H
1
2 (∂B)

≥
||�s(·, z∗

p)||2
H

1
2 (∂B)

C8 ln p
− C2

7

C8
(ln p)−1.

Since ||�s(·, z∗
p)||H 1

2 (∂B)
≥ C9d(z∗

p, ∂B) = C9
1
p , we deduce that

||βpvs
gp

N(p)
(·, zp)||

H
1
2 (∂B)

→ ∞.

Hence, vgrt := βpvgp
N(p)

satisfies

||vgRT ||L2(∂B) = 1 and ||vs
gRT

||H1(∂B) → ∞.

Arguing as in the part I, taking v∞
gRT

instead of v∞
gε (·,zp)

, we deduce that I2(B) = ∞.
Since the case one is always justified as the forward problem is well posed, we

deduce the convergence of the second version of the no-response test.

6 Equivalence of the two versions

We will show that with respect to the convergence properties the two versions are
equivalent. Precisely, we show how the singular sequences creating the blowup for
the corresponding indicator functions are linked.

Theorem 6.1 Consider the formulas (2.13) and (4.41) of the no-response test. Then the
convergence of the first version implies the convergence of the second version.

Proof According to our assumption, the first version is convergent, i.e. we have
D ⊂ B implies I1(B) = 0 and D �⊂ B implies I1(B) = ∞. We will show that the same
implications hold for the indicator function I2.
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For the case D ⊂ B, we have I1(B) = I2(B) = 0 which is justified by the
wellposedness of the direct problem. We will show that for D �⊂ B, we obtain the
logical implication (

I1(B) = ∞
)

�⇒
(

I2(B) = ∞
)

,

which implies the above theorem.
We suppose that I1(B) = ∞. Let (fn, gn) be a sequence in L2(S)× L2(S) such that

||vfn ||L2(∂B) <
1
n , ||vgn ||L2(∂B) <

1
n and

lim
n→∞

∫

S2

u∞(−θ , d)fn(θ)gn(d) ds(θ)ds(d) = ∞. (6.74)

We will investigate the functions vi
gn

and its far field v∞
gn

. To this end consider the
solvability of the integral Eq. (4.38) with v∞

g on the right-hand side as described in
(4.41). As in Sect. 3, we distinguish two cases.

1. For some v∞
gn0

the equation (4.38) is not solvable. In this case we deduce that
I2(B) = ∞.

2. For every v∞
gn

, (4.38) is solvable. In this case Lemma 4.4 implies

vs
gn
(x) =

∫
∂B

�(x, y)ψn(y)ds(y), x ∈ R
3 \ (B ∪ D),

hence the far field patterns enjoy the property

v∞
gn
(θ) = 1

4π

∫
∂B

ψn(y)e−iκθ ·yds(y).

Now multiplying the last equality by fn and integrating over S, we obtain∫
S

v∞
gn
(−θ)fn(θ)ds(θ) = 1

4π

∫
∂B

ψn(y)vfn(y)ds(y).

If ψn is bounded in L2(∂B), then
∫
∂B ψn(y)vfn(y)ds(y) is also bounded. Hence∫

S

∫
S

u∞(−θ , d)fn(θ)gn(d)ds(θ)ds(d) =
∫
S

v∞
gn
(−θ)fn(θ)ds(θ)

is also bounded. This contradicts (6.74) and hence we deduce that the sequence
||ψn||L2(∂B) is unbounded. Therefore, we have proven that I2(B) = ∞. 
�
6.1 The second version implies the first version

Theorem 6.2 Consider the formulas (2.13) and (4.41) of the no-response test. Then the
convergence of the second version implies the convergence of the first version.

Proof Suppose that the second version is convergent, i.e. we have D ⊂ B implies
I2(B) = 0 and D �⊂ B implies I2(B) = ∞. We will show that the same implications
hold for the indicator function I1.
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The case D ⊂ B can be handled as in the proof of Theorem 6.1. We suppose that
D �⊂ B, B is a non-vibrating domain and I2(B) = ∞. Our goal is to show that under
these assumptions I1(B) = ∞.

Since I2(B) = ∞, there exists a sequence (ψαn ) ⊂ L2(∂B) of regularized solution of
(4.38) with right-side v∞

gn
such that ||vi

gn
||L2(∂B) <

1
n and

lim sup
n→∞

lim
α→0

||ψαn ||L2(∂B) = ∞.

We split the proof into two parts which investigate the following cases.

1. For every n in N, the integral Eq. (4.38) with right-side v∞
gn

is solvable. In this case,
according to Lemma 4.3, we pass to the limit α → 0 to obtain

lim sup
n→∞

||ψn||L2(∂B) = ∞, (6.75)

where ψn is the sequence of the solutions of (4.38) with right-hand side v∞
gn

.
2. For some n0, we have limα→0 ||ψαn0

||L2(∂B) = ∞, i.e the integral Eq. (4.38) with
right-side v∞

gn0
is not solvable.

First case We multiply the equation

S∞ψn = v∞
gn

by f ∈ L2(S) and integrate over S to obtain
∫
S

S∞ψn(−θ)f (θ)ds(θ) =
∫
S

v∞
gn
(−θ)f (θ)ds(θ). (6.76)

The left-hand side becomes∫
S

S∞ψn(−θ)f (θ)ds(θ) =
∫
S

∫
∂B

eikθ ·xψn(x)ds(x)f (θ)ds(θ)

=
∫
∂B

∫
S

eikθ ·xf (θ)ds(θ)ψn(x)ds(x)

=
∫
∂B

vf (x)ψn(x)ds(x). (6.77)

For every n fixed, by the denseness of the range of the Herglotz operator in L2(∂B),
we take (vf p

n
)p∈N such that

vf p
n

−→ ε

2
ψn

||ψn||L2(∂B)
, p → ∞, (6.78)

in L2(∂B). Hence, for n fixed, there exists N0(n), such that ∀p > N0(n),

||vf p
n
||L2(∂B) < ε. (6.79)
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Then, for every n fixed, we have

lim
p→∞

∫
S

S∞ψn(θ)f n
p (θ) ds(θ) = lim

p→∞

∫
∂B

vf n
p (x)ψn(x)ds(x)

=
∫
∂B

ε

2
|ψn|2(x)

||ψn||L2(∂B)
ds(x)

= ε

2
||ψn||L2(∂B). (6.80)

Hence

lim sup
n→∞

lim
p→∞

∫
S

v∞
gn
(θ)f n

p (θ)ds(θ) = ∞. (6.81)

The right-hand side of (6.76) with f = f n
p such that (6.79) is satisfied is a lower bound

for I1(B). Now, from (6.81) we obtain I1(B) = ∞.
Second case Since v∞

gn0
is not in the range of S∞, then vs

gn0
cannot be analytically

extended up to R
3 \ B. Indeed, if it is analytically extendable up to R

3 \ B, then it sat-
isfies�vs

gn0
+ k2vs

gn0
= 0 in a neighborhood of R

3 \ B. In particular vs
gn0

|∂B ∈ H1(∂B).

Then, the equation Sψ = vs
gn0

|∂B is solvable in L2(∂B) and then S∞ψ = v∞
gn0

, which is
a contradiction.

We need the following theorem which gives a useful geometrical property related
to the notion of homotopy. Let � be an open ball of R

3. A bounded domain whose
boundary is Cm diffeomorphic to a unit sphere is called a Cm spherical domain. In the
following theorem we take m = 2.

Theorem 6.3 Let q ∈ ∂B. Then, there is a C2 spherical domain B(q) satisfying the
following properties (i) and (ii).

1. B ⊂ B(q) ⊂ � and q ∈ ∂B(q).
2. There exists a family of C2 spherical domains Bt(q) (0 ≤ t ≤ 1) such that B0(q) =

B(q), B1(q) = �, Bt(q) ⊂ Bt′(q) (t < t′) and the dependency of Bt on t is C2.

The proof of this theorem will be given in the appendix. We have the following lemma.

Lemma 6.4 There exists x0 in ∂B and Bt0(x0), t0 > 0, such that vs
gn0

is extendable

analytically up to R
3 \ Bt(x0), t > t0, but not up to R

3 \ Bt0(x0).

Proof of Lemma 6.4 Suppose that for every x ∈ ∂B, vt
gn0

is extendable analytically

up to R
3\Bt(x), ∀t ∈ [0, 1]. Hence this would mean that vs

gn0
is extendable analytically

near any point of R
3\B. This is impossible. �

From Lemma 6.4, there exist x0 ∈ ∂B and Bt0(x0), t0 > 0, such that vs
gn0

is extend-

able analytically up to R
3 \ Bt(x0), t > t0, but not up to R

3 \ Bt0(x0). We set Bt0 :=
Bt0(x0). Hence there exists z0 ∈ ∂Bt0 and an open neighborhood N(z0) of z0 such that
N(z0) ∩ B = ∅ and vs

gn0
is not analytically extendable into any open subset of N(z0).

Lemma 6.5 Let zp be a sequence of points in R
3 \ Bt0 such that zp tends to z0. If for

some positive ρ ∈ R the set{
sup|h|=1 ρ

µ
|(h·∇)µvs

gn0
(zp)|

µ! , µ ∈ Z+
}

(6.82)
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is uniformly bounded by a constant c > 0, then v can be analytically extended near the
point zo.

Proof of Lemma 6.5 From the boundedness of (6.82) we derive that the series

∑
µ∈Z+

1
µ! ((x − z) · ∇)µvs

gn0
(z) (6.83)

has a majorant
∑
µ∈Z+ c| x−zp

ρ
|µ and hence it is absolutely converging for x ∈ B(zp, ρ)

and for all the points zp. Taking zp close enough to z0, we deduce that v is analytically
extendable into some open neighborhood of z0.

As a consequence of the preceding lemma, for any sequence zp of points in R
3 \Bt0

tending to z0, there exist a sequence hp ∈ S, µp ∈ N such that

lim
p→∞ ρµp

| (hp · ∇)µp vs
gn0
(zp) |

µp! = ∞. (6.84)

Let ε > 0 be fixed. We set

ψp(x) := ε

2β(zp,µ)
(hp · ∇z)

µp�(x, zp),

where

β(p) := sup
y∈B

{|(hp · ∇z)
µp�(y, zp)|

}

is introduced for normalization.
Let p be fixed. Then, we can find a sequence of densities gp

n ∈ L2(S) such that
vgp

n
tends to ψp in L2(Ezp) for some non-vibrating domain Ezp such that Bt0 ⊂ Ezp ,

zp �∈ Ezp and R
3 \ Ezp . By the interior regularity, vgp

n
tends to ψp in C1(Bt0).

Since

||ψp||C(B) ≤ ε

2
,

then

||vgp
n
||C(B) < ε

for n large enough. Now from the identity (2.8) applied on R
3 \Bs0 for vs

gn0
and e−ikθ ·x,

we have:
∫

S2

u∞(−θ , d)gn0(d)g
p
n(θ) ds(θ)ds(d) = 1

4π

∫
∂Bt0

{
∂vs

gn0

∂ν
vgp

n
− ∂vgp

n

∂ν
vs

gn0

}
ds(x)

Taking the limit with respect to n, we have:

lim
n→∞

∫

S2

u∞(−θ , d)gn0(d)g
p
n(θ) ds(θ)ds(d)

= 1
4π

∫
∂Bt0

{
∂vs

gn0

∂ν
ψp − ∂ψp

∂ν
vs

gn0

}
ds(x) (6.85)
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Let �R be an open ball with radius centered at the origin such that Bt0 ⊂ �R.
Applying the Green’s formula in �R \ D for vs

gn0
and ψp, we deduce that

∫
∂Bt0

{
∂vs

gn0

∂ν
ψp − ∂ψp

∂ν
vs

gn0

}
ds(x)

= ε

2β(p)
(hp · ∇z)

µp vs
gn0
(zp)−

∫
∂�R

{
∂vs

gn0

∂ν
ψp − ∂ψp

∂ν
vs

gn0

}
ds(x)

= ε

2β(p)
(hp · ∇z)

µp vs
gn0
(zp)−

∫
∂�R

{(
∂vs

gn0

∂ν
−iκvs

gn0

)
ψp−
(
∂ψp

∂ν
−iκψp

)
vs

gn0

}
ds(x).

(6.86)

It is easy to see that

ψp(x) = ε

8πβp

(−iκhp · (x − zp)

|x − zp|
)|µp| eiκ|x−zp|

|x − zp| + O
(

1
|x|2
)

for |x| → ∞.

By

d
dr

hp · (x − zp) = x · hp

|x| ,

and

d
dr

|x − zp| = 1 + O
(

1
|x|
)

, |x − zp| = |x| − x
|x| · zp + O

(
1
|x|
)

where r := |x| → ∞, we have

d
dr
ψp(x)− iκψp(x) = O

(
1

|x|2
)

, (|x| → ∞). (6.87)

From its definition, vs
gn0

satisfies

vs
gn0

= O
(

1
|x|
)

and
d
dr

vs
gn0
(x)− iκvs

gn0
= O
(

1
|x|2
)

, (|x| → ∞). (6.88)

From (6.87) and (6.88), the second term of the right hand side of (6.86) tends to zero
as R tends to ∞. Hence, we get

∫
∂Bt0

{
∂vs

gn0

∂ν
ψp − ∂ψp

∂ν
vs

gn0

}
ds(x) = ε

2β(p)
(hp · ∇z)

µp vs
gn0
(zp). (6.89)

Next, in order to analyze the behavior of the right hand side of (6.89), we have to
estimate β(p).

To begin with, we use x̂ = (x̂1, x̂2, x̂3) ∈ C
3 for complexifying x = (x1, x2, x3) ∈ R

3

such that the real part of x̂j is Re(x̂j) = xj.
Since B ⊂ Bt0 , then the distance d(z0, B) is positive. Then for any x ∈ B, there

exist an open neighborhood of Ux ⊂ R
3 of x and complex open polydiscs Vz0 ⊂ C

3
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centered z0 such that{
Ux ∩ Vz0 = ∅ and
(y − ẑ) · (y − ẑ) :=∑3

j=i(ŷj − ẑj)
2 �= 0 for any y ∈ Ux and ẑ ∈ Vz

(6.90)

By the compactness of B in R
3, there exist x(k) ∈ B (1 ≤ k ≤ K) such that B ⊂

∪K
k=1Ux(k) . Let V(k)

z0 be the polydisc centered at z0 associated with Ux(k) satisfying
(6.90).

Now, we define a complex open polydisc V centered at z0 by V := ∩K
k=1V(k)

z0 . Then,
we have{

Ux(k) ∩ V = ∅(1 ≤ k ≤ K) and
(x − ẑ) · (x − ẑ) �= 0 for any x ∈ Ux(k) and ẑ ∈ V; 1 ≤ k ≤ K.

(6.91)

Moreover, by considering large p, we can assume that zp ∈ V.
For each k (1 ≤ k ≤ K), �(x, z) has a natural analytic extension �̃(x, ẑ):

�̂(x, ẑ) = eiκ{(x−ẑ)·(x−ẑ)} 1
2

4π{(x − ẑ) · (x − ẑ)} 1
2

for x ∈ Ux(k) and ẑ ∈ V, (6.92)

where we take the branch of {(x − ẑ) · (x − ẑ)} 1
2 such that it is equal to |x − z| when

ẑ = z.
By the Cauchy integral formula, there exist Ck > 0 and ρk > 0 such that

|(hp · ∇z)
µp�(x, zp)| ≤ Ck

µp!
ρ
µp
k

, for x ∈ Ux(k) , p ∈ N. (6.93)

Hence by taking

ρ := min
1≤k≤K

ρk and C := max
1≤k≤K

Ck,

we have

|(hp · ∇z)
µp�(x, zp)| ≤ C

µp!
ρµp

for x ∈ B and p ∈ N. (6.94)

By (6.94), the right hand side of (6.89) is estimated from below by

ε

2C
ρµp

µp! |(hp · ∇z)
(µp)vgn0

(zp)|. (6.95)

This last sequence is unbounded by (6.84).
Finally from (6.85), we deduce that there exists a subsequence vgp

n
such that:

lim
p→∞ lim

n→∞

∫

S2

u∞(−θ , d)vgn0
(d)vgp

n
(θ) ds(θ)ds(d) = ∞,

i.e. I1(B) = ∞.
To finish the proof, let us show how we get (6.93). Indeed, from the Cauchy formula,

we represent �̂(x, ẑ) by

�̂(x, ẑ) = 1
(2π i)3

∫
�

�̂(x, ζ )
(ζ1 − ẑ1) · (ζ2 − ẑ2) · (ζ3 − ẑ3)

dζ
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where � := {ζ = (ζ1, ζ2, ζ3); |ζj − (z0)j| = r for 1 ≤ j ≤ 3} such that [�] := {ẑ :
|ẑj − (z0)j| ≤ r for 1 ≤ j ≤ 3} ⊂ V. We set D(ρ) := {ẑ : |ẑj − (z0)j| ≤ ρ for 1 ≤ j ≤ 3}
with ρ < r. Since

|ζj − ẑj| ≥ |ζj − (zo)j| − |ẑj − (zo)j| ≥ r − ρ

and

|�̂(x, ζ )| ≤ M, for x ∈ Ux(k) , ζ ∈ V

with some positive constant M, then we have

|∂αẑ �̂(x, ẑ)| ≤ Mα!ρ3

(r − ρ)|α| + 3
, for x ∈ Ux(k) , ẑ ∈ D(ρ)

Hence

|∂αẑ �̂(x, ẑ)| ≤ Mα!
( r

2 )
|α| , for x ∈ Ux(k) , ẑ ∈ D

( r
2

)
.
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Appendix: Proof of Theorem 6.3

In this appendix we recall the content of Theorem 6.3 and give its proof. Although all
the argument which we are going to give here does not depend on the space dimen-
sion, we will confined to the 3 space dimension. Let � ⊂ R

3 be an open ball and � be
a domain with the Cm (m ∈ {N, ∞}) smooth boundary. We assume that � ⊂ � and
� \� is connected. A bounded domain whose boundary is Cm diffeomorphic to a unit
sphere is called Cm spherical domain. For this part of the paper, we abuse using the
notation � which has not to be confused with the symbol of the Laplace operator.

Theorem 7.6 Let q ∈ ∂�. Then, there is a Cm spherical domain B(q) satisfying the
following properties (1) and (2).

1. � ⊂ B(q) ⊂ � and q ∈ ∂B(q).
2. There exists a family of Cm spherical domain Bs(q) (0 ≤ s ≤ 1) such that B0(q) =

B(q), B1(q) = �, Bs(q) ⊂ Bs′(q) (s < s′) and the dependency of Bs(q) on s is Cm.
We call such a family {Bs(q)} strict deformation family of q and �.

Proof Take p ∈ ∂�. Since�\� is connected, we can take a Cm+1 curve � := {�(t) ; 0 ≤
t ≤ 1} such that �(0) = q, �(1) = p and �(t) ∈ � \ � for any t ∈ (0, 1). Moreover we
may assume � has no self-intersecting points. Extend � a little bit beyond p and q. So,
we consider that � is defined by � := {�(t) ; −ε < t < 1 + ε} with small ε > 0. Also, we
can assume that � is transversal to ∂� and ∂�.

Now, we consider a subbundle E of the tangent bundle TR
3 over � with fiber{

d�
dt (t)
}⊥ ⊂ R

3 at �(t). Since � is retractable, E is a trivial bundle. Hence, there exist

linearly independent sections vj(t) ∈ Cm((−ε, 1 + ε), E ) (j = 1, 2) such that a tubular
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neighborhood T of � is given by T = {�(t)+xv1(t)+yv2(t) ; t ∈ (−ε, 1+ ε), (x, y) ∈ V}
with an open neighborhood V ⊂ R

2 of (0, 0) ∈ R
2. This representation of T gives a

Cm diffeomorphism h:

h : U � (t, x, y) −→ �(t)+ xv1(t)+ yv2(t) ∈ T ,

where U := (−ε, 1 + ε)× V.
We denote �δ := {x ∈ � ; distance(x, ∂�) > δ}. If we take δ > 0 sufficiently small,

by the transversality of ∂� and ∂� to �, for any 0 ≤ δ′ ≤ δ, h−1(∂�) and h−1(∂�δ′)
are given by t = ϕ(x, y) and t = ψδ′(x, y) in V with ϕ, ψδ′ ∈ Cm(V), ϕ(x, y) > ψδ′(x, y),
respectively.

Now, let χ(x, y) ∈ Cm
0 (V), 0 ≤ χ(x, y) ≤ 1, χ(0, 0) = 1. We define a family of Cm

surfaces {Zs} defined in U by

Zs := {t = sχ(x, y)(ϕ(x, y)− ψsδ(x, y))+ ψsδ(x, y), (x, y) ∈ V} .

Moreover, we consider the family {h(Zs)} of Cm surfaces defined in T and define a
family {Xs} of Cm surfaces in R

3 by

Xs =
{

h(Z1−s) in T
∂�(1−s)δ outside T .

Since Xs is isomorphic to a sphere, R
3\Xs has two connected components. We choose

the bounded component of R
3\Xs as Bs(q). Then, this gives the desired strict defor-

mation family of q and �. �

References

1. Alessandrini, G.: Stable determination of conductivity by boundary measurements. Appl. Anal.
27, 153–172 (1988)

2. Ammari, H., Kang, H.: Reconstruction of Small Inhomogeneities from Boundary Measurments.
Springer, Berlin Heidelberg New York (2004)

3. Arens, T.: Why linear sampling works. Inverse Probl. 20(1), 163–173 (2004)
4. Cakoni, F., Colton, D.: On the mathematical basis of the linear simpling method. Georgian Math.

J. 10, 95–104 (2003)
5. Colton, D., Kirsch, A.: A simple method for solving inverse scattering problems in the resonance

region. Inverse Probl. 12, 383–393 (1996)
6. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 2nd edn. Springer,

Berlin Heidelberg New York (1998)
7. Ikehata, M.: Reconstruction of the shape of the inclusion by boundary measurements. Commun.

PDE 23, 1459–1474 (1998)
8. Ikehata, M.: Reconstruction of obstacles from boundary measurements. Wave motion 3, 205–223

(1999)
9. Ikehata, M.: A new formulation of the probe method and related problems. Inverse Probl. 21(1),

413–426 (2005)
10. Isakov, V.: Inverse Problems for Partial Differential Equations. Springer Series in Applied Math.

Science, vol. 127. Springer, Berlin Heidelberg New York (1998)
11. Kirsch, A.: Characterization of the shape of a scattering obstacle using the spectral data of the far

field operator. Inverse probl. 14, 1489–1512 (1998)
12. McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University

press, Cambridge (2000)
13. Luke, D-R., Potthast, R.: The no-response test-a sampling method for inverse acoustic scattering

theory. SIAM J. App. Math. 63(4), 1292–1312 (2003)
14. Nakamura, G., Potthast, R., Sini, M.: Unification of the probe and singular sources methods for

the inverse boundary value problem by the no-response test. Accepted for publication by Comm.
PDE. Available on the page web http://eprints.math.sci.hokudai.ac.jp/



The no-response approach and its relation to non-iterative methods for the inverse scattering

15. Nakamura, G., Potthast, R., Sini, M.: A comparative study between some non-iterative methods
for the inverse scattering. In: Ammari, H., Kang, H. (eds.) Inverse Problems, Multi-Scale Analysis,
and Homogenization. Proceedings of the Workshop in Seoul, 2005. Contemporary Mathematics
Volume, American Mathematical Society (To appear, 2006)
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