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Obstacle and boundary determination from scattering data.

Gen Nakamura∗and Mourad Sini †

March 11, 2007

Abstract

In this paper, we are concerned with the identification of complex obstacles from the

scattering data for the acoustic problem. The complex obstacle is characterized by its shape

and the boundary values of the impedance coefficient. We establish point-wise formulas which

can be used to reconstruct the shape of the obstacle and give explicitly the values of the surface

impedance as a function of the far field. In addition, these formulas enable us to distinguish

and recognize the coated and the non-coated parts of the obstacle.

1 Introduction

Let D be a bounded domain of R
m, m ≥ 3, such that R

m \ D is connected. In addition, we
assume that its boundary ∂D is of class C2. Precisely, for every point a ∈ ∂D, there exist a rigid
transformation of coordinates under which a = 0 and a C2(Bm−1(0, r))−function f such that

(1.1) f(0) =
∂f

∂xi
(0) = 0, i = 1, 2

and
D ∩ B(0, r) := {x ∈ B(0, r);x3 > f(x1, x2)}

in terms of the new coordinates where Bm−1(0, r) and B(0, r) are the (m−1)-dimensional and the
m-dimensional balls of centers 0 with some radius r > 0.

The propagation of time-harmonic acoustic fields in a homogeneous media is governed by the
Helmholtz equation

(1.2) ∆u + κ2u = 0 in R
m \ D,

where κ is the real positive wave number. At the boundary of the scatterers we assume that the
total field u satisfies the impedance boundary condition

(1.3)
∂u

∂ν
+ iλu = 0 on ∂DI

with some function λ on ∂D and the Dirichlet condition

(1.4) u = 0 on ∂DD

where ∂DD and ∂DI are open surfaces in ∂D such that

∂D = ∂DI ∪ ∂DD and ∂DI ∩ ∂DD = ∅.

∗Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan.
†Corresponding author. RICAM, Altenbergerstrasse 69, A 40-40, Linz, Austria.
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The unit normal ν on ∂D is directed inside D. We assume that λ is a Hölder continuous function
of order β ∈ (0, 1] and λ− < λ(x) on ∂DI where λ− is a positive constant. The part ∂DI is referred
to by the coated part of ∂D and ∂DD is the non-coated part as it is commonly used in the radar
detection theory, see [5]. The obstacle D is characterized by its shape, ∂DD, ∂DI and the surface
impedance distributed on ∂DI . We call such obstacles complex obstacles.

Given an incident field ui which satisfies ∆ui + κ2ui = 0 we look for a solution u := ui + us of
(1.2) and (1.3) where the scattered field us is assumed to satisfy the Sommerfeld radiation condition

(1.5) lim
r→∞

r
m−1

2 (
∂us

∂r
− iκus) = 0,

where r = |x| and the limit is uniform with respect to all the directions x̂ := x
|x| .

The mixed problem (1.2)-(1.3)-(1.4)-(1.5) is well posed. More generally, for f ∈ H
1
2 (∂DD) and

h ∈ H− 1
2 (∂DI), there exists a unique solution u ∈ H1

loc(R
m \ D) of the mixed problem

(1.6)















(∆ + κ2)u = 0, in Rm \ D,
u = f on ∂DD,
∂u
∂ν + iκσu = h, on ∂DI ,

limr→∞ r
m−1

2 (∂u
∂r − iκu) = 0,

and the solution satisfies

(1.7) ‖u‖H1(ΩR∩(Rm\D)) ≤ CR(‖f‖H1/2(∂DD) + ‖h‖
H−

1
2 (∂DI)

)

where ΩR is a disk of radius R and CR is positive constant depending on R, see [5] for more details.
It is well known (see [6]) that this reflected field satisfies the following asymptotic property,

us(x) =
eiκr

r
m−1

2

u∞(x̂) + O(r−
m+1

2 ), r → ∞,(1.8)

where the function u∞(·) defined on the unit sphere S
m of Rm is called the far-field associated to

the incident field ui. Taking particular incident fields given by the plane waves, ui(x, d) := eiκd·x,
d ∈ S

m, we define the far-field pattern u∞(x̂, d) for (x̂, d) ∈ S
m × S

m. Analogously, for an incident
point source Φ(·, z), where

Φ(x, y) :=
1

(m − 2)σm

eiκ|x−y|

|x − y|m−2
, x 6= y, x, y ∈ R

m.

is the fundamental solution of ∆ + κ2 in R
m and σm is the surface of the unit sphere in R

m, we
denote the scattered field by Φs(·, z) and its far field pattern by Φ∞(·, z). The problem we are
concerned with is the following

Complex obstacle reconstruction problem. Given u∞(·, ·) on S
m × S

m for the scattering
problem (1.2) - (1.5) reconstruct the shape of the obstacle D, distinguish the coated part ∂DD from
∂DI and reconstruct the surface impedance λ(x).

The uniqueness character of this problem is already known, see [5]. The part of the problem
consisting of the effective detection of the shape of the obstacle ∂D can be justified for instance via
the linear sampling method, the factorization method or the probing methods ( the probe method
or equivalently the singular sources method), see [17] for a review of these methods. Our goal in
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this paper is to show that not only the shape but the full complex obstacle can be reconstructed.
Many efforts have been made regarding the determination of the surface impedance function λ(x).
We refer to the paper [11] where an optimization method has been proposed by assuming that the
shape of the obstacle is known in advance. A different method is given in [7] where the authors first
reduce the far field data to the near field data, and then from these near field data they propose
a moment method to reconstruct λ. Another work is [3], see also [5], where the authors computed
the L∞-norm of λ. As a consequence, if λ is known to be constant, λ = λ0, then they compute
λ0. All these works use a part or the total far field. We mention the work [2], where the authors
use only one incident wave to detect λ(x). Assuming that the whole surface ∂D is coated, they
first compute the total field and then use the impedance boundary condition to give the values of
λ(x). By the unique continuation, there is no open subset of ∂D in which the normal derivative
of the total field may vanish. However, there can be infinitely many points in ∂D at which the
total field vanishes. By avoiding these points, it is possible to reconstruct the value of λ(x), and
then by λ ∈ C(∂D), it is possible to know λ on the whole ∂D. Hence this method cannot sample
each point x of ∂D to obtain the value λ(x). To remedy to this difficulty, the authors propose a
regularization method.

We want to contribute to this problem by giving pointwise formulas to reconstruct fully the
complex obstacle. Indeed, these formulas simultaneously reconstruct the shape of the obstacle,
distinguish between the coated and the non coated parts and detect λ(x) directly from the far field
pattern defined on any small open part of the unit sphere S

m.

To justify our formulas, we need to analyze the asymptotic behavior of the Green’s function, of
the mixed boundary problem, near ∂D. The impedance function λ(x) appears in the asymptotic
behavior of the imaginary part of this Green’s function with respect to the source parameter z, see
the proof of Proposition 3.1. In the 2 dimensional case the imaginary part of the corresponding
Green’s function is bounded with respect to the source parameter z. This is why we consider the m
dimensional case with m > 2. For the 2 dimensional case, we need to use more singular sources to
capture the values of the surface impedance. This has been analyzed in [13] and the corresponding
formulas have been justified theoretically and tested numerically. We refer to that paper for more
details on how the formulas are used numerically.

Regarding the stability issue for detecting the surface impedance, in case we know the shape, we
cite the following results [12] and [18] where the authors use one incident wave and give interesting
and optimal results. Another interesting question is to consider the stability of the complex
obstacle. We leave this for future investigations.

The rest of the paper is organized as follows. In section 2, we present the results as Theorem
2.1. In section 3, we give the proof of this theorem by splitting it into two propositions which we
prove in section 3.1 and section 3.2.

2 Presentation of the results.

It is well known (see [6]) that the scattered field associated with the Herglotz incident field vi
g := vg

defined by

(2.9) vg(x) :=

∫

Sm

eiκx·dg(d) ds(d), x ∈ R
m

whit g ∈ L2(Sm) is given by

vs
g(x) :=

∫

Sm

us(x, d)g(d) ds(d), x ∈ R
m \ D,(2.10)
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and its far field is given by

v∞
g (x̂) :=

∫

Sm

u∞(x̂, d)g(d) ds(d), x̂ ∈ S
m.(2.11)

We will need the following identity

(2.12) u∞(x̂, d) = −
1

(m − 2)σm

∫

∂D

{

∂us(y, d)

∂ν
e−iκx̂·y −

∂e−iκx̂·y

∂ν
us(y, d)

}

ds(y)

given by using the Green’s formula in R
m \D for us(·, d) and Φ(·, y) and their asymptotic behavior

at infinity (see [6], Theorem 2.5). The representation of the scattered field Φs(x, z) for x, z ∈ R
m\D

is given by Green’s formula

(2.13) Φs(x, z) = −

∫

∂D

{

∂Φs(y, z)

∂ν(y)
Φ(x, y) − Φs(y, z)

∂Φ(x, y)

∂ν(y)

}

ds(y), x, z ∈ R
3 \ D.

Let a ∈ ∂D and a sequence of points

(2.14) (zp)p∈N ⊂ R
m \ D

such that zp tends to a. We consider the sequence of point sources Φ(·, zp). We set Dp
a a C2−

regular open set such that D ⊂ Dp
a, zp ∈ R

n \ Dp
a for every p ∈ N and that the Dirichlet interior

problem on Dp
a is uniquely solvable. In this case, the Herglotz wave operator H defined from

L2(Sm) to L2(∂Dp
a) by

(2.15) H(g)(x) := vg(x) =

∫

Sm

eiκx·dg(d) ds(d)

is injective, compact with dense range, see [6]. Hence by the Tikhonov regularization method, see
[8] or [10], we can construct a sequence gp

n in L2(Sm) such that for every p fixed

(2.16) ||vgp
n
− Φ(·, zp)||L2(∂Dp

a) → 0, n → ∞.

Since both of vgp
n

and Φ(·, zp) satisfy the same Helmholtz equation in Dp
a, (2.16) implies that

||vgp
n
− Φ(·, zp)||

H
1
2 (∂D)

→ 0, n → ∞.

Multiplying (2.12) by gp
n(x̂)gp

n(d)) and integrating over S
m, we have

∫

Sm

∫

Sm

u∞(−x̂, d)gp
n(x̂)gp

n(d) ds(x̂)ds(d)

= −
1

(m − 2)σm

∫

∂D

{
∫

Sm

∂us(y, d)

∂ν
gp

n(d) ds(d) ·

∫

Sm

eiκx̂·ygp
n(x̂) ds(x̂)

−

∫

Sm

∂eiκx̂·y

∂ν
gp

n(x̂) ds(x̂) ·

∫

Sm

us(y, d)gp
n(d) ds(d)

}

ds(y)

= −
1

(m − 2)σm

∫

∂D

{

∂vs
gp

n

∂ν
(y)vi

gp
n
(y) +

∂vi
gp

n

∂ν
(y)vs

gp
n
(y)

}

ds(y).(2.17)
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From (2.17), we have

lim
n→∞

∫

Sm

∫

Sm

u∞(−x̂, d) gp
n(x̂) gp

n(d) ds(x̂)ds(d)

= −
1

(m − 2)σm

∫

∂D

∂(Φs

∂ν(y)
(y, zp)Φ(y, zp) − Φs(y, zp)

∂(Φ

∂ν(y)
(y, zp) ds(y)(2.18)

=
1

(m − 2)σm
Φs(zp, zp)(2.19)

For the point a ∈ ∂D, we choose the sequence (zp)p∈N included in Ca,θ, where Ca,θ is the cone
with center a, angle θ ∈ [0, π

2 ) and axis −ν(a) where ν(a) is the unit normal of ∂D directed inside
D.

theorem 2.1 The surface of the obstacle can be localized via the formulas:
(2.20)

|32π2 lim
n→∞

Re

∫

Sm

∫

Sm

u∞(−x̂, d)gp
n(x̂)gp

n(d)ds(x)ds(d)| =
1

|(zp − a) · ν(a)|
+ O(| ln(|zp − a|)|),

for m = 3 and

(2.21) |
(m − 2)σm22m−2πm−1

σm−1
lim

n→∞
Re

∫

Sm

∫

Sm

u∞(−x̂, d)gp
n(x̂)gp

n(d)ds(x)ds(d)| =

1

|(zp − a) · ν(a)|m−2
+ O(|zp − a|3−m),

for m > 3.
In addition, we have the following formulas for distinguishing the coated part from the non-

coated part of the obstacle and for detecting the surface impedance:
I. The case m = 3:
I. 1. If a ∈ ∂DI , then we have

(2.22) lim
p→∞

−8π2 limn→∞ Im
∫

Sm

∫

Sm u∞(−x̂, d)gp
n(x̂)gp

n(d) ds(x̂)ds(d)

| ln |(zp − a) · ν(a)||s
=























∞, if s ∈ [0, 1),

λ(a) if s = 1,

0 if s > 1.

I. 2. If a ∈ ∂DD, then ∀s > 0 we have:

(2.23) lim
p→∞

limn→∞ Im
∫

Sm

∫

Sm u∞(−x̂, d)gp
n(x̂)gp

n(d) ds(x̂)ds(d)

| ln |(zp − a) · ν(a)||s
= 0.

II. The case m > 3:
II. 1. If a ∈ ∂DI , then we have

(2.24)

lim
p→∞

(m − 2)σm(2π)m−1

σm−1
(2(zp−a)·ν(a))m−3+s lim

n→∞
Im

∫

Sm

∫

Sm

u∞(−x̂, d)gp
n(x̂)gp

n(d) ds(x̂)ds(d) =























∞, if s ∈ [0, 1),

λ(a) if s = 1,

0 if s > 1.
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II. 2. If a ∈ ∂DD, then ∀s > 0 we have:

(2.25) lim
p→∞

|(zp − a) · ν(a)|m−3+s lim
n→∞

Im

∫

Sm

∫

Sm

u∞(−x̂, d)gp
n(x̂)gp

n(d) ds(x̂)ds(d) = 0.

Remark 2.2 1. In the case m = 3, from (2.22) and (2.23), we can localize the coated part of the
obstacle by taking any s ∈ (0, 1), then taking s = 1 in (2.22), we obtain the pointwise values of the
surface impedance. Similarly we have the same conclusions for m ≥ 4.

2. We stated the results by using the full far field pattern, i.e. (θ, d) ∈ S
m × S

m. We used this
information to approximate the point sources Φ(·, zp) by Herglotz functions defined on the whole
unit sphere S

m. However this approximation is also justified if we define the Herglotz functions on
any subsurface γ ⊂ S

m and hence the results of Theorem 2.1 are also valid if we replace S
m by any

subsurface γ ⊂ S
m.

3 Proof of Theorem 2.1.

Let Γλ(a) be a local Green’s function satisfying:

(3.26)

{

∆Γλ(a) = −δ(x, z) in R
m
+ ,

(
∂Γλ(a)

∂ν + iλ(a)Γλ(a))(x1, x2, ..., xm−1, 0) = 0

and ΓD defined by

ΓD(x, z) := Γ(x, z) − Γ(x∗, z)

where x = (x1, x2, ..., xm), x∗ = (x1, x2, ...,−xm) and Γ(x, z) = 1
(m−2)σm|x−z|m−2 .

It is clear that ΓD(x, z) satisfies

(3.27)

{

∆ΓD = −δ(x, z) in R
m
+ ,

ΓD(x1, x2, ..., xm−1, 0) = 0.

We state the following propositions. Their proofs will be given in section 3.1 and section 3.2
respectively.

Proposition 3.1 The local Green function Γλ(a) is given by

(3.28) Γλ(a)(x, z) := Γ(x, z) +
1

2(2π)m−1

∫

Rm−1

ei(x′−z′)·ξ′

e−(xm+zm)|ξ′| |ξ′| + iλ(a)

|ξ′|(|ξ′| − iλ(a))
dξ′,

where x′ = (x1, x2, ..., xm−1) and ξ′ = (ξ1, ξ2, ..., ξm−1).
In addition, we have the following asymptotics for the function (Γλ(a) − Γ)(x, z):

Re(Γλ(a) − Γ)(z, z) =
σm−1

2(2π)m−1

1

(2zm)m−2
+ O(

1

(zm)m−3
),

lim
z3→0+

−2π
Im(Γλ(a) − Γ)(z, z)

ln(z3)
= λ(a), for m = 3

and

lim
zm→0+

(2π)m−1

σm−1
(2zm)m−3Im(Γλ(a) − Γ)(z, z) = λ(a), for m > 3.
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Proposition 3.2 If a ∈ ∂DI , then there exist δ(a) > 0 and C > 0 such that

(3.29) |Φs(x, z)−(Γλ(a)−Γ)(x, z)| ≤ C







| ln |z − a||, if m = 3,

1
|z−a|m−3 if m > 3,

for (x, z) ∈ B+(a, δ(a))∩Ca,θ,

and
(3.30)

|Im(Φs(x, z) − (Γλ(a) − Γ)(x, z))|| ≤
C

|z − a|m−3−β
+ C for m ≥ 3 and (x, z) ∈ B+(a, δ(a)) ∩ Ca,θ,

where B+(a, δ(a)) := B(a, δ(a))∩(R3 \D) and B(a, δ(a)) is the ball of center a and radius δ(a).
Similarly, if a ∈ ∂DD, we obtain (3.29) and (3.30) by replacing Γλ(a) by ΓD.

End of the proof of Theorem 2.1.

1. Let a ∈ ∂DI , i.e. we have the impedance boundary condition around a. By a rigid trans-
formation of coordinates, we can assume that a = (0, 0, 0, .., 0). Using (2.19), Proposition 3.1 and
Proposition 3.2 we obtain the formulas (2.20), (2.21), (2.22) and (2.24).

2. Let a ∈ ∂DD, i.e. we have the Dirichlet boundary condition around a. Similarly, we can
assume that a = (0, 0, 0). Using (2.19), Proposition 3.2 and the fact that ImΓD = 0 = ImΓ we
obtain (2.23) and (2.25). ¤

The rest of this section is devoted to prove Proposition 3.1 and Proposition 3.2.

3.1 Proof of Proposition 3.1.

We set Γλ(a)(x, z) := Γ(x, z) + w(x, z), then w(x, z) satisfies

(3.31)

{

∆w(x, z) = 0 in R
m
+ ,

(∂x3 + iλ(a))w(x, z) = −(∂x3 + iλ(a))Γ(x, z) on ∂R
m
+ .

The first part of this proposition is to show the following explicit form of w(x, z).

Lemma 3.3

w(x, z) =
1

2(2π)m−1

∫

Rm−1

ei(x′−z′)·ξ′

e−(xm+zm)|ξ′| |ξ′| + iλ(a)

|ξ′|(|ξ′| − iλ(a))
dξ′.

Proof of Lemma 3.3.

We represent w(x, z) using up going and down going operators U±

(3.32) w(x, z) := (U±(xm)φ)(x′) :=
1

(2π)m−1

∫

Rm−1

eix′·ξ′∓xm|ξ′|φ̂±(ξ′, z)dξ′,

where φ̂± is the two dimensional Fourier transform of φ±. The goal is to find φ±, or φ̂±. We start
by the corresponding representation of Γ(x, z). We write

(3.33) Γ(x, z) =

{

Γ+(x, z) in xm > zm,
Γ−(x, z) in xm < zm,

then ∆Γ± = 0 in ±(xm − zm) > 0 with the transmission conditions

(3.34)

{

Γ+|xm=zm+0 = Γ−|xm=zm−0,
∂xmΓ+|xm=zm+0 − ∂xmΓ−|xm=zm−0 = −δ(x′, z′).
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Now we look for Γ± in the form

Γ±(x, z) = U±(xm − zm)ψ±(x′, z′)

and try to determine the potentials ψ±.
Clearly, from the definition of U±, we have

∆Γ± = 0 in ± (xm − zm) > 0

and from the first equation of (3.34), we get

(3.35) ψ+ = ψ−.

Let us now consider the second equation of (3.34). We set

(Bf)(x′) :=

∫

Rm−1

eix′·ξ′

(−|ξ|)f̂(ξ′)d̄ξ′,

then we deduce that

(3.36) ∂xmU±(xm) = ±BU±(xm).

The point two of (3.34) implies that

Bψ+ + Bψ− = −δ(x′ − z′).

Taking the Fourier transform, we have

(3.37) −|ξ′|ψ̂+ − |ξ′|ψ̂− = −eiz′·ξ′

and combining (3.35) with (3.37), we end up with:

(3.38) ψ̂±(ξ′, z′) =
1

2
|ξ′|−1e−iz′·ξ′

.

Now, we go back to w(x, z). We set φ± := φ in (3.32), i.e.

w(x, z) = (U+(xm)φ)(x′, z),

then from (3.36) we have

(3.39) (∂x3 + iλ(a))w|xm=0 = Bφ + iλ(a)φ,

because U+(0)φ = φ. By Fourier transform, the right hand side of (3.39) becomes

(3.40) −|ξ′|φ̂(ξ′) + iλ(a)φ̂(ξ′).

By similar computations for the fundamental solution Γ(x, z), we have

−(∂xmΓ− + iλ(a)Γ−) |xm=0= −(−BΓ− + iλ(a)Γ−) |xm=0

(3.41) = −(−U−(−zm)Bψ− + iλ(a)U−(−zm)ψ−)(x′)

because
BU± = U±B.
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The Fourier transform of (3.41) is

(3.42) −e−zm|ξ′|(|ξ′| + iλ(a))ψ̂−(ξ′, z′)

hence combining (3.40) with (3.42), we obtain

(3.43) φ̂(ξ′, z) =
|ξ′| + iλ(a)

|ξ′| − iλ(a)
e−zm|ξ′|ψ̂−(ξ′, z′).

Using (3.35), we have

φ̂(ξ′, z) =
1

2

|ξ′| + iλ(a)

|ξ′|(|ξ′| − iλ(a))
e−zm|ξ′|e−iz′·ξ′

.

Finally (3.32) becomes

(3.44) w(x, z) =
1

2(2π)m−1

∫

Rm−1

ei(x′−z′)·ξ′

e−(xm+zm)|ξ′| |ξ′| + iλ(a)

|ξ′|(|ξ′| − iλ(a))
dξ′.

¤

Next we deal with the second part of the proposition. From Lemma 3.3, we have

(3.45) w(z, z) =
1

(2π)m−1

∫

Rm−1

e−(2zm)|ξ′| 1

2

|ξ′| + iλ(a)

|ξ′|(|ξ′| − iλ(a))
dξ′.

We start with the case m = 3. Using polar coordinates, we write

w(z, z) =
1

4π2

∫ 2π

0

dθ

∫ ∞

0

e−2z3r 1

2r
(1 +

2iλ(a)

r − iλ(a)
)rdr =

1

2π

∫ ∞

0

e−2z3r 1

2r
(1 +

2iλ(a)

r − iλ(a)
)rdr.

After some computations, we obtain

(3.46) Rew(z, z) =
1

8πz3
+ O(1).

Similarly we obtain

(3.47) 2πImw(z, z) = λ(a)[− ln(λ(a)) +

∫ ∞

0

e−2t ln(t2 + z2
3λ(a)2)dt − ln(z3)].

Hence

2π
Imw(z, z)

ln(z3)
= −λ(a) +

λ(a)(− ln(λ(a)) +
∫ ∞

0
e−2t ln(t2 + z2

3λ2)dt)

ln(z3)

which gives the formula:

(3.48) lim
z3→0+

−2π
Imw(z, z)

ln(z3)
= λ(a).

For m > 3, we use also the hyperspherical coordinates and get:

w(z, z) =
σm−1

2(2π)m−1

∫ ∞

0

e−2zmr 1

2r
(1 +

2iλ(a)

r − iλ(a)
)rm−1dr.

Hence

Rew(z, z) =
σm−1

2(2π)m−1

1

(2zm)m−2
+ O(

1

(zm)m−3
)

and

Imw(z, z) =
σm−1

(2π)m−1

λ(a)

(2zm)m−3
+ O(1)

This ends the proof of Proposition 3.1.
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3.2 Proof of Proposition 3.2.

We assume that the point a is on ∂DI . The case where a is on ∂DD is similar and easier.
Let Φ̃s be the corresponding solution as Φs replacing ∂DI by ∂D (i.e. taking ∂DD = ∅). We

set Gλ(x, z) := Φ̃s(x, z) + Φ(x, z), the Green’s function of the problem (1.2),(1.3),(1.5). We set
also Gλ(a)(x, z) to be the Green’s function of (1.2),(1.3),(1.5) when the function λ(x) is replaced
by the constant function λ(a). For both of the Green functions we assumed ∂DD = ∅. Finally, we
set G0

λ(a) to be the Green’s function satisfying

(3.49)











∆G0
λ = −δ in Ω \ D,

∂G0
λ

∂ν (x, z) + iλ(a)G0
λ(x, z) = 0 on ∂D,

G0
λ(a)(·, z) = 0 on ∂Ω.

with an arbitrary fixed C2− regular domain Ω containing D.
We have the following lemma

Lemma 3.4 For every R > 0, there exists a positive constant C := C(R) such that
1.|Gλ(x, z)| ≤ C

|x−z|m−2 ,

2.|∇Gλ(x, z)| ≤ C
|x−z|m−1 ,

for (x, z) ∈ (Rm \ D) ∩ B(0, R).

Proof of Lemma 3.4. These properties are known for general equations and boundary conditions.
We refer to [19] and [20] where these results are justified for boundary value problems stated on
bounded domains. Since the arguments are local, these estimates are also justified for exterior
problems. ¤

The function Φ̃s − Φs satisfies

(3.50)



















(∆ + κ2)(Φ̃s − Φs) = 0 in R
m \ D,

Φ̃s − Φs(x, z) = Φ̃s + Φ on ∂DD
∂(Φ̃s−Φs)

∂ν (x, z) + iλ(x)(Φ̃s − Φs)(x, z) = 0 on ∂DI ,

(Φ̃s − Φs)(·, z) satisfies Sommerfeld radiation conditions.

For z near a, Lemma 3.4 implies that (Φ̃s +Φ)(·, z) is bounded in H1/2(∂DD). The well posedness
of (3.50), see [3], implies that (Φ̃s − Φs)(·, z) is bounded in H1

loc(R
m \ D). Introducing a cut off

function around the point a and knowing that Φ̃s(·, z) and Φ(·, z) and their derivatives are bounded
for x near ∂DD and z near a (which is in ∂DI), we deduce that (Φ̃s −Φs) is bounded for x and z
near a. This implies that we can replace Φs by Φ̃s in Proposition 3.2. In addition, by setting

Φ̃s − (Γλ(a) − Γ) = Gλ − Γλ(a) − (Φ − Γ),

and knowing that (Φ − Γ)(x, z) is bounded in R
m, then the proof of Proposition 3.2 is reduced to

consider the term Gλ − Γλ(a). We split the rest of the proof into the following three lemmas.

Lemma 3.5 There exist δ(a) > 0 and C(R) > 0 such that |Gλ(x, z) − Gλ(a)(x, z)| ≤ C(R)|z −

a|3−m+β + C(R), for z ∈ B(a, δ(a)) ∩ Ca,θ and x ∈ R
m \ D.

Lemma 3.6 There exists C > 0 such that |Gλ(a)(x, z)−G0
λ(a)(x, z)| ≤ C|z−a|4−m +C, for z near

D and x ∈ Ω \ D.

Lemma 3.7 There exist C > 0 and δ(a) > 0 such that
1. |ImG0

λ(a)(x, z) − ImΓλ(a)(x, z)| ≤ C|z − a|4−m + C, for (x, z) ∈ B(a, δ(a)) ∩ Ca,θ.

2. |ReG0
λ(a)(x, z) − ReΓλ(a)(x, z)| ≤ C| ln |z − a|| for (x, z) ∈ B(a, δ(a)) ∩ Ca,θ, if m = 3.

3. |ReG0
λ(a)(x, z) − ReΓλ(a)(x, z)| ≤ C|z − a|3−m for (x, z) ∈ B(a, δ(a)) ∩ Ca,θ, if m > 3.
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In the proofs of these last lemmas we do not, in general, specify the interdependency of the
constants appearing in the estimates. However we distinguish the constant depending on the angle
θ and the ones which do not depend.

Proof of Lemma 3.5. We set R(x, z) := Gλ(x, z) − Gλ(a)(x, z). Then it satisfies:

(3.51)







(∆ + κ2)R(x, z) = 0 in R
m \ D,

∂R(x,z)
∂ν + iλ(a)R(x, z) = −i(λ − λ(a))Gλ(x, z) on ∂D,

R(·, z) satisfies the Sommerfeld radiation condition.

From (3.51), we have the representation:

R(x, z) = −

∫

∂D

i(λ(y) − λ(a))Gλ(a)(y, x)Gλ(y, z)ds(y), for (x, z) ∈ R
m \ D.

Hence letting x tend to ∂D we have:

(3.52) R(x, z) = −

∫

∂D

i(λ(y) − λ(a))Gλ(a)(y, x)Gλ(y, z)ds(y) for x ∈ ∂D and z ∈ R
m \ D.

From the assumption on the regularity of the surface impedance λ(x), we have

|λ(y) − λ(a)| ≤ C|y − a|β .

It is clear that |y − a| ≤ c(θ)|y − z| for y ∈ ∂DI and z ∈ Ca,θ ∩B(a, δ(a)) with a positive constant
c(θ) depending on the angle θ. This is due to the fact that ∂DI and Ca,θ∩B(a, δ(a)) are separated,
i.e. ∂DI ∩ Ca,θ ∩ B(a, δ(a)) = {a}. From the inequality

|λ(y) − λ(a)|

|y − z|m−2
≤

c(θ)βC

|y − z|m−2−β
.

and the point 1) of Lemma 3.4, we have

|R(x, z)| ≤

∫

∂D

c(θ)βC

|y − z|m−2−β |y − x|m−2
dy ≤

C

|x − z|m−3−β
+ C

then

max
x∈∂D

|R(x, z)| ≤
C

|z − a|m−3−β
+ C for z ∈ Ca,θ ∩ B(a, δ(a)).

Now, the solvability of the forward problem

(3.53)







(∆ + κ2)R(x, z) = 0 in R
m \ D,

|R(·, z)| ≤ C
|z−a|m−3−β + C on ∂D,

R(·, z) satisfies the radiation conditions

implies the desired estimate for R(x, z) for x ∈ R
m \ D and z ∈ Ca,θ ∩ B(0, R). ¤

Proof of Lemma 3.6.

We recall that G0
λ(a) satisfies

(3.54)







∆G0
λ(x, z) = −δ(x, z) in Ω \ D,

∂G0
λ

∂ν (x, z) + iλG0
λ(x, z) = 0 on ∂D,

G0
λ(x, z) = 0 on ∂Ω.
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Then, Gλ(a) − G0
λ(a) is solution of the problem

(3.55)











∆(Gλ(a) − G0
λ(a))(x, z) = κ2Gλ(a)(x, z) in Ω \ D,

∂(Gλ(a)−G0
λ(a))

∂ν (x, z) + iλ(a)(Gλ(a) − G0
λ(a))(x, z) = 0 on ∂D,

(Gλ(a) − G0
λ(a))(x, z) = Gλ(a)(x, z) on ∂Ω.

Using integral representation for the solution of (3.55) and Lemma 3.4 applied for Gλ(a) and G0
λ(a),

we have the desired estimate for (Gλ(a) − G0
λ(a))(x, z) for x in Ω \ D and z near ∂D. ¤

Proof of Lemma 3.7. We can assume without loss of generality that a = (0, 0, 0, ..., 0) by using a
rigid transformation of coordinates. Let ξ = F (x) be the following local change of variables

(3.56)

{

ξ′ = x′,
ξm = xm − f(x′)

where f is the function defined in the introduction. We have the following properties:

(3.57)







c1|x − z| ≤ |F (x) − F (z)| ≤ c2|x − z|,
|F (x) − x| ≤ c3|x|

2,
|DF (x) − I| ≤ c4|x|,

for x, z near the point a, where ci, i = 1, ..., 4 are positive constants, which is due to the C2

regularity of ∂D.
Let x, z be near the point a. We set G̃0

λ(a)(ξ, η) := G0
λ(a)(x, y), where ξ = F (x) and η := F (z).

Then G̃0
λ(a)(·, η) satisfies:

(3.58)

{

∇ · B(ξ)∇G̃0
λ(a) = −δ(ξ − η) near F (a),

|J−T ν|B∇G̃0
λ(a) · ν + iλ(a)G̃0

λ(a) = 0 on ∂R
m
+ near F (a),

where B = JJT and J = ∂ξ
∂x (F−1(ξ)). From the properties (3.57), we have

|J(ξ) − J(0)| ≤ c|ξ| , |B(ξ) − B(0)| ≤ c|ξ|

and J(0) = B(0) = I.

First step

Using similar notations as in the proof of Lemma 3.5, we write R̃(ξ, η) = G̃0
λ(a)(ξ, η)−Γλ(a)(ξ, η),

hence:

(3.59)

{

∆R̃(ξ, η) = ∇ · (I − B)∇G̃0
λ(a) near F (a)

∇R̃ · ν̃ + iλ(a)R̃ = (I − B)∇G̃0
λ(a) · ν̃ + iλ(a)(1 − |J−T |)R̃ on ∂R

m
+ near F (a).

Let B+
r := B(F (a), r) ∩ [F (D)]c for r small enough, then by (3.59) and using the local Green’s

function Γλ(a), the solution R̃ has the following representation

−R̃(ξ, η) +

∫

∂B+
r

∂R̃(z, ξ)

∂ν
Γλ(a)(z, η)ds(z) −

∫

∂B+
r

∂Γλ(a)(z, η)

∂ν
R̃(z, ξ)ds(z)

= −

∫

B+
r

(I − B)∇G̃0
λ(a)(z, ξ) · ∇Γλ(a)(z, η)dz +

∫

∂B+
r

(I − B)∇G̃0
λ(a)(z, ξ) · νΓλ(a)(z, η)ds(z),
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for ξ and η in B+
r . We write ∂B+

r = Sr ∪ Sc
r , where Sr = ∂B+

r ∩ ∂(F (D)). Using the impedance
boundary condition on Sr, the last equation becomes

−R̃(ξ, η) −

∫

Sr

iλ(a)R̃(z, ξ) · Γλ(a)(z, η)ds(z) +

∫

Sr

iλ(a)Γλ(a)(z, η)R̃(z, ξ)ds(z)

= −

∫

B+
r

(I − B)∇G̃0
λ(a)(z, η) · ∇Γλ(a)(z, y)dz +

∫

∂B+
r

(I − B)∇G̃0
λ(a)(z, ξ) · νΓλ(a)(z, η)ds(z)

+

∫

Sc
r

∂

∂ν
R̃(z, ξ)Γλ(a)(z, η)ds(z) +

∫

Sc
r

∂

∂ν
Γλ(a)(z, η)R̃(z, ξ)ds(z)

−

∫

Sr

(I − B)∇G̃0
λ(a)(z, ξ) · νΓλ(a)(z, η)ds(z) − iλ(a)

∫

Sr

(1 − |J−T ν|)R̃(z, η)Γλ(a)(z, ξ)ds(z)

After simplification we have

−R̃(ξ, η) = −

∫

B+
r

(I − B)∇G̃0
λ(a)(z, ξ) · ∇Γλ(a)(z, η)dz +

∫

Sc
r

(I − B)
∂G̃0

λ(a)(z, ξ)

∂ν
Γλ(a)(z, η)ds(z)

(3.60)

+

∫

Sc
r

∂R̃

∂ν
(z, ξ)Γλ(a)(z, η)ds(z)+

∫

Sc
r

∂

∂ν
Γλ(a)(z, η)R̃(z, ξ)ds(z)−iλ(a)

∫

Sr

(1−|J−T ν|)R̃(z, η)Γλ(a)(z, ξ)ds(z).

Taking the imaginary part in the last equality, we have

(3.61) −ImR̃(ξ, η) = −

∫

B+
r

(I − B)∇(ImG̃0
λ(a))(z, ξ) · ∇(ReΓλ(a))(z, η)dz−

−

∫

B+
r

(I − B)∇(ReG̃0
λ(a))(z, ξ) · ∇(ImΓλ(a))(z, η)dz

+

∫

Sc
r

(I − B)
∂ImG̃0

λ(a)

∂ν
(z, ξ)ReΓλ(a)(z, η)ds(z) +

∫

Sc
r

(I − B)
∂ReG̃0

λ(a)

∂ν
(z, ξ)ImΓλ(a)(z, η)ds(z)

+

∫

Sc
r

∂ImR̃

∂ν
(z, ξ)ReΓλ(a)(z, η)ds(z) +

∫

Sc
r

∂ReR̃

∂ν
(z, ξ)ImΓλ(a)(z, η)ds(z)

+

∫

Sc
r

∂

∂ν
ImΓλ(a)(z, η)ReR̃(z, ξ)ds(z) +

∫

Sc
r

∂

∂ν
ReΓλ(a)(z, η)ImR̃(z, ξ)ds(z)

−λ(a)

∫

Sr

(1 − |J−T ν|)Re[R̃(z, η)Γλ(a)(z, ξ)]ds(z).

We have for Γλ(a) similar estimates as in Lemma 3.4. In particular, we have

|∇(ReΓλ(a))(x, z)| ≤ c|x − z|1−m.

It is of importance to remark that the imaginary parts have less singularities. Indeed, we will prove
the following lemma:

Lemma 3.8 For every R > 0, there exists c := c(R) such that

|∇(ImΓλ(a))(x, z)| ≤ c|x−z|2−m+sd−s(x, ∂B+) and |∇(ImG̃0
λ(a))(x, z)| ≤ c|x−z|2−m+sd−s(x, ∂B+)

for x, z in B+(0, R) := B(0, R) ∩ R
m
+ .
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Proof of Lemma 3.8.

From (3.26), we deduce that ImΓλ(a)(·, z) satisfies

(3.62)

{

∆(ImΓλ(a))(·, z) = 0, in R
m
+ ,

∂
∂ν ImΓλ(a)(·, z) = −λ(a)ReΓλ(a)(·, z) on ∂R

m
+ .

Let Ω be a regular domain in R
m symmetric with respect to the plane {xm = 0}. We state the

problem (3.62) on Ω+ := Ω ∩ R
m
+ . Let G+ be the Neumann Green function of the Laplace on Ω+.

From (3.62) we can write

(3.63) ImΓλ(a)(x, z) =

∫

∂Ω+

G+(x, y)
∂ImΓλ(a)

∂ν
(z, y)ds(y).

The boundary condition in (3.62) on ∂Ω+ ∩ ∂R
m
+ gives

ImΓλ(a)(x, z) = −

∫

∂Ω+∩∂Rm
+

λ(a)G+(x, y)ReΓλ(a)(z, y)ds(y)−

∫

∂Ω+\∂Rm
+

G+(x, y)
∂ImΓλ(a)

∂ν
(z, y)ds(y).

Taking the derivatives, we have

(3.64) ∇x(ImΓλ(a))(x, z) = −

∫

∂Ω+∩∂Rm
+

λ(a)∇xG+(x, y)ReΓλ(a)(z, y)ds(y)−

−

∫

∂Ω+\∂Rm
+

∇xG+(x, y)
∂ImΓλ(a)

∂ν
(z, y)ds(y).

Taking Ω large enough to contain B+(0, R) and using the estimates of G+ and Γλ(a) given in
Lemma 3.4, we deduce that the second term in the right hand side is bounded for x, z in B+(0, R)
because ∂Ω+ \ ∂R

m
+ is away from B+(0, R). The first term can be estimated by

|

∫

∂Ω+∩∂Rm
+

λ(a)∇xG+(x, y)ReΓλ(a)(z, y)ds(y)| ≤ c|

∫

∂Ω+∩∂Rm
+

|x − y|1−m|y − z|2−mds(y)|

≤ c|

∫

∂Ω+∩∂Rm
+

|x − y|1−m+s|y − z|2−mds(y)d−s(x, ∂Ω+) ≤ cs|x − z|2−m+sd−s(x, ∂Ω+)

where cs is a positive constant behaving as 1
1−s , see [14] (or [21] for Lipschitz surfaces). Similar

arguments can be applied for G̃0
λ(a). ¤

Using this lemma and the estimates of G̃0
λ(a), in (3.61), we have

(3.65)

|ImR̃(ξ, η)| ≤ c[

∫

B+
r

|z|d−s(z, ∂B+
r )|z−ξ|2−m+s|z−η|1−mdz+

∫

B+
r

|z||z−ξ|1−md−s(z, ∂B+
r )|z−η|2−m+sdz+

∫

Sc
r

d−s(z, ∂B+
r )|z − ξ|2−m+s|z − η|1−mds(z) +

∫

Sc
r

|z − ξ|1−md−s(z, ∂B+
r )|z − η|2−m+sds(z)+

∫

Sr

|z||z − ξ|2−m|z − η|2−mds(z)]

where c is a positive constant independent on ξ and η.
Taking η ∈ CF (a),θ and ξ on Sr away from Sc

r , from (3.65) we will show the desired estimate of

ImR̃(ξ, η).
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The third and the forth integrals in (3.65) are bounded because ξ is away from Sc
r . Let us

consider the first integral. For η ∈ CF (a),θ and ξ on Sr, we have the inequality

(3.66) |ξ| ≤ c(θ)|ξ − η|

with some positive constant c(θ). We decompose B+
r as B+

r = B+
r1
∪B+

r2
, where B+

r1
:= B+

r ∩CF (a),θ̃

where θ < θ̃ < π
2 and B+

r2
:= B+

r \ B+
r1

.
Let us consider

∫

B+
r1
|z|d−s(z, ∂B+

r )|z − ξ|2−m+s|z − η|1−mdz. For z ∈ B+
r , we have |z| ≤

c(θ̃)d(z, ∂B+
r ) for some positive constant c(θ̃). Hence we need to consider the integral:

∫

B+
r1

|z|1−s|z − ξ|2−m+s|z − η|1−mdz.

At this point, we make use of an argument from ([1], pages 209, 210). We decompose the last
integral as the sum of

I1(ξ, η) :=

∫

{|z|<4c(θ)h}∩B+
r1

|z|1−s|z − ξ|2−m+s|z − η|1−mdz

and

I2(ξ, η) :=

∫

{|z|>4c(θ)h}∩B+
r1

|z|1−s|z − ξ|2−m+s|z − η|1−mdz

where h := |ξ − η|. After the change of variables t := z
h , we obtain

I1(ξ, η) ≤ h4−m4c(θ)

∫

|t|<4c(θ)

|t|1−s|
ξ

h
− t|2−m+s|

η

h
− t|1−mdt.

Since | ξ
h − η

h | = 1, then from ([14], Chapter 2, section 11), the integral in the left hand side is
bounded. Hence

(3.67) I1(ξ, η) ≤ c|ξ − η|4−m.

Let us now consider the term I2(ξ, η). From the inequality (3.66), we have

|z| ≤ |z − ξ| + |ξ| ≤ |z − ξ| + c(θ)|h| ≤ |z − ξ| +
1

4
|z|,

hence

(3.68) |z| ≤
4

3
|z − ξ|.

Similarly we get |z| ≤ 4c(θ)
3c(θ)−1 |z − η|. In (3.66), we can always take c(θ) > 1

3 . Hence

(3.69) I2(ξ, η) ≤ c

∫

r>|z|>4c(θ)h

|z|4−2mdz ≤ C|ξ − η|4−m + C.

Summing up (3.67) and (3.69), implies

(3.70)

∫

B+
r1

|z|d−s(z, ∂B+
r )|z − ξ|2−m+s|z − η|1−mdz ≤ C|ξ − η|4−m + C.
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Now, we deal with
∫

B+
r2
|z|d−s(z, ∂B+

r )|z − ξ|2−m+s|z − η|1−mdz. In this case d(z, ∂B+
r2

) = |zm|.

Since η ∈ CF (a),θ then |z − η|1−m > c > 0, since CF (a),θ and B+
r2

are separated sets.

Hence using these informations with the fact that |z| ≤ 4
3 |z − ξ|, we have

∫

B+
r2

|z|d−s(z, ∂B+
r )|z − ξ|2−m+s|z − ξ|1−mdz ≤

∫

B+
r2

|z|3−m+s|zm|−sdz.

By using the Holder inequality and choosing s small enough we have
∫

B+
r2
|z|3−m+s|zm−ξ|sdz < ∞.

This means that the first integral of (3.65) is estimated by C|ξ − η|4−m + C.
Arguing as before for the first terms of (3.65), we deduce that the second term has similar

estimate. From the inequality (3.68), the last integral is bounded by c
∫

Sr
|z−ξ|3−m|z−η|2−mds(z)

which is itself bounded by C|ξ − η|4−m + C. Finally we deduce that the integral in (3.65) is also
bounded by C|ξ − η|4−m + C.

Second step

We go back to estimate R(x, z) := G0
λ(a)(x, z) − Γλ(a)(x, z). We have

R(x, z) = G0
λ(a)(x, z) − Γλ(a)(F (x), F (z)) + Γλ(a)(F (x), F (z)) − Γλ(a)(x, z)

which we write as
(3.71)
R(x, z) = R̃(F (x), F (z)) + (Γλ(a)(F (x), F (z)) − Γλ(a)(F (x), z)) + (Γλ(a)(F (x), z) − Γλ(a)(x, z)).

Let us show that F (Ca,θ ∩ B(0, δ(a))) ⊂ CF (a),θ′ for some θ′ ∈ (0, π/2) and θ ≤ θ′ with δ(a)
small enough. Recall that a = (0, 0, 0). We set M := max(z1,z2)∈B2(0,δ(a)) |f(z1, z2)| = |f(z0

1 , z0
2)|.

We draw the cone with vertex a, axis (−ν(a)) and having the point (z0
1 , z0

2 ,M) on its boundary.
We denote by φ the angle between this cone and the plan {z3 = 0}. Since |∇f(0, 0)| = 0 and
f ∈ C1(0, δ(a)), then φ = φ(δ(a)) tends to zero if δ(a) tends to zero. Hence taking δ(a) small
enough, if necessary, we can assume the 0 ≤ φ < π/2 − θ. Finally we define the cone with center
a, axis (−ν(a)) and angle θ′ := φ + θ. Then F (Ca,θ) ⊂ CF (a),θ′ .

Let x be near a such that F (x) ∈ Sr and away from Sc
r and z ∈ Ca,θ ∩ B(a, δ(a)). Then

(F (x), F (z)) ∈ Sr × CF (a),θ′ and hence

ImR̃(F (x), F (z)) ≤ C|F (x) − F (z)|4−m + C ≤ C|x − z|4−m + C

as shown in the first step.
In the following we need to estimate the second and the third terms of the right hand side of

(3.71). We write

(3.72) |Γλ(a)(F (x), F (z)) − Γλ(a)(F (x), z)| ≤ |∇zImΓλ(a)(F (x), ·)|L∞(Vz,ǫ)|F (z) − z|

and

(3.73) |Γλ(a)(F (x), z) − Γλ(a)(x, z)| ≤ |∇xImΓλ(a)(·, z)|L∞(Vx,ǫ)|F (x) − x|

where Vz,ǫ is an open set containing z and F (z) such that F (x) ∈ V c
z,ǫ and Vx,ǫ is an open set

containing x and F (x) such that z ∈ V c
x,ǫ

From the representation (3.64) in the proof of Lemma 3.8, we have

|∇z(ImΓλ(a)(F (x), ·))|L∞(Vz,ǫ) < c[d(F (x), ∂Vz,ǫ)]
2−m
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and similarly, we have

|∇x(ImΓλ(a)(·, z))|L∞(Vx,ǫ) < c[d(z, ∂Vx,ǫ)]
2−m

where c is independent of Vz,ǫ and Vx,ǫ.
Hence (3.72) and (3.73) become

|Γλ(a)(F (x), F (z)) − Γλ(a)(F (x), z)| ≤ c[d(F (x), ∂Vz,ǫ)]
2−m|F (z) − z|

and
|Γλ(a)(F (x), z) − Γλ(a)(x, z)| ≤ c[d(z, ∂Vx,ǫ)]

2−m|F (x) − x|

respectively. Since ǫ > 0 is arbitrary, we deduce, by shrinking Vz,ǫ to tend to a line joining the
points z and F (z), and similarly Vx,ǫ to tend to a line joining the points x and F (x), that there
exists c > 0 such that







|Γλ(a)(F (x), F (z)) − Γλ(a)(F (x), z)| ≤ c|F (x) − F (z)|2−m|F (z) − z|
or
|Γλ(a)(F (x), F (z)) − Γλ(a)(F (x), z)| ≤ c|F (x) − z|2−m|F (z) − z|.

(3.74)

and






|Γλ(a)(F (x), z) − Γλ(a)(x, z)| ≤ c|x − z|2−m|F (x) − x|
or
|Γλ(a)(F (x), z) − Γλ(a)(x, z)| ≤ c|F (x) − z|2−m|F (x) − x|.

(3.75)

Reminding
|x| ≤ c(θ)|x − z|

for x near a and z ∈ Ca,θ ∩ B(a, δ(a)) and using (3.57), we have

|x − z| ≤ |x − F (x)| + |F (x) − z| ≤ c|x|2 + |F (x) − z| ≤ c(θ)|x − z|2 + |F (x) − z|.

Hence
|x − z|[1 − c(θ)|x − z|] ≤ |F (x) − z|.

Taking δ(a) small enough so that we have (1 − c(θ)|x − z|2) ≥ 1/2, then

|x − z| ≤ 2|F (x) − z|.

From (3.57), we have

(3.76) |F (x) − x| ≤ c|x|2 ≤ c(θ)|x − z|2,

and also

(3.77) |F (z) − z| ≤ c|z|2 ≤ c(θ)|x − z|2,

Since |x− z| ≤ c|F (x)−F (z)| then using (3.76) and (3.77) in (3.74) and (3.75) we deduce that
the second and the third terms of (3.71) are estimated by C|x − z|4−m.

This means that

(3.78) |ImR(x, z)| ≤ C|x − z|4−m + C

for x ∈ B(a, δ(a)) such that F (x) ∈ Sr and z ∈ Ca,θ ∩ B(a, δ(a)).
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For z ∈ Ca,θ ∩ B(a, δ(a)
2 ) and x ∈ [∂B(a, δ(a))] ∩ R

m \ D, we have

(3.79) |ImR(x, z)| ≤ C

with some positive constant c, because Ca,θ ∩ B(a, δ(a)
2 ) and ∂B(a, δ(a))] ∩ R

3 \ D are separated

sets. Since in B(a, δ(a)) ∩ (R3 \ D), we have ∆xImR(x, z) = 0, then using (3.78) and (3.79) we
have, by the maximum principle,

|ImR(x, z)| ≤ c(θ)|z − a|4−m + C

for x ∈ [R3 \ D] ∩ B(a, δ(a)) and z ∈ Ca,θ ∩ B(a, δ(a)
2 ).

Considering the real part of R(x, z), by similar arguments as for ImR(x, z), we prove that

|ReR(x, z)| ≤

{

c(θ)| ln |z − a||, if m = 3
c(θ) 1

|z−a|m−3 if m > 3.

This ends the proof of lemma 3.7.
¤
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