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Abstract

We consider a one-dimensional transient cookie random walk. It is known from
a previous paper [3] that a cookie random walk (Xn) has positive or zero speed
according to some positive parameter α > 1 or ≤ 1. In this article, we give the exact

rate of growth of (Xn) in the zero speed regime, namely: for 0 < α < 1, Xn/n
α+1

2

converges in law to a Mittag-Leffler distribution whereas for α = 1, Xn(log n)/n
converges in probability to some positive constant.
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1 Introduction

Let us pick a strictly positive integer M . An M-cookie random walk (also called multi-
excited random walk) is a walk on Z which has a bias to the right upon its M first
visits at a given site and evolves like a symmetric random walk afterwards. This model
was introduced by Zerner [16] as a generalization, in the one-dimensional setting, of the
model of the excited random walk studied by Benjamini and Wilson [4]. In this paper, we
consider the case where the initial cookie environment is spatially homogeneous. Formally,
let (Ω,P) be some probability space and choose a vector p̄ = (p1, . . . , pM) such that
pi ∈ [1

2
, 1) for all i = 1, . . . , M . We say that pi represents the strength of the ith cookie

at a given site. Then, an (M, p̄)-cookie random walk (Xn, n ∈ N) is a nearest neighbour
random walk, starting from 0, and with transition probabilities:

P{Xn+1 = Xn + 1 —X0, . . . , Xn} =

{
pj if j = ♯{0 ≤ i ≤ n, Xi = Xn} ≤ M ,
1
2

otherwise.
∗Address for both authors: Laboratoire de Probabilités et Modèles Aléatoires, Université Pierre et

Marie Curie, 175 rue du Chevaleret, 75013 Paris, France.
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In particular, the future position Xn+1 of the walk after time n depends on the whole
trajectory X0, X1, . . . , Xn. Therefore, X is not, unless in degenerated cases, a Markov
process. The cookie random walk is a rich stochastic model. Depending on the cookie
environment (M, p̄), the process can either be transient or recurrent. Precisely, Zerner
[16] (who considered an even more general setting) proved, in our case, that if we define

α = α(M, p̄)
def
=

M∑

i=1

(2pi − 1) − 1, (1.1)

then

• if α ≤ 0, the cookie random walk is recurrent,

• if α > 0, the cookie random walk is transient towards +∞.

Thus, a 1-cookie random walk is always recurrent but, for two or more cookies, the walk
can either be transient or recurrent. Zerner also proved that the limiting velocity of the
walk is well defined. That is, there exists a deterministic constant v = v(M, p̄) ≥ 0 such
that

lim
n→∞

Xn

n
= v almost surely.

However, we may have v = 0. Indeed, when there are at most two cookies per site, Zerner
proved that v is always zero. On the other hand, Mountford et al. [9] showed that it is
possible to have v > 0 if the number of cookies is large enough. In a previous paper [3],
the authors showed that, in fact, the strict positivity of the speed depends on the position
of α with respect to 1:

• if α ≤ 1, then v = 0,

• if α > 1, then v > 0.

In particular, a positive speed may be obtained with just three cookies per site. The
aim of this paper is to find the exact rate of growth of a transient cookie random walk
in zero speed regime. In this perspective, numerical simulations of Antal and Redner [2]
indicated that, for a transient 2-cookies random walk, the expectation of Xn is of order
nν , for some constant ν ∈ (1

2
, 1) depending on the strength of the cookies. We shall prove

that, more generally, ν = α+1
2

.

Theorem 1.1. Let X be a (M, p̄)-cookie random walk and let α be defined by (1.1). Then,
when the walk is transient with zero speed, i.e. when 0 < α ≤ 1,

1. If α < 1,
Xn

n
α+1

2

law−→
n→∞

Mα+1
2

where Mα+1
2

denotes a Mittag-Leffler distribution with parameter α+1
2

.

2. If α = 1, there exists a constant c > 0 such that

log n

n
Xn

prob.−→
n→∞

c.

These results also hold with supi≤n Xi and infi≥n Xi in place of Xn.
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Figure 1: Simulation of the 100000 first steps of a cookie random walk with M = 3 and
p1 = p2 = p3 = 3

4
(i.e. α = 1

2
and ν = 3

4
).

This theorem bears many likenesses to the famous result of Kesten-Kozlov-Spitzer [7]
concerning the rate of transience of a one-dimensional random walk in random environ-
ment. Indeed, following the method initiated in [3], we can reduce the study of the walk
to that of an auxiliary Markov process Z. In our setting, Z is a branching process with
migration. By comparison, Kesten et al. obtained the rates of transience of the random
walk in random environment via the study of an associated branching process in random
environment. However, the process Z considered here and the process introduced in [7]
have quite dissimilar behaviours and the methods used for their study are fairly different.

Let us also note that, as α tends to zero, the rate of growth n(1+α)/2 tends to
√

n. This
suggests that, when the cookie walk is recurrent (i.e. −1 < α ≤ 0), its growth should
not be much larger than that of a simple symmetric random walk. In fact, we believe
that, in the recurrent setting, supi≤n Xi should be of order l(n)

√
n for some slowly varying

function l.
The remainder of this paper is organized as follow. In the next section, we recall the

construction of the associated process Z described in [3] as well as some important results
concerning this process. In section 3, we study the tail distribution of the return time to
zero of the process Z. Section 4 is devoted to estimating the tail distribution of the total
progeny of the branching process over an excursion away from 0. The proof of this result
is based on technical estimates whose proofs are given in section 5. Once all these results
obtained, the proof of the main theorem is quite straightforward and is finally given in
the last section.

2 The process Z

In the rest of this paper, X will denote an (M, p̄)-cookie random walk. We will also always
assume that we are in the transient regime and that the speed of the walk is zero, that is

0 < α ≤ 1.

3



The proof of Theorem 1.1 is based on a careful study of the hitting times of the walk:

Tn
def
= inf{k ≥ 0, Xk = n}.

We now introduce a Markov process Z closely connected with these hitting times. Indeed,
we can summarize Proposition 2.2 and equation (4) of [3] as follows:

Proposition 2.1. There exist a Markov process (Zn, n ∈ N) starting from 0 and a se-
quence of random variables (Kn, n ≥ 0) converging in law towards a finite random variable
K such that, for each n

Tn
law
= n + 2

n∑

k=0

Zk + Kn.

Therefore, a careful study of Z will enable us to obtain precise estimates on the
distribution of the hitting times. In the rest of this section, we shall recall the construction
of Z and some important results obtained in [3].

For each i = 1, 2, . . ., let Bi be a Bernoulli random variable with distribution

P{Bi = 1} = 1 − P{Bi = 0} =

{
pi if 1 ≤ i ≤ M ,
1
2

if i > M .

We define the random variables A0, A1, . . . , AM−1 by

Aj
def
= ♯{1 ≤ i ≤ kj, Bi = 0} where kj

def
= inf

(
i ≥ 1,

i∑

l=1

Bl = j + 1
)
.

Therefore, Aj represents the number of ”failures” before having j + 1 ”successes” along
the sequence of coin tossings (Bi). It is to be noted that the random variables Aj admit
some exponential moments:

E[sAj ] < ∞ for all s ∈ [0, 2). (2.1)

According to Lemma 3.3 of [3], we also have

E[AM−1] = 2
M∑

i=1

(1 − pi) = M − 1 − α. (2.2)

Let (ξi, i ∈ N
∗) be a sequence of i.i.d. geometric random variables with parameter 1

2
(i.e.

with mean 1), independent of the Aj . The process Z mentioned above is a Markov process
with transition probabilities given by

P
{
Zn+1 = j — Zn = i

}
= P

{
1l{i≤M−1}Ai + 1l{i>M−1}

(
AM−1 +

i−M+1∑

k=1

ξk

)
= j
}

. (2.3)

As usual, we will use the notation Px to describe the law of the process starting from
x ∈ N and Ex the associated expectation, with the conventions P = P0 and E = E0. Let
us notice that Z may be interpreted as a branching process with random migration, that
is, a branching process which allows both immigration and emigration components.
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• If Zn = i ∈ {M, M +1, . . .}, then Zn+1 has the law of
∑i−M+1

k=1 ξk +AM−1, i.e. M −1
particles emigrate from the system and the remaining particles reproduce according
to a geometrical law with parameter 1

2
and there is also an immigration of AM−1

new particles.

• If Zn = i ∈ {0, . . . , M −1}, then Zn+1 has the same law as Ai, i.e. all the i particles
emigrate the system and Ai new particles immigrate.

Since we assume that the cookie vector p̄ is such that pi < 1 for all i, the process Z is an
irreducible Markov process. More precisely,

Px{Z1 = y} > 0 for all x, y ∈ N.

From the construction of the random variables Ai, we have A0 ≤ A1 ≤ . . . ≤ AM−1.
This fact easily implies that, for any x ≤ y, the process Z under Px (starting from x) is
stochastically dominated by Z under Py (starting from y). Let us also note that, for any
k ≥ M − 1,

E[Zn+1 − Zn |Zn = k] = E[AM−1] − M + 1 = −α. (2.4)

This quantity is negative and we say that emigration dominates immigration. In view of
(2.4), a simple martingale argument shows that Z is recurrent. More precisely, according
to section 2 of [3], the process Z is, in fact, positive recurrent and thus converges in law,
independently of its starting point, towards a random variable Z∞ whose law is the unique
invariant probability for Z. Moreover, according to Remark 3.7 of [3], the tail distribution
of Z∞ is regularly varying with index α:

Proposition 2.2. There exists a constant c > 0 such that

P{Z∞ > x} ∼
x→∞

{
c/xα if α ∈ (0, 1),
c log x/x if α = 1.

Let now σ denote the first return time to 0 for the process Z,

σ
def
= inf{n ≥ 1, Zn = 0}.

According to the classical expression of the invariant probability, for any non negative
function f , we have

E

[
σ−1∑

i=0

f(Zi)

]
= E[σ]E[f(Z∞)]. (2.5)

In particular, we deduce the following corollary which will be found very useful:

Corollary 2.3. We have, for β ≥ 0,

E

[
σ−1∑

i=0

Zβ
i

]{
< ∞ if β < α,
= ∞ if β ≥ α.
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3 The return time to zero

We have already stated that Z is an irreducible positive recurrent Markov chain, thus the
return time σ to zero has finite expectation. The aim of this section is to strengthen this
result by giving the asymptotic of the tail distribution of σ. Precisely, we will show that

Proposition 3.1. For any initial starting point x ≥ 1, there exists c = c(x) > 0 such
that

Px{σ > n} ∼
n→∞

c

nα+1
.

Notice that we do not allow the starting point x to be 0. In fact, this assumption could
be dropped but it would unnecessarily complicate the proof of the proposition which is
technical enough already. Yet, we have already mentioned that Z starting from 0 is
stochastically dominated by Z starting from 1, thus P{σ > n} ≤ P1{σ > n}. We also
have P{σ > n} ≥ P{Z1 = 1}P1{σ > n − 1}. Therefore, we deduce that

c1

nα+1
≤ P{σ > n} ≤ c2

nα+1

where c1 and c2 are two strictly positive constants. In particular, we obtain the following
corollary which will be sufficient for our needs.

Corollary 3.2. We have

E[σβ]

{
< ∞ if β < α + 1,
= ∞ if β ≥ α + 1.

(3.1)

The method used in the proof of the proposition is classical and based on the study
of probability generating functions. Proposition 3.1 was first proved by Vatutin [10]
who considered a branching process with exactly one emigrant at each generation. This
result was later generalized for branching processes with more than one emigrant by
Vinokurov [12] and also by Kaverin [6]. However, in our setting, we deal with a branching
process with migration, that is, where both immigration and emigration are allowed.
More recently, Yanev and Yanev proved similar results for such a class of processes, under
the assumption that, either there is at most one emigrant per generation [14] or that
immigration dominates emigration [13] (in our setting, this would correspond to the case
α < 0).

For the process Z, the emigration component dominates the immigration component
and this leads to some additional technical difficulties. Although there is a vast literature
on the subject (see the authoritative survey of Vatutin and Zubkov [11] for additional
references), we did not find a proof of Proposition 3.1 in our setting. We shall therefore
provide here a complete argument but we invite the reader to look in the references
mentioned above for additional details.

Recall the definition of the random variables Ai and ξi defined in section 2. We
introduce, for s ∈ [0, 1],

F (s)
def
= E[sξ1 ] =

1

2 − s
,

δ(s)
def
= (2 − s)M−1E[sAM−1],

Hk(s)
def
= (2 − s)M−1−kE[sAM−1 ] −E[sAk ] for 1 ≤ k ≤ M − 2.
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Let Fj(s)
def
= F ◦ . . . ◦ F (s) stand for the j-fold of F (with the convention F0 = Id). We

also define by induction {
γ0(s)

def
= 1,

γn+1(s)
def
= δ(Fn(s))γn(s).

We use the abbreviated notations Fj
def
= Fj(0), γn

def
= γn(0). We start with a simple lemma.

Lemma 3.3. (a) Fn = 1 − 1
n+1

.

(b) Hk(1 − s) = −H ′
k(1)s + O(s2) when s → 0 for all 1 ≤ k ≤ M − 2.

(c) δ(1 − s) = 1 + αs + O(s2) when s → 0.

(d) γn ∼∞ c3n
α with c3 > 0.

Proof. Assertion (a) is straightforward. According to (2.1), the functions Hk are analytic
on (0, 2) and (b) follows from a Taylor expansion near 1. Similarly, (c) follows from
a Taylor expansion near 1 of the function δ combined with (2.2). Finally, γn can be
expressed in the form

γn =

n−1∏

j=0

δ(Fj) ∼
n→∞

n∏

j=1

(
1 +

α

j

)
∼

n→∞
c3n

α,

which yields (d).

Let Z̃ stand for the process Z absorbed at 0:

Z̃n
def
= Zn1l{n≤inf(k, Zk=0)}.

We also define, for x ≥ 1 and s ∈ [0, 1],

Jx(s)
def
=

∞∑

i=0

Px{Z̃i 6= 0}si, (3.2)

Gn,x(s)
def
= Ex[s

Z̃n],

and for 1 ≤ k ≤ M − 2,

gk,x(s)
def
=

∞∑

i=0

Px{Z̃i = k}si+1.

Lemma 3.4. For any 1 ≤ k ≤ M − 2, we have

(a) supx≥1 gk,x(1) < ∞.

(b) for all x ≥ 1, g′
k,x(1) < ∞.
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Proof. The value gx,k(1) represents the expected number of visits to site k before hitting
0 for the process Z starting from x. Thus, an easy application of the Markov property
yields

gk,x(1) =
Px{Z visits k before 0}

Pk{Z visits 0 before returning to k} <
1

Pk{Z1 = 0} < ∞.

This proves (a). We now introduce the return times σk
def
= inf(n ≥ 1, Zn = k). In view of

the Markov property, we have

g′
k,x(1) = gk,x(1) + Ex

[ ∞∑

n=1

n1l{Z̃n=k}

]

= gk,x(1) +

∞∑

i=1

Px{σk = i, σk < σ}Ek

[ ∞∑

n=0

(i + n)1l{Z̃n=k}

]

= gk,x(1) + Ex[σk1l{σk<σ}]gk,k(1) + Px{σk < σ}Ek

[ ∞∑

n=0

n1l{Z̃n=k}

]
.

Since Z is a positive recurrent Markov process, we have Ex[σk1l{σk<σ}] ≤ Ex[σ] < ∞.

Thus, it simply remains to show that Ek

[∑∞
n=0 n1l{Z̃n=k}

]
< ∞. Using the Markov

property, as above, but considering now the partial sums, we get, for any N ≥ 1,

Ek

[
N∑

n=1

n1l{Z̃n=k}

]
=

N∑

i=1

Pk{σk = i, σk < σ}Ek

[
N−i∑

n=0

(i + n)1l{Z̃n=k}

]

≤ Ek

[
σk1l{σk<σ}

]
gk,k(1) + Pk{σk < σ}Ek

[
N∑

n=1

n1l{Z̃n=k}

]
.

Since Pk{σ < σk} ≥ Pk{Z1 = 0} > 0, we deduce that

Ek

[
N∑

n=1

n1l{Z̃n=k}

]
≤ Ek

[
σk1l{σk<σ}

]
gk,k(1)

Pk{σ < σk}
< ∞.

and we conclude the proof letting N tend to +∞.

Lemma 3.5. The function Jx defined by (3.2) may be expressed in the form

Jx(s) = Ĵx(s) +

M−2∑

k=1

J̃k,x(s) for s ∈ [0, 1),

where

Ĵx(s)
def
=

∑∞
n=0 γn(1 − (Fn)x)sn

(1 − s)
∑∞

n=0 γnsn
and J̃k,x(s)

def
=

gk,x(s)
∑∞

n=0 γnHk(Fn)sn

(1 − s)
∑∞

n=0 γnsn
.
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Proof. From the definition (2.3) of the branching process Z, we get, for n ≥ 0,

Gn+1,x(s) = Ex

[
EZ̃n

[sZ̃1]
]

= Px{Z̃n = 0} +
M−2∑

k=1

Px{Z̃n = k}E[sAk ] +
∞∑

k=M−1

Px{Z̃n = k}E[sξ]k−(M−1)E[sAM−1 ]

=

(
1−E[sAM−1 ]

E[sξ]M−1

)
Px{Z̃n = 0}−

M−2∑

k=1

Px{Z̃n = k}Hk(s) +
E[sAM−1 ]

E[sξ]M−1

∞∑

k=0

Px{Z̃n = k}E[sξ]k.

Since E[sξ] = F (s) and Gn,x(0) = Px{Z̃n = 0}, using the notation introduced in the
beginning of the section, the last equality may be rewritten

Gn+1,x(s) = δ(s)Gn,x(F (s)) + (1 − δ(s))Gn,x(0) −
M−2∑

k=1

Px{Z̃n = k}Hk(s).

Iterating this equation then setting s = 0 and using the relation G0,x(Fn+1) = (Fn+1)
x,

we deduce that, for any n ≥ 0,

Gn+1,x(0) =
n∑

i=0

(1−δ(Fi))γiGn−i,x(0) + γn+1(Fn+1)
x −

M−2∑

k=1

n∑

i=0

Px{Z̃n−i = k}γiHk(Fi).

(3.3)

Notice also that Px{Z̃n 6= 0} = 1 − Gn,x(0). In view of (3.3) and making use of the
relation (1 − δ(Fi))γi = γi − γi+1, we find, for all n ≥ 0 (with the convention

∑−1
0 = 0)

Px{Z̃n 6= 0} = γn(1 − (Fn)x) +

n−1∑

i=0

(γi − γi+1)Px{Z̃n−1−i 6= 0}

+
M−2∑

k=1

n−1∑

i=0

Px{Z̃n−1−i = k}γiHk(Fi).

Therefore, summing over n, for s < 1,

Jx(s) =

∞∑

n=0

Px{Z̃n 6= 0}sn

=

∞∑

n=0

γn(1 − (Fn)x)sn +

∞∑

n=0

n∑

i=0

(γi − γi+1)Px{Z̃n−i 6= 0}sn+1

+
M−2∑

k=1

∞∑

n=0

n∑

i=0

Px{Z̃n−i = k}γiHk(Fi)s
n+1

=

∞∑

n=0

γn(1 − (Fn)x)sn + Jx(s)

∞∑

n=0

(γn − γn+1)s
n+1 +

M−2∑

k=1

gk,x(s)

∞∑

n=0

γnHk(Fn)sn.

We conclude the proof noticing that
∑∞

n=0(γn − γn+1)s
n+1 = (s − 1)

∑∞
n=0 γnsn + 1.

We can now give the proof of the proposition.
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Proof of Proposition 3.1. Recall that the parameter α is such that 0 < α ≤ 1. We first
assume α < 1. Fix x ≥ 1 and 1 ≤ k ≤ M − 2. In view of Lemma 3.3 and with the help
of an Abelian/Tauberian theorem (c.f. Chap VIII of [5]), we check that

(1 − s)
∞∑

n=0

γnsn ∼
s→1−

c3Γ(α + 1)

(1 − s)α
and

∞∑

n=0

γnHk(Fn)sn ∼
s→1−

−c3H
′
k(1)Γ(α)

(1 − s)α
.

These two equivalences show that J̃k,x(1)
def
= lims→1− J̃k,x(s) is finite. More precisely, we

get

J̃k,x(1) = −gk,x(1)H ′
k(1)

α
,

so that we may write

J̃k,x(1) − J̃k,x(s)

1 − s
=

(
gk,x(1) − gk,x(s)

1 − s

)
J̃k,x(s)

gk,x(s)
+

gk,x(1)B̃k(s)

(1 − s)2
∑∞

n=0 γnsn
(3.4)

with the notation

B̃k(s)
def
=

H ′
k(1)

α
(s − 1)

∞∑

n=0

γnsn −
∞∑

n=0

γnHk(Fn)sn.

The first term on the r.h.s. of (3.4) converges towards −g′
k(1)H ′

k(1)/α as s tends to 1
(this quantity is finite thanks to Lemma 3.4). Making use of the relation γn+1 = δ(Fn)γn,

we can also rewrite B̃k in the form

B̃k(s) =

∞∑

n=1

γn−1

[
H ′

k(1)

α
(1 − δ(Fn−1)) − δ(Fn−1)Hk(Fn)

]
sn − H ′

k(1)

α
− Hk(0).

With the help of Lemma 3.3, it is easily check that

γn−1

[
H ′

k(1)

α
(1 − δ(Fn−1)) − δ(Fn−1)Hk(Fn)

]
= O

(
1

n2−α

)
.

Since α < 1, we conclude that

B̃k(1) = lim
s→1−

B̃k(s) is finite. (3.5)

We also have

(1 − s)2
∞∑

n=0

γns
n ∼

s→1−

c3Γ(α + 1)

(1 − s)α−1
. (3.6)

Thus, combining (3.4), (3.5) and (3.6), as s → 1−,

J̃k,x(1) − J̃k,x(s)

1 − s
=

gk,x(1)B̃k(1)

c3Γ(α + 1)
(1 − s)α−1 + o

(
(1 − s)α−1

)
. (3.7)

We can deal with Ĵx in exactly the same way. We now find Ĵx(1) = x
α

and setting

B̂x(1)
def
=

∞∑

n=1

γn−1

[x
α

(δ(Fn−1) − 1) − δ(Fn−1)(1 − (Fn)x)
]

+
x

α
− 1, (3.8)
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we also find that, as s → 1−,

Ĵx(1) − Ĵx(s)

1 − s
=

B̂x(1)

c3Γ(α + 1)
(1 − s)α−1 + o

(
(1 − s)α−1

)
. (3.9)

Putting together (3.7) and (3.9) and using Lemma 3.5, we obtain

Jx(1) − Jx(s)

1 − s
= Cx(1 − s)α−1 + o

(
(1 − s)α−1

)
(3.10)

with

Cx
def
=

1

c3Γ(α + 1)

(
B̂x(1) +

M−2∑

k=1

gk,x(1)B̃k(1)

)
. (3.11)

Since x 6= 0, we have Px{Z̃n 6= 0} = Px{σ > n} and, from the definition of Jx, we deduce

∞∑

n=0

( ∞∑

k=n+1

Px{σ > k}
)
sn =

Jx(1) − Jx(s)

1 − s
. (3.12)

Combining (3.10) and (3.12), we see that Cx ≥ 0. Moreover, the use of two successive
Tauberian theorems yields

Px{σ > n} =
Cxα

Γ(1 − α)nα+1
+ o

(
1

nα+1

)
.

It remains to prove that Cx 6= 0. To this end, we first notice that, for x, y ≥ 0, we have
Py{Z1 = x} > 0 and

Py{σ > n} ≥ Py{Z1 = x}Px{σ > n − 1}.

Thus, Cy ≥ Py{Z1 = x}Cx so it suffices to show that Cx is not zero for some x. In view
of (a) of Lemma 3.4, the quantity

M−2∑

k=1

gk,x(1)B̃k(1)

is bounded in x. Looking at the expression of Cx given in (3.11), it just remains to prove

that B̂x(1) can be arbitrarily large. In view of (3.8), we can write

B̂x(1) = xS(x) +
x

α
− 1

where

S(x)
def
=

∞∑

n=1

γn−1

[
1

α
(δ(Fn−1) − 1) − δ(Fn−1)

(1 − (Fn)x)

x

]
.

But for each fixed n, the function

x → δ(Fn−1)
(1 − (Fn)x)

x

11



decreases to 0 as x tends to infinity, so the monotone convergence theorem yields

S(x) ↑
x→∞

∞∑

n=1

γn−1

α
(δ(Fn−1) − 1) ∼ c3

∞∑

n=1

1

n1−α
= +∞.

Thus, B̂x(1) tends to infinity as x tends to infinity and the proof of the proposition for
α < 1 is complete. The case α = 1 may be treated in a similar fashion (and it is even
easier to prove that the constant is not zero). We skip the details.

Remark 3.6. The study of the tail distribution of the return time is the key to obtaining
conditional limit theorems for the branching process, see for instance [6, 10, 12, 14]. In-
deed, following Vatutin’s scheme [10] and using Proposition 3.1, it can now be proved that
Zn/n conditioned on not hitting 0 before time n converges in law towards an exponential
distribution. Precisely, for each x = 1, 2, . . . and r ∈ R+,

lim
n→∞

Px

{
Zn

n
≤ r — σ > n

}
= 1 − e−r.

It is to be noted that this result is exactly the same as that obtained for a classical critical
Galton-Watson process ( i.e. when there is no migration). Although, in our setting, the
return time to zero has a finite expectation, which is not the case for the critical Galton-
Watson process, the behaviours of both processes conditionally on their non-extinction are
still quite similar.

4 Total progeny over an excursion

The aim of this section is to study the distribution of the total progeny of the branching
process Z over an excursion away from 0. We will constantly use the notation

ν
def
=

α + 1

2
.

In particular, ν ranges through (1
2
, 1]. The main result of this section is the key to the

proof of Theorem 1.1 and states as follows.

Proposition 4.1. There exists a constant c > 0 such that

P

{
σ−1∑

k=0

Zk > x

}
∼

x→∞

{
c/xν if α ∈ (0, 1)
c log x/x if α = 1.

Let us first give an informal explanation for this polynomial decay with exponent ν.
In view of Remark 3.6, we can expect the shape of a large excursion away from zero
of the process Z to be quite similar to that of a Galton-Watson process. Indeed, if H
denotes the height of an excursion of Z (and σ denotes the length of the excursion),
numerical simulations show that, just as in the case of a classical branching process
without migration, H ≈ σ and the total progeny

∑σ−1
k=0 Zk is of the same order as Hσ.

Since the decay of the tail distribution of σ is polynomial with exponent α + 1, the

12



tail distribution of
∑σ−1

k=0 Zk should then decrease with exponent α+1
2

. In a way, this
proposition tells us that the shape of an excursion is very ”squared”.

Although there is a vast literature on the subject of branching processes, it seems that
there has not been much attention given to the total progeny of the process. Moreover,
the classical machinery of generating functions and analytic methods, often used as a rule
in the study of branching processes seems, in our setting, inadequate for the study of the
total progeny.

The proof of Proposition 4.1 uses a somewhat different approach and is mainly based
on a martingale argument. The idea of the proof is fairly simple but, unfortunately, since
we are dealing with a discrete time model, a lot of additional technical difficulties appear
and the complete argument is quite lengthy. For the sake of clarity, we shall first provide
the skeleton of the proof of the proposition, while postponing the proof of the technical
estimates to section 5.2.

Let us also note that, although we shall only study the particular branching process
associated with the cookie random walk, the method presented here could be used to deal
with a more general class of branching processes with migration.

We start with an easy lemma stating that P{
∑σ−1

k=0 Zk > x} cannot decrease much
faster than 1

xν .

Lemma 4.2. For any β > ν, we have

E

[( σ−1∑

k=0

Zk

)β
]

= ∞.

Proof. When α = ν = 1, the result is a direct consequence of Corollary 2.3 of section 2.
We now assume α < 1. Hölder’s inequality gives

σ−1∑

n=0

Zα
n ≤ σ1−α(

σ−1∑

n=0

Zn)α.

Taking the expectation and applying again Hölder’s inequality, we obtain, for ε > 0 small
enough

E

[
σ−1∑

n=0

Zα
n

]
≤ E[σ1+α−ε]

1
p E

[
(

σ−1∑

n=0

Zn)αq

] 1
q

,

with p = 1+α−ε
1−α

and αq = 1+α−ε
2−ε/α

. Moreover, Corollary 2.3 states that E[
∑σ−1

n=0 Zα
n ] = ∞

and thanks to Corollary 3.2, E[σ1+α−ε] < ∞. Therefore,

E

[
(

σ−1∑

n=0

Zn)
αq

]
= E

[
(

σ−1∑

n=0

Zn)ν+ε′

]
= ∞.

This result is valid for any ε′ small enough and completes the proof of the lemma.

Proof of Proposition 4.1. Let us first note that, in view of an Abelian/Tauberian theorem,
Proposition 4.1 is equivalent to

E
[
1 − e−λ

∑σ−1
k=0

Zk

]
∼

λ→0+

{
Cλν if α ∈ (0, 1),
Cλ log λ if α = 1,

13



where C is a positive constant. We now construct a martingale in the following way. Let
Kν denote the modified Bessel function of second kind with parameter ν. For λ > 0, we
define

φλ(x)
def
= (

√
λx)νKν(

√
λx), for x > 0. (4.1)

We shall give some important properties of φλ in section 5.1. For the time being, we
simply recall that φλ is an analytic, positive, decreasing function on (0,∞) such that φλ

and φ′
λ are continuous at 0 with

φλ(0) = 2ν−1Γ(ν) and φ′
λ(0) = 0. (4.2)

Our main interest in φλ is that it satisfies the following differential equation, for x > 0:

−λxφλ(x) − αφ′
λ(x) + xφ′′

λ(x) = 0. (4.3)

Now let (Fn, n ≥ 0) denote the natural filtration of the branching process Z i.e. Fn
def
=

σ(Zk, 0 ≤ k ≤ n) and define, for n ≥ 0 and λ > 0,

Wn
def
= φλ(Zn)e

−λ
∑n−1

k=0
Zk . (4.4)

Setting
µ(n)

def
= E[Wn − Wn+1 | Fn], (4.5)

it is clear that the process

Yn
def
= Wn +

n−1∑

k=0

µ(k)

is an F -martingale. Furthermore, this martingale has bounded increments since

|Yn+1 − Yn| ≤ |Wn+1 − Wn| + |µ(n)| ≤ 4||φλ||∞.

Therefore, the use of the optional sampling theorem is legitimate with any stopping time
with finite mean. In particular, applying the optional sampling theorem with the first
return time to 0, we get

φλ(0)E[e−λ
∑σ−1

k=0
Zk ] = φλ(0) − E[

σ−1∑

k=0

µ(k)],

which we may be rewritten, using that φλ(0) = 2ν−1Γ(ν),

E[1 − e−λ
∑σ−1

k=0
Zk ] =

1

2ν−1Γ(ν)
E[

σ−1∑

k=0

µ(k)]. (4.6)

The proof of Proposition 4.1 now relies on a careful study of the expectation of
∑σ−1

k=0 µ(k).
To this end, we shall decompose µ into several terms using a Taylor expansion of φλ. We
first need the following lemma:

14



Lemma 4.3.

(a) There exists a function f1 with f1(x) = 0 for all x ≥ M − 1 such that

E[Zn+1 − Zn | Fn] = −α + f1(Zn).

(b) There exists a function f2 with f2(x) = f2(M − 1) for all x ≥ M − 1 such that

E[(Zn+1 − Zn)2 | Fn] = 2Zn + 2f2(Zn).

(c) For p ∈ N
∗, there exists a constant Dp such that

E[|Zn+1 − Zn|p | Fn] ≤ Dp(Z
p/2
n + 1l{Zn=0}).

Proof. Assertion (a) is just a rewriting of equation (2.4). Recall the notations introduced
in section 2. Recall in particular that E[AM−1] = M − 1 − α. Thus, for j ≥ M − 1, we
have

E[(Zn+1 − Zn)2 | Zn = j] = E
[(

AM−1 + ξ1 + . . . + ξj−M+1 − j
)2]

= E
[(

α + (AM−1 − E[AM−1]) +

j−M+1∑

k=1

(ξk −E[ξk])
)2]

= α2 + Var(AM−1) + (j − M + 1)Var(ξ1)

= 2Zn + α2 + Var(AM−1) − 2(M − 1).

This proves (b). When p is an even integer, we have E[|Zn+1 − Zn|p | Fn] = E[(Zn+1 −
Zn)

p | Fn] and assertion (c) can be proved by developing (Zn+1−Zn)p in the same manner
as for (b). Finally, when p is an odd integer, Hölder’s inequality gives

E[|Zn+1 − Zn|p | Zn = j > 0] ≤ E[|Zn+1 − Zn|p+1 | Zn = j > 0]
p

p+1 ≤ D
p

p+1

p+1Z
p
2
n .

Continuation of the proof of Proposition 4.1. For n ∈ [1, σ − 2], the random variables Zn

and Zn+1 are both non zero and, since φλ is infinitely differentiable on (0,∞), a Taylor
expansion yields

φλ(Zn+1) = φλ(Zn) + φ′
λ(Zn)(Zn+1 − Zn) +

1

2
φ′′

λ(Zn)(Zn+1 − Zn)
2 + θn, (4.7)

where θn is given by Taylor’s integral remainder formula

θn
def
= (Zn+1 − Zn)2

∫ 1

0

(1 − t)(φ′′
λ(Zn + t(Zn+1 − Zn)) − φ′′

λ(Zn))dt. (4.8)

When n = σ − 1, this result is a priori incorrect because then Zn+1 = 0. However,
according to (4.2) and (4.3), the functions φλ(t), φ′

λ(t) and tφ′′
λ(t) have finite limits as t

tends to 0+, thus equation (4.7) still holds when n = σ − 1. Therefore, for n ∈ [1, σ − 1],

E[eλZnφλ(Zn) − φλ(Zn+1) | Fn] =

(eλZn −1)φλ(Zn)−φ′
λ(Zn)E[Zn+1−Zn | Fn]−

1

2
φ′′

λ(Zn)E[(Zn+1−Zn)2 | Fn]−E[θn | Fn].
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In view of (a) and (b) of Lemma 4.3 and recalling the differential equation (4.3) satisfied
by φλ, the r.h.s. of the previous equality may be rewritten

(eλZn − 1 − λZn)φλ(Zn) − φ′
λ(Zn)f1(Zn) − φ′′

λ(Zn)f2(Zn) −E[θn | Fn].

On the other hand, in view of (4.4) and (4.5), we have

µ(n) = e−λ
∑n

k=0 ZkE[eλZnφλ(Zn) − φλ(Zn+1) | Fn]. (4.9)

Thus, for each n ∈ [1, σ − 1], we may decompose µ(n) in the form

µ(n) = µ1(n) + µ2(n) + µ3(n) + µ4(n), (4.10)

where

µ1(n)
def
= e−λ

∑n
k=0 Zk(eλZn − 1 − λZn)φλ(Zn)

µ2(n)
def
= −e−λ

∑n
k=0 Zkφ′

λ(Zn)f1(Zn)

µ3(n)
def
= −e−λ

∑n
k=0 Zkφ′′

λ(Zn)f2(Zn)

µ4(n)
def
= −e−λ

∑n
k=0 ZkE[θn | Fn].

In particular, we can rewrite (4.6) in the form (we have to treat µ(0) separately since
(4.8) does not hold for n = 0)

E[1 − e−λ
∑σ−1

k=0
Zk ] =

1

2ν−1Γ(ν)

(
E
[
µ(0)

]
+

4∑

i=1

E
[ σ−1∑

n=1

µi(n)
])

. (4.11)

We now state the main estimates:

Lemma 4.4. There exist ε > 0 and eight finite constants (Ci, C
′
i, i = 0, 2, 3, 4) such that,

as λ tends to 0+,

(a) E [µ(0)] =

{
C0λ

ν + O(λ) if α ∈ (0, 1)
C0λ log λ + C ′

0λ + o(λ) if α = 1,

(b) E
[∑σ−1

n=1 µ1(n)
]

= o(λ) for α ∈ (0, 1],

(c) E
[∑σ−1

n=1 µ2(n)
]

=

{
C2λ

ν + o(λν+ε) if α ∈ (0, 1)
C2λ log λ + C ′

2λ + o(λ) if α = 1,

(d) E
[∑σ−1

n=1 µ3(n)
]

=

{
C3λ

ν + o(λν+ε) if α ∈ (0, 1)
C3λ log λ + C ′

3λ + o(λ) if α = 1,

(e) E
[∑σ−1

n=1 µ4(n)
]

=

{
C4λ

ν + o(λν+ε) if α ∈ (0, 1)
C ′

4λ + o(λ) if α = 1.

Let us for the time being postpone the long and technical proof of these estimates
until section 5.2 and complete the proof of Proposition 4.1. In view of (4.11), using the
previous lemma, we deduce that there exist some constants C, C ′ such that

E
[
1 − e−λ

∑σ−1
k=0

Zk

]
=

{
Cλν + o(λν+ε) if α ∈ (0, 1),
Cλ log λ + C ′λ + o(λ) if α = 1.

(4.12)
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with

C
def
=

{
21−νΓ(ν)−1(C0 + C2 + C3 + C4) when α < 1,
21−νΓ(ν)−1(C0 + C2 + C3) when α = 1.

It simply remains to check that the constant C is not zero. Indeed, suppose that C = 0.
We first assume α = 1. Then, from (4.12),

E
[
1 − e−λ

∑σ−1
k=0

Zk

]
= C ′λ + o(λ)

which implies E[
∑σ−1

k=0 Zk] < ∞ and contradicts Corollary 2.3. Similarly, when α ∈ (0, 1)
and C = 0, we get from (4.12),

E
[
1 − e−λ

∑σ−1
k=0

Zk

]
= o(λν+ε).

This implies, for any 0 < ε′ < ε, that

E

[
(
σ−1∑

n=0

Zn)ν+ε′

]
< ∞

which contradicts Lemma 4.2. Therefore, C cannot be zero and the proposition is proved.

5 Technical estimates

5.1 Some properties of modified Bessel functions

We now recall some properties of modified Bessel functions. All the results cited here may
be found in [1] (section 9.6) or [8] (section 5.7). For η ∈ R, the modified Bessel function
of the first kind Iη is defined by

Iη(x)
def
=
(x

2

)η
∞∑

k=0

(x/2)2k

Γ(k + 1)Γ(k + 1 + η)

and the modified Bessel function of the second kind Kη is given by the formula

Kη(x)
def
=

{
π
2

I−η(x)−Iη(x)

sinπη
for η ∈ R − Z,

limη′→η Kη′(x) for η ∈ Z.

We are particularly interested in

Fη(x)
def
= xηKη(x) for x > 0.

Thus, the function φλ defined in (4.1) may be expressed in the form

φλ(x) = Fν(
√

λx). (5.1)

Fact 5.1. For η ≥ 0, the function Fη is analytic, positive and strictly decreasing on
(0,∞). Moreover
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1. Behaviour at 0:

(a) If η > 0, the function Fη is defined by continuity at 0 with Fη(0) = 2η−1Γ(η).

(b) If η = 0, then F0(x) = − log x + log 2 − γ + o(1) as x → 0+ where γ denotes
Euler’s constant.

2. Behaviour at infinity:

Fη(x) ∼
x→∞

√
π

2x
e−x.

In particular, for every η > 0, there exists cη ∈ R such that, for all x ≥ 0,

Fη(x) ≤ cηe
−x. (5.2)

3. Formula for the derivative:

F ′
η(x) = −x2η−1F1−η(x). (5.3)

In particular, Fη solves the differential equation

xF ′′
η (x) − (2η − 1)F ′

η(x) − xFη(x) = 0.

Concerning the function φλ, in view of (5.1), we deduce

Fact 5.2. For each λ > 0, the function φλ is analytic, positive and strictly decreasing on
(0,∞). Moreover

(a) φλ is continuous and differentiable at 0 with φλ(0) = 2ν−1Γ(ν) and φ′
λ(0) = 0.

(b) For x > 0, we have

φ′
λ(x) = −λνxαF1−ν(

√
λx),

φ′′
λ(x) = λFν(

√
λx) − αλνxα−1F1−ν(

√
λx).

In particular, φλ solves the differential equation

−λxφλ(x) − αφ′
λ(x) + xφ′′

λ(x) = 0.

5.2 Proof of Lemma 4.4

The proof of Lemma 4.4 is long and tedious but requires only elementary methods. We
shall treat, in separate subsections the assertions (a) - (e) when α < 1. We explain, in a
last subsection, how to deal with the case α = 1.

We will use the following result extensively throughout the proof of Lemma 4.4.

Lemma 5.3. There exists ε > 0 such that

E
[
σ(1 − e−λ

∑σ−1
k=0

Zk)
]

= o(λε) as λ → 0+.
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Proof. Let β < α ≤ 1, the function x → xβ is concave, thus

E

[
(

σ−1∑

k=0

Zk)
β

]
≤ E

[
σ−1∑

k=0

Zβ
k

]
def
= c1 < ∞,

where we used Corollary 2.3 to conclude on the finiteness of c1. From Markov’s inequality,
we deduce that P

{∑σ−1
k=0 Zk > x

}
≤ c1

xβ for all x ≥ 0. Therefore,

E
[
1 − e−λ

∑σ−1
k=0

Zk

]
≤ (1 − e−λx) + P

{ σ−1∑

k=0

Zk > x

}
≤ λx +

c1

xβ
.

Choosing x = λ− 1
β+1 and setting β ′ def

= β
β+1

, we deduce

E
[
1 − e−λ

∑σ−1
k=0

Zk

]
≤ (1 + c1)λ

β′
.

According to Corollary 3.2, for δ < α, we have E[σ1+δ] < ∞, so Hölder’s inequality gives

E
[
σ(1 − e−λ

∑σ−1
k=0

Zk)
]

≤ E[σ1+δ]
1

1+δ E
[
(1 − e−λ

∑σ−1
k=0

Zk)
1+δ

δ

] δ
1+δ

≤ E[σ1+δ]
1

1+δ E
[
1 − e−λ

∑σ−1
k=0

Zk

] δ
1+δ ≤ c2λ

β′δ
1+δ ,

which completes the proof of the lemma.

5.2.1 Proof of (a) of Lemma 4.4 when α < 1

Using the expression of µ(0) given by (4.9) and the relation (5.3) between of F ′
ν and F1−ν ,

we have

E[µ(0)] = E[Fν(0) − Fν(
√

λZ1)] = −E

[∫ √
λZ1

0

F ′
ν(x)dx

]
= λνE

[∫ Z1

0

yαF1−ν(
√

λy)dy

]
.

Thus, using the dominated convergence theorem,

lim
λ→0

1

λν
E[µ(0)] = E

[∫ Z1

0

yαF1−ν(0)dy

]
=

F1−ν(0)

1 + α
E[Z1+α

1 ]
def
= C0 < ∞.

Furthermore, using again (5.3), we get

∣∣∣
1

λν
E[µ(0)] − C0

∣∣∣ = E

[∫ Z1

0

yα
(
F1−ν(0) − F1−ν(

√
λy)
)

dy

]

= E

[∫ Z1

0

yα

∫ √
λy

0

x−αFν(x)dxdy

]

≤ ||Fν||∞
1 − α

λ
1−α

2 E

[∫ Z1

0

ydy

]
=

||Fν ||∞E[Z2
1 ]

2(1 − α)
λ

1−α
2 .

Therefore, we obtain
E[µ(0)] = C0λ

ν + O(λ)

which proves (a) of Lemma 4.4.
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5.2.2 Proof of (b) of Lemma 4.4 when α < 1

Recall that

µ1(n) = e−λ
∑n

k=0 Zk(eλZn − 1 − λZn)φλ(Zn) = e−λ
∑n

k=0 Zk(eλZn − 1 − λZn)Fν(
√

λZn).

Thus, µ1(n) is almost surely positive and

µ1(n) ≤ (1 − e−λZn − λZne−λZn)Fν(
√

λZn).

Moreover, for any y > 0, we have 1 − e−y − ye−y ≤ min(1, y2), thus

µ1(n) ≤ (1 − e−λZn − λZne
−λZn)Fν(

√
λZn)

(
1l{Zn>−2 log λ√

λ
} + 1l{Zn≤−2 log λ√

λ
}

)

≤ Fν(
√

λZn)1l{Zn>−2 log λ√
λ

} + ||Fν ||∞λ2Z2
n1l{Zn≤−2 log λ√

λ
}

≤ Fν(−2 log λ) + ||Fν||∞λ2Z2
n1l{Zn≤−2 log λ√

λ
},

where we used the fact that Fν is decreasing for the last inequality. In view of (5.2), we
also have Fν(−2 log λ) ≤ cνλ

2 and therefore

E

[
σ−1∑

n=1

µ1(n)

]
≤ λ2cνE[σ] + λ2||Fν ||∞E

[
σ−1∑

n=1

Z2
n1l{Zn≤−2 log λ√

λ
}

]
. (5.4)

On the one hand, according to (2.5), we have

E

[
σ−1∑

n=1

Z2
n1l{Zn≤−2 log λ√

λ
}

]
= E

[
Z2

∞1l{Z∞≤−2 log λ√
λ

}

]
E[σ]. (5.5)

On the other hand, Proposition 2.2 states that P(Z∞ ≥ x) ∼ C
xα as x tends to infinity,

thus

E
[
Z2

∞1l{Z∞≤x}
]

∼
x→∞

2

x∑

k=1

kP(Z∞ ≥ k) ∼
x→∞

2C

2 − α
x2−α.

This estimate and (5.5) yield

λ2E

[
σ−1∑

n=1

Z2
n1l{Zn≤−2 log λ√

λ
}

]
∼

λ→0+
c3λ

1+ α
2 | log λ|2−α. (5.6)

Combining (5.4) and (5.6), we finally obtain

E

[
σ−1∑

n=1

µ1(n)

]
= o(λ),

which proves (b) of Lemma 4.4.
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5.2.3 Proof of (c) of Lemma 4.4 when α < 1

Recall that

µ2(n) = −e−λ
∑n

k=0 Zkφ′
λ(Zn)f1(Zn) = λνZα

n F1−ν(
√

λZn)f1(Zn)e−λ
∑n

k=0 Zk .

Since f1(x) = 0 for x ≥ M − 1 (c.f. Lemma 4.3), the quantity |µ2(n)|/λν is smaller than
Mα||f1||∞||F1−ν ||∞. Thus, using the dominated convergence theorem, we get

lim
λ→0

1

λν
E

[
σ−1∑

n=1

µ2(n)

]
= E

[
σ−1∑

n=1

Zα
n F1−ν(0)f1(Zn)

]
def
= C2 ∈ R.

It remains to prove that, for ε > 0 small enough, as λ → 0+

∣∣∣
1

λν
E

[
σ−1∑

n=1

µ2(n)

]
− C2

∣∣∣ = o(λε). (5.7)

We can rewrite the l.h.s. of (5.7) in the form

∣∣∣E
[

σ−1∑

n=1

Zα
nf1(Zn)(F1−ν(0) − F1−ν(

√
λZn))

]

+ E

[
σ−1∑

n=1

Zα
nf1(Zn)F1−ν(

√
λZn)(1 − e−λ

∑n
k=0 Zk)

] ∣∣∣. (5.8)

On the one hand, the first term is bounded by

E

[
σ−1∑

n=1

Zα
n |f1(Zn)|(F1−ν(0) − F1−ν(

√
λZn))

]
≤ Mα||f1||∞E[σ]

∫ √
λM

0

|F ′
1−ν(x)|dx

≤ Mα||f1||∞E[σ]||Fν ||∞
∫ √

λM

0

x1−2νdx

≤ c4λ
1−ν ,

where we used formula (5.3) for the expression of F ′
1−ν for the second inequality. On the

other hand the second term of (5.8) is bounded by

E

[
σ−1∑

n=1

Zα
n |f1(Zn)|F1−ν(

√
λZn)(1−e−λ

∑n
k=0 Zk)

]
≤Mα||f1||∞||F1−ν||∞E[σ(1−e−λ

∑σ−1
k=0

Zk)]

≤ c5λ
ε

where we used Lemma 5.3 for the last inequality. Putting the pieces together, we conclude
that (5.7) holds for ε > 0 small enough.
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5.2.4 Proof of (d) of Lemma 4.4 when α < 1

Recall that

µ3(n) = −e−λ
∑n

k=0 Zkφ′′
λ(Zn)f2(Zn)

= −e−λ
∑n

k=0 Zkf2(Zn)
(
λFν(

√
λZn) + αλνZα−1

n F1−ν(
√

λZn)
)

.

Note that, since α ≤ 1, we have Zα−1
n ≤ 1 when Zn 6= 0. The quantities f2(Zn), Fν(

√
λZn)

and F1−ν(
√

λZn)) are also bounded, so we check, using the dominated convergence theo-
rem, that

lim
λ→0

1

λν
E

[
σ−1∑

n=1

µ3(n)

]
= −αE

[
σ−1∑

n=1

Zα−1
n F1−ν(0)f2(Zn)

]
def
= C3 ∈ R.

Furthermore we have

1

λν
E

[
σ−1∑

n=1

µ3(n)

]
− C3 = −λ1−νE

[
σ−1∑

n=1

e−λ
∑n

k=0 Zkf2(Zn)Fν(
√

λZn)

]
(5.9)

+ αE

[
σ−1∑

n=1

Zα−1
n f2(Zn)

(
F1−ν(0) − F1−ν(

√
λZn)

)]

+ αE

[
σ−1∑

n=1

Zα−1
n f2(Zn)F1−ν(

√
λZn)

(
1 − e−λ

∑n
k=0 Zk

)]
.

The first term is clearly bounded by c6λ
1−ν . We turn our attention to the second term.

In view of (5.3), we have

F1−ν(0) − F1−ν(
√

λZn) =

∫ √
λZn

0

x1−2νFν(x)dx ≤ ||Fν||∞
2 − 2ν

λ1−νZ2−2ν
n =

||Fν ||∞
1 − α

λ1−νZ1−α
n ,

where we used 2 − 2ν = 1 − α for the last equality. Therefore,

∣∣∣E
[

σ−1∑

n=1

Zα−1
n f2(Zn)(F1−ν(0) − F1−ν(

√
λZn))

] ∣∣∣ ≤ ||Fν ||∞||f2||∞
1 − α

λ1−νE

[
σ−1∑

n=1

1

]

≤ ||Fν ||∞||f2||∞E[σ]

1 − α
λ1−ν .

As for the third term of (5.9), with the help of Lemma 5.3, we find

∣∣∣E
[

σ−1∑

n=1

Zα−1
n f2(Zn)F1−ν(

√
λZn)(1−e−λ

∑n
k=0 Zk)

]∣∣∣ ≤ ||f2||∞||F1−ν ||∞E
[
σ(1−e−λ

∑σ−1
k=0

Zk)
]

≤ c7λ
ε.

Putting the pieces together, we conclude that

E

[
σ−1∑

n=1

µ3(n)

]
= C3λ

ν + o(λν+ε).
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5.2.5 Proof of (e) of Lemma 4.4 when α < 1

Recall that
µ4(n) = −e−λ

∑n
k=0 ZkE[θn | Fn]. (5.10)

This term is clearly the most difficult to deal with. We first need the next lemma stating
that Zn+1 cannot be too ”far” from Zn.

Lemma 5.4. There exist two constants K1, K2 > 0 such that for all n ≥ 0,

(a) P(Zn+1 ≤ 1
2
Zn | Fn) ≤ K1e

−K2Zn,

(b) P(Zn+1 ≥ 2Zn | Fn) ≤ K1e
−K2Zn.

Proof. This lemma follows from large deviation estimates. Indeed, with the notation of
section 2, in view of Cramer’s theorem, we have, for any j ≥ M − 1,

P
{
Zn+1 ≤

1

2
Zn |Zn = j

}
= P

{
AM−1 + ξ1 + . . . + ξj−M+1 ≤

j

2

}

≤ P
{
ξ1 + . . . + ξj−M+1 ≤

j

2

}
≤ K1e

−K2j ,

where we used the fact that (ξi) is a sequence of i.i.d geometric random variables with
mean 1. Similarly, recalling that AM−1 admits exponential moments of order β < 2, we
also deduce, for j ≥ M − 1, with possibly extended values of K1 and K2, that

P
{
Zn+1 ≥ 2Zn |Zn = j

}
= P

{
AM−1 + ξ1 + . . . + ξj−M+1 ≥ 2j

}

≤ P
{
AM−1 ≥

j

2

}
+ P

{
ξ1 + . . . + ξj−M+1 ≥

3j

2

}
≤ K1e

−K2j .

Throughout this section, we use the notation, for t ∈ [0, 1] and n ∈ N,

Vn,t
def
= Zn + t(Zn+1 − Zn).

In particular Vn,t ∈ [Zn, Zn+1] (with the convention that for a > b, [a, b] means [b, a]).
With this notation, we can rewrite the expression of θn given in (4.8) in the form

θn = (Zn+1 − Zn)
2

∫ 1

0

(1 − t)
(
φ′′

λ(Vn,t) − φ′′
λ(Zn)

)
dt.

Therefore, using the expression of φ′
λ and φ′′

λ stated in Fact (5.2), we get

E[θn | Fn] =

∫ 1

0

(1 − t)(I1
n(t) + I2

n(t))dt, (5.11)

with

I1
n(t)

def
= λE

[
(Zn+1 − Zn)2

(
Fν(

√
λVn,t) − Fν(

√
λZn)

) ∣∣∣ Fn

]
,

I2
n(t)

def
= −αλνE

[
(Zn+1 − Zn)

2
(
V α−1

n,t F1−ν(
√

λVn,t) − Zα−1
n F1−ν(

√
λZn)

) ∣∣∣ Fn

]
.
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Recall that we want to estimate

E

[
σ−1∑

n=1

µ4(n)

]
= E

[
σ−1∑

n=1

e−λ
∑n

k=0 Zk

∫ 1

0

(1 − t)I1
n(t)dt

]

+ E

[
σ−1∑

n=1

e−λ
∑n

k=0 Zk

∫ 1

0

(1 − t)I2
n(t)dt

]
.

We deal with each term separately.

Dealing with I1: We prove that the contribution of this term is negligible, i.e.

∣∣∣E
[

σ−1∑

n=1

e−λ
∑n

k=0 Zk

∫ 1

0

(1 − t)I1
n(t)dt

] ∣∣∣ ≤ c8λ
ν+ε. (5.12)

To this end, we first notice that

|I1
n(t)| ≤ λ

3
2E

[
|Zn+1 − Zn|3 max

x∈[Zn,Zn+1]
|F ′

ν(
√

λx)|
∣∣∣ Fn

]

= λ
3
2E

[
|Zn+1 − Zn|3 max

x∈[Zn,Zn+1]
(
√

λx)αF1−ν(
√

λx)
∣∣∣ Fn

]

≤ c1−νλ
3
2 E

[
|Zn+1 − Zn|3 max

x∈[Zn,Zn+1]
(
√

λx)αe−
√

λx
∣∣∣ Fn

]
, (5.13)

where we used (5.2) to find c1−ν such that F1−ν(x) ≤ c1−νe
−x. We now split (5.13)

according to whether

(a)
1

2
Zn ≤ Zn+1 ≤ 2Zn or (b) Zn+1 <

1

2
Zn or Zn+1 > 2Zn.

One the one hand, Lemma 4.3 states that

E [|Zn+1 − Zn|p | Fn] ≤ DpZ
p
2
n for all p ∈ N and Zn 6= 0.

Hence, for 1 ≤ n ≤ σ − 1, we get

E

[
|Zn+1 − Zn|3 max

x∈[Zn,Zn+1]
(
√

λx)αe−
√

λx1l{ 1
2
Zn≤Zn+1≤2Zn}

∣∣∣ Fn

]

≤ E

[
|Zn+1 − Zn|3 max

x∈[ 1
2
Zn,2Zn]

(
√

λx)αe−
√

λx1l{ 1
2
Zn≤Zn+1≤2Zn}

∣∣∣ Fn

]

≤ E
[
|Zn+1 − Zn|3(2

√
λZn)αe−

1
2

√
λZn

∣∣∣ Fn

]

≤ c9Z
3
2
n (
√

λZn)αe−
1
2

√
λZn

≤ c9λ
3α−6

8 Z
3α
4

n (
√

λZn)
6+α

4 e−
1
2

√
λZn

≤ c10λ
3α−6

8 Z
3α
4

n ,

(5.14)
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where we used the fact that the function x
6+α

4 e−
x
2 is bounded on R+ for the last inequality.

On the other hand,

E

[
|Zn+1 − Zn|3 max

x∈[Zn,Zn+1]
(
√

λx)αe−
√

λx1l{Zn+1< 1
2
Zn or Zn+1>2Zn}

∣∣∣ Fn

]

≤ E

[
|Zn+1 − Zn|3 max

x≥0
(
√

λx)αe−
√

λx1l{Zn+1< 1
2
Zn or Zn+1>2Zn}

∣∣∣ Fn

]

≤ c11E
[
|Zn+1 − Zn|6 | Fn

]1/2
P

{
Zn+1 <

1

2
Zn or Zn+1 > 2Zn

∣∣∣ Fn

} 1
2

≤ c12Z
3
2
n e−

K2
2

Zn

≤ c13.

(5.15)

Combining (5.13), (5.14) and (5.15), we get

|I1
n(t)| ≤ c1−νc13λ

3
2 + c1−νc10λ

3α+6
8 Z

3α
4

n ≤ c14λ
ν+ 2−α

8 Z
3α
4

n .

And therefore
∣∣∣E
[

σ−1∑

n=1

e−λ
∑n

k=0 Zk

∫ 1

0

(1 − t)I1
n(t)dt

] ∣∣∣ ≤ c14λ
ν+ 2−α

8 E

[
σ−1∑

n=1

Z
3α
4

n

]
.

Corollary 2.3 states that E[
∑σ−1

n=1 Z
3α
4

n ] is finite so the proof of (5.12) is complete.

Dealing with I2: It remains to prove that

E

[
σ−1∑

n=1

e−λ
∑n

k=0 Zk

∫ 1

0

(1 − t)I2
n(t)dt

]
= C4λ

ν + o(λν+ε). (5.16)

To this end, we write

I2
n(t) = −αλν(J1

n(t) + J2
n(t) + J3

n(t)), (5.17)

with

J1
n(t)

def
= E

[
(Zn+1 − Zn)2(F1−ν(

√
λVn,t)) − F1−ν(

√
λZn))Zα−1

n | Fn

]
,

J2
n(t)

def
= E

[
(Zn+1 − Zn)2(V α−1

n,t − Zα−1
n )(F1−ν(

√
λVn,t) − F1−ν(0)) | Fn

]
,

J3
n(t)

def
= F1−ν(0)E

[
(Zn+1 − Zn)2(V α−1

n,t − Zα−1
n ) | Fn

]
.

Again, we shall study each term separately. In view of (5.16) and (5.17), the proof of
(e) of Lemma 4.4, when α < 1, will finally be complete once we established the following
three estimates:

E

[
σ−1∑

n=1

e−λ
∑n

k=0 Zk

∫ 1

0

(1 − t)J1
n(t)dt

]
= O(λ

1−α
4 ), (5.18)

E

[
σ−1∑

n=1

e−λ
∑n

k=0 Zk

∫ 1

0

(1 − t)J2
n(t)dt

]
= o(λε), (5.19)

E

[
σ−1∑

n=1

e−λ
∑n

k=0 Zk

∫ 1

0

(1 − t)J3
n(t)dt

]
= C + o(λε). (5.20)
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Proof of (5.18): Using a technique similar to that used for I1, we split J1 into three
different terms according to whether

(a)
1

2
Zn ≤ Zn+1 (b) 1 ≤ Zn+1 <

1

2
Zn (c) Zn+1 = 0.

For the first case (a), we write, for 1 ≤ n ≤ σ − 1, recalling that Vn,t ∈ [Zn, Zn+1],

∣∣∣E
[
(Zn+1 − Zn)

2
(
F1−ν(

√
λVn,t) − F1−ν(

√
λZn)

)
Zα−1

n 1l{ 1
2
Zn≤Zn+1}

∣∣∣ Fn

] ∣∣∣

≤ λ
1
2 E
[
|Zn+1 − Zn|3Zα−1

n max
x≥ 1

2
Zn

|F ′
1−ν(

√
λx)|

∣∣∣ Fn

]

= λ
1
2 E
[
|Zn+1 − Zn|3 | Fn

]
Zα−1

n max
x≥ 1

2
Zn

(
(
√

λx)−αFν(
√

λx)
)

≤ c15λ
1
2E
[
|Zn+1 − Zn|3 | Fn

]
Zα−1

n max
x≥ 1

2
Zn

(
(
√

λx)−αe−
√

λx
)

= c15λ
1
2 E
[
|Zn+1 − Zn|3 | Fn

]
Z−1

n (
1

2

√
λ)−αe−

1
2

√
λZn

≤ c16Z
1
2
n λ

1−α
2 e−

1
2

√
λZn

= c16λ
1−α

4 Z
α
2
n

(
(
√

λZn)
1−α

2 e−
1
2

√
λZn

)

≤ c17λ
1−α

4 Z
α
2
n ,

(5.21)

where we used Lemma 4.3 to get an upper bound for the conditional expectation.
For the second case (b), keeping in mind Lemma 5.4, we get

E
[
(Zn+1 − Zn)2

(
F1−ν(

√
λVn,t) − F1−ν(

√
λZn)

)
Zα−1

n 1l{1≤Zn+1< 1
2
Zn}

∣∣∣ Fn

]

≤ c18λ
1
2E
[
|Zn+1 − Zn|3Zα−1

n 1l{1≤Zn+1< 1
2
Zn} | Fn

]
max
x≥1

(
(
√

λx)−αe−
√

λx
)

≤ c19λ
1
2E
[
Zα+2

n 1l{1≤Zn+1< 1
2
Zn} | Fn

]
λ−α

2

≤ c19λ
1−α

2 Zα+2
n P{Zn+1 <

1

2
Zn | Fn}

≤ c19K1λ
1−α

2 Zα+2
n e−K2Zn

≤ c20λ
1−α

2 .

(5.22)

For the last case (c), we note that when Zn+1 = 0, then Vn,t = (1 − t)Zn, therefore

E
[
(Zn+1 − Zn)2

(
F1−ν(

√
λVn,t) − F1−ν(

√
λZn)

)
Zα−1

n 1l{Zn+1=0}

∣∣∣ Fn

]

= Z2
n(F1−ν(

√
λ(Zn(1 − t))) − F1−ν(

√
λZn))Zα−1

n P{Zn+1 = 0 | Fn}
≤ c21λ

1
2 Z2+α

n e−K2Zn max
x∈[Zn(1−t),Zn]

(
√

λx)−α

≤ c21λ
1−α

2 (1 − t)−αZ2
ne−K2Zn

≤ c22λ
1−α

2 (1 − t)−α.

(5.23)
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Combining (5.21), (5.22) and (5.23), we deduce that, for 1 ≤ n ≤ σ − 1,

∫ 1

0

(1 − t)|J1
n(t)|dt ≤ c23λ

1−α
4 Z

α
2
n .

Moreover, according to Corollary 2.3, we have E
[∑σ−1

n=1 Z
α
2
n

]
< ∞, therefore

∣∣∣E
[

σ−1∑

n=1

e−λ
∑n

k=0 Zk

∫ 1

0

(1 − t)J1
n(t)dt

] ∣∣∣ ≤ E

[
σ−1∑

n=1

∫ 1

0

(1 − t)|J1
n(t)|dt

]
≤ c24λ

1−α
4 (5.24)

which yields (5.18).

Proof of (5.19): We write

J2
n(t) = E[Rn(t) | Fn]

with
Rn(t)

def
= (Zn+1 − Zn)2

(
V α−1

n,t − Zα−1
n

) (
F1−ν(

√
λVn,t) − F1−ν(0)

)
.

Again, we split the expression of J2 according to four cases:

J2
n(t) = E[Rn(t)1l{Zn+1=0} | Fn] + E[Rn(t)1l{1≤Zn+1< 1

2
Zn} | Fn]

+E[Rn(t)1l{ 1
2
Zn≤Zn+1≤2Zn} | Fn] + E[Rn(t)1l{Zn+1>2Zn} | Fn]. (5.25)

We do not detail the cases Zn+1 = 0 and 1 ≤ Zn+1 < 1
2
Zn which may be treated by the

same method used in (5.22) and (5.23) and yields similar bounds which do not depend
on Zn:

E[Rn(t)1l{Zn+1=0} | Fn] ≤ c25λ
1−α

2 (1 − t)−α

E[Rn(t)1l{1≤Zn+1< 1
2
Zn} | Fn] ≤ c26λ

1−α
2 .

In particular, the combination of these two estimates gives:
∣∣∣∣∣E
[

σ−1∑

n=1

e−λ
∑n

k=0 Zk

∫ 1

0

(1 − t)E[Rn(t)1l{Zn+1< Zn
2

} | Fn]dt

]∣∣∣∣∣ ≤ c27λ
1−α

2 . (5.26)

In order to deal with the third term on the r.h.s. of (5.25), we write

|E[Rn(t)1l{ 1
2
Zn≤Zn+1≤2Zn} | Fn]|

=
∣∣∣E
[
(Zn+1 − Zn)2(V α−1

n,t − Zα−1
n )(F1−ν(

√
λVn,t) − F1−ν(0))1l{ 1

2
Zn≤Zn+1≤2Zn} | Fn

]∣∣∣

≤ c28E

[
|Zn+1 − Zn|3 max

x≥Zn
2

xα−2

∫ 2
√

λZn

0

|F ′
1−ν(y)|dy

∣∣∣ Fn

]

≤ c29E
[
|Zn+1 − Zn|3 | Fn

]
max
x≥Zn

2

xα−2

∫ 2
√

λZn

0

y−αdy

≤ c30λ
1−α

2 Z
1
2
n .

27



According to Corollary 2.3, when 1
2

< α < 1, we have E
[∑σ−1

n=1 Z
1/2
n

]
< ∞. In this case,

we get

∣∣∣∣∣E
[

σ−1∑

n=1

e−λ
∑n

k=0 Zk

∫ 1

0

(1 − t)E[Rn(t)1l{ 1
2
Zn≤Zn+1≤2Zn} | Fn]dt

]∣∣∣∣∣ ≤ c31λ
1−α

2 . (5.27)

When 0 < α ≤ 1
2
, the function x

2−3α
4 e−x is bounded on R+, so

e−λZn

∫ 1

0

(1 − t)|E[Rn(t)1l{ 1
2
Zn≤Zn+1≤2Zn} | Fn]|dt ≤ c30λ

α
4 Z

3α
4

n (λZn)
2−3α

4 e−λZn

≤ c32λ
α
4 Z

3α
4

n .

Therefore, when α ≤ 1
2
, the estimate (5.27) still holds by changing λ

1−α
2 to λ

α
4 . Hence,

for every α ∈ (0, 1), we can find ε > 0 such that

∣∣∣∣∣E
[

σ−1∑

n=1

e−λ
∑n

k=0 Zk

∫ 1

0

(1 − t)E[Rn(t)1l{ 1
2
Zn≤Zn+1≤2Zn} | Fn]dt

]∣∣∣∣∣ ≤ c33λ
ε. (5.28)

We now give the upper bound for the last term on the r.h.s. of (5.25). We have

E
[
Rn(t)1l{Zn+1≥2Zn}

∣∣∣ Fn

]
= E

[
Rn(t)1l{2Zn≤Zn+1≤λ− 1

4 }

∣∣∣ Fn

]

+E
[
Rn(t)1l{Zn+1>max(λ− 1

4 ,2Zn)}

∣∣∣ Fn

]
.

On the one hand, when Zn 6= 0 and Zn+1 6= 0, we have |V α−1
n,t − Zα−1

n | ≤ 2 thus, for
1 ≤ n ≤ σ − 1,

∣∣∣E
[
Rn(t)1l{2Zn≤Zn+1≤λ− 1

4 }

∣∣∣ Fn

]∣∣∣

=
∣∣∣E
[
(Zn+1 − Zn)2

(
V α−1

n,t − Zα−1
n

)(
F1−ν(

√
λVn,t) − F1−ν(0)

)
1l{2Zn<Zn+1≤λ− 1

4 }

∣∣∣ Fn

] ∣∣∣

≤ 2E
[
(Zn+1 − Zn)2

∫ √
λZn+1

0

x−αFν(x)dx1l{2Zn<Zn+1≤λ− 1
4 } | Fn

]

≤ c34E
[
(Zn+1 − Zn)2

∫ λ
1
4

0

x−αdx1l{Zn+1>2Zn} | Fn

]

≤ c35λ
1−α

4 E
[
(Zn+1 − Zn)21l{Zn+1>2Zn} | Fn

]

≤ c35λ
1−α

4 E
[
(Zn+1 − Zn)4 | Fn

] 1
2

P
{
Zn+1 > 2Zn | Fn

} 1
2

≤ c36λ
1−α

4 ,
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where we used Lemma 4.3 and Lemma 5.4 for the last inequality. On the other hand,

E
[
Rn(t)1l{Zn+1>max(λ− 1

4 ,2Zn)}

∣∣∣ Fn

]

=
∣∣∣E
[
(Zn+1 − Zn)2(V α−1

n,t − Zα−1
n )(F1−ν(

√
λVn,t) − F1−ν(0))1l{Zn+1>max(λ− 1

4 ,2Zn)} | Fn

]∣∣∣

≤ 2||F1−ν ||∞E
[
(Zn+1 − Zn)21l{Zn+1>max(λ− 1

4 ,2Zn)} | Fn

]

≤ c37E
[
(Zn+1 − Zn)41l{Zn+1>2Zn} | Fn

] 1
2

P{Zn+1 > λ− 1
4 | Fn}

1
2

≤ c38Zne−
K2
4

ZnP{Zn+1 > λ− 1
4 | Fn}

1
2

≤ c38Zne−
K2
4

ZnE[Zn+1 | Fn]
1
2 λ

1
8

≤ c39λ
1
8 .

These two bounds yield
∣∣∣∣∣E
[

σ−1∑

n=1

e−λ
∑n

k=0 Zk

∫ 1

0

(1 − t)E[Rn(t)1l{ 1
2
Zn≤Zn+1>2Zn} | Fn]dt

]∣∣∣∣∣ ≤ c40λ
β (5.29)

with β = min(1−α
4

, 1
8
). Combining (5.26), (5.28) and (5.29), we finally obtain (5.19).

Proof of (5.20): Recall that

J3
n(t)

def
= F1−ν(0)E

[
(Zn+1 − Zn)2(V α−1

n,t − Zα−1
n ) | Fn

]
.

In particular, J3
n(t) does not depend on λ. We want to show that there exist C ∈ R and

ε > 0 such that

E

[
σ−1∑

n=1

e−λ
∑n

k=0 Zk

∫ 1

0

(1 − t)J2
n(t)dt

]
= C + o(λε). (5.30)

We must first check that

E

[
σ−1∑

n=1

∫ 1

0

(1 − t)|J2
n(t)|dt

]
< ∞.

This may be done, using the same method as before by distinguishing three cases:

(a) Zn+1 ≥
1

2
Zn (b) 1 ≤ Zn+1 <

1

2
Zn (c) Zn+1 = 0.

Since the arguments are very similar to those provided above, we feel free to skip the
details. We find, for 1 ≤ n ≤ σ − 1,

∫ 1

0

(1 − t)|J2
n(t)|dt ≤ c41Z

α− 1
2

n + c42 ≤ c43Z
α
2
n .

Since E
[∑σ−1

n=1 Z
α
2
n

]
< ∞, with the help of the dominated convergence theorem, we get

lim
λ→0

E

[
σ−1∑

n=1

e−λ
∑n

k=0 Zk

∫ 1

0

(1 − t)J2
n(t)dt

]
= E

[
σ−1∑

n=1

∫ 1

0

(1 − t)J2
n(t)dt

]
def
= C ∈ R.
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Furthermore we have
∣∣∣∣∣E
[

σ−1∑

n=1

e−λ
∑n

k=0 Zk

∫ 1

0

(1 − t)J2
n(t)dt

]
− C

∣∣∣∣∣ =

∣∣∣∣∣E
[

σ−1∑

n=1

(1 − e−λ
∑n

k=0 Zk)

∫ 1

0

(1 − t)J2
n(t)dt

]∣∣∣∣∣

≤ c43E

[
(1 − e−λ

∑σ−1
k=0

Zk)

σ−1∑

n=1

Z
α
2
n

]
.

And using Hölder’s inequality, we get

E

[
(1 − e−λ

∑σ−1
k=0

Zk)

σ−1∑

n=1

Z
α
2
n

]
≤ E

[
(1 − e−λ

∑σ−1
k=0

Zk)σ
1
3 (

σ−1∑

n=1

Z
3α
4

n )
2
3

]

≤ E
[
(1 − e−λ

∑σ−1
k=0

Zk)3σ
] 1

3

E

[
σ−1∑

n=1

Z
3α
4

n

] 2
3

≤ c44E
[
(1 − e−λ

∑σ−1
k=0

Zk)σ
] 1

3

≤ c45λ
ε

where we used Lemma 5.3 for the last inequality. This yields (5.20) and completes, at
last, the proof of (e) of Lemma 4.4 when α ∈ (0, 1).

5.2.6 Proof of Lemma 4.4 when α = 1

The proof of the lemma when α = 1 is quite similar to the one for α < 1. Giving a
complete proof would be quite lengthy and redundant. We shall therefore provide only
the arguments which differ from the case α < 1.

For α = 1, the main difference from the previous case comes from the fact that the
function F1−ν = F0 is not bounded near 0 anymore, a property that was extensively used
in the course of the proof when α < 1. To overcome this new difficulty, we introduce the
function G defined by

G(x)
def
= F0(x) + F1(x) log x for x > 0. (5.31)

Using the properties of F0 and F1 stated in section 5.1, we easily check that the function
G satisfies

(1) G(0)
def
= limx→0+ G(x) = log(2) − γ (where γ denotes Euler’s constant).

(2) There exists cG > 0 such that G(x) ≤ cGe−x for all x ≥ 0.

(3) G′(x) = −xF0(x) log x, so G′(0) = 0.

(4) There exists cG′ > 0 such that |G′(x)| ≤ cG′
√

xe−x/2 for all x ≥ 0.

Thus, each time we encounter F0(x) in the study of µk(n), we will write G(x)−F1(x) log x
instead. Let us also notice that F1 and F ′

1 are also bounded on [0,∞).
We now point out, for each assertion (a) - (e) of Lemma 4.4, the modification required

to handle the case α = 1.
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Assertion (a): E[µ(0)] = C0λ log λ + C ′
0λ + o(λ)

As in section 5.2.1, we have

E[µ(0)] = λE

[∫ Z1

0

xF0(
√

λx)dx

]

= λE

[∫ Z1

0

xG(
√

λx)dx

]
− λE

[∫ Z1

0

xF1(
√

λx) log(
√

λx)dx

]

= λE

[∫ Z1

0

x
(
G(

√
λx) − F1(

√
λx) log x

)
dx

]
− 1

2
λ log λE

[∫ Z1

0

xF1(
√

λx)dx

]

and by dominated convergence,

lim
λ→0

E

[∫ Z1

0

x
(
G(

√
λx) − F1(

√
λx) log x

)
dx

]
= E

[∫ Z1

0

x
(
G(0) − F1(0) log x

)
dx

]
.

Furthermore, using the fact that F ′
1 is bounded, we get

E

[∫ Z1

0

xF1(
√

λx)dx

]
=

F1(0)

2
E[Z2

1 ] + O(
√

λ)

so that
E[µ(0)] = C0λ log λ + C ′

0λ + o(λ).

Assertion (b): E[
∑σ−1

n=1 µ1(n)] = o(λ)

This result is the same as when α < 1, the only difference being that now

P{Z∞ > x} ∼
x→∞

C log x

x
.

Thus, equality (5.6) becomes

λ2E

[
σ−1∑

n=1

Z2
n1l{Zn≤−2 log λ√

λ
}

]
∼

λ→0+
c46λ

3
2 | logλ|2

and the same upper bound holds.

Assertion (c): E[
∑σ−1

n=1 µ2(n)] = C2λ log λ + C ′
2λ + o(λ)

Using the definition of G, we now have

µ2(n) = λZnF0(
√

λZn)f1(Zn)e−λ
∑n

k=0 Zk

= λZnf1(Zn)e−λ
∑n

k=0 Zk

[(
G(

√
λZn) − F1(

√
λZn) log(Zn)

)
− 1

2
log λF1(

√
λZn)

]
.

Since f1(x) is equal to 0 for x ≥ M − 1, we get the following (finite) limit

lim
λ→0

E

[
σ−1∑

n=1

Znf1(Zn)e−λ
∑n

k=0 Zk(G(
√

λZn) − F1(
√

λZn) log(Zn))

]
=

E

[
σ−1∑

n=1

Znf1(Zn)(G(0) − F1(0) log(Zn))

]
.
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Using the same idea as in (5.8), using also Lemma 5.3 and the fact that F ′
1 is bounded,

we deduce that

E

[
σ−1∑

n=1

Znf1(Zn)e
−λ

∑n
k=0 ZkF1(

√
λZn))

]
= E

[
σ−1∑

n=1

Znf1(Zn)F1(0)

]
+ o(λε)

which completes the proof of the assertion.

Assertion (d): E[
∑σ−1

n=1 µ3(n)] = C3λ log λ + C ′
3λ + o(λ)

We do not detail the proof of this assertion since it is very similar to the proof of (c).

Assertion (e): E[
∑σ−1

n=1 µ4(n)] = C ′
4λ + o(λ)

It is worth noticing that, when α = 1, the contribution of this term is negligible compared
to (a) (c) (d) and does not affect the value of the constant in Proposition 4.1. This differs
from the case α < 1. Recall that

µ4(n) = −e−λ
∑n

k=0 ZkE[θn | Fn],

where θn is given by (4.8). Recall also the notation Vn,t
def
= Zn + t(Zn+1 − Zn). Just as in

(5.11), we write

E[θn | Fn] =

∫ 1

0

(1 − t)(I1
n(t) + I2

n(t))dt,

with

I1
n(t)

def
= λE

[
(Zn+1 − Zn)2

(
F1(

√
λVn,t) − F1(

√
λZn)

) ∣∣ Fn

]

I2
n(t)

def
= −λE

[
(Zn+1 − Zn)

2(F0(
√

λVn,t) − F0(
√

λZn))
∣∣ Fn

]
.

It is clear that inequality (5.13) still holds i.e.

|I1
n(t)| ≤ λ

3
2 E

[
|Zn+1 − Zn|3 max

x∈[Zn,Zn+1]

√
λxF0(

√
λx)

∣∣ Fn

]
.

In view of the relation

F0(
√

λx) = G(
√

λx) − F1(
√

λx) log x − 1

2
F1(

√
λx) log λ,

and with similar techniques to those used in the case α < 1, we can prove that

∣∣∣E
[

σ−1∑

n=1

e−λ
∑n

k=0 Zk

∫ 1

0

(1 − t)I1
n(t)dt

] ∣∣∣ ≤ c47λ
9
8 | logλ| = o(λ). (5.32)

It remains to estimate I2
n(t) which we now decompose into four terms:

I2
n(t) = −λ(J̃1

n(t) + J̃2
n(t) + J̃3

n(t) + J̃4
n(t)),
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with

J̃1
n(t)

def
= E

[
(Zn+1 − Zn)

2(G(
√

λVn,t) − G(
√

λZn)) | Fn

]

J̃2
n(t)

def
= −1

2
log λE

[
(Zn+1 − Zn)2(F1(

√
λVn,t) − F1(

√
λZn)) | Fn

]

J̃3
n(t)

def
= −E

[
(Zn+1 − Zn)2 log Zn(F1(

√
λVn,t) − F1(

√
λZn)) | Fn

]

J̃4
n(t)

def
= −E

[
(Zn+1 − Zn)2(log Vn,t − log(Zn))F1(

√
λVn,t) | Fn

]
.

We can obtain an upper bound of order λε for J̃1
n(t) by considering again three cases:

(1)
1

2
Zn < Zn+1 < 2Zn (2) Zn+1 ≤

1

2
Zn (3) Zn+1 ≥ 2Zn.

For (1), we use that |G′(x)| ≤ cG′
√

xe−x/2 for all x ≥ 0. We deal with (2) combining
Lemma 5.4 and the fact that G′ is bounded. Finally, the case (c) may be treated by
similar methods as those used for dealing with J2

n(t) in the proof of (e) when α < 1 (i.e.
we separate into two terms according to whether Zn+1 ≤ λ−1/4 or not).

Keeping in mind that F1 is bounded and that |F ′
1(x)| = xF0(x) ≤ c48

√
xe−x, the same

method enables us to deal with J̃2
n(t) and J̃3

n(t). Combining these estimates, we get

E

[
σ−1∑

n=1

e−λ
∑n

k=0 Zk

∫ 1

0

(1 − t)
(
J̃1

n(t) + J̃2
n(t) + J̃3

n(t)
)

dt

]
= o(λε).

for ε > 0 small enough. Therefore, it merely remains to prove that

lim
λ→0+

E

[
σ−1∑

n=1

e−λ
∑n

k=0 Zk

∫ 1

0

(1 − t)J̃4
n(t)dt

]
(5.33)

exists and is finite. In view of the dominated convergence theorem, it suffices to prove
that

E

[
σ−1∑

n=1

∫ 1

0

(1 − t)E
[
(Zn+1 − Zn)2| logVn,t − log(Zn)|

∣∣∣ Fn

]
dt

]
< ∞. (5.34)

We consider separately the cases Zn+1 > Zn and Zn+1 ≤ Zn. On the one hand, using the
inequality log(1 + x) ≤ x, we get

E
[
1l{Zn+1>Zn}(Zn+1 − Zn)2| log Vn,t − log(Zn)|

∣∣∣ Fn

]

≤ E
[
1l{Zn+1>Zn}(Zn+1 − Zn)

2 log
(
1 +

t(Zn+1 − Zn)

Zn

) ∣∣∣ Fn

]
≤ t
√

Zn.

On the other hand, we find

E
[
1l{Zn+1≤Zn}(Zn+1 − Zn)2| log Vn,t − log(Zn)|

∣∣∣ Fn

]

≤ E
[
1l{Zn+1≤Zn}(Zn+1 − Zn)

2 log
(
1 +

t(Zn − Zn+1)

Zn − t(Zn − Zn+1)

) ∣∣∣ Fn

]
≤ t

1 − t

√
Zn.

Since E[
∑σ−1

n=1

√
Zn] is finite, we deduce (5.34) and the proof of assertion (e) is complete.
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6 Proof of Theorem 1.1

Recall that X stands for the (M, p̄)-cookie random walk and Z stands for its associated
branching process. We define the sequence of return times (σn)n≥0 by

{
σ0

def
= 0,

σn+1
def
= inf{k > σn , Zk = 0}.

In particular, σ1 = σ with the notation of the previous sections. We write

σn∑

k=0

Zk =

σ1−1∑

k=σ0

Zk + . . . +

σn−1∑

k=σn−1

Zk.

The random variables (
∑σi+1−1

k=σi
Zk , i ∈ N) are i.i.d. In view of Proposition 4.1, the

characterization of the domains of attraction to a stable law implies




∑σn
k=0

Zk

n1/ν

law−→
n→∞

Sν when α ∈ (0, 1),
∑σn

k=0
Zk

n log n

prob−→
n→∞

c when α = 1.
(6.1)

where Sν denotes a positive, strictly stable law with index ν
def
= α+1

2
and where c is a

strictly positive constant. Moreover, the random variables (σn+1 − σn , n ∈ N) are i.i.d.
with finite expectation E[σ], thus

σn

n

a.s.−→
n→∞

E[σ]. (6.2)

The combination of (6.1) and (6.2) easily gives





∑n
k=0 Zk

n1/ν

law−→
n→∞

E[σ]−
1
ν Sν when α ∈ (0, 1),

∑n
k=0 Zk

n log n

prob−→
n→∞

cE[σ]−1 when α = 1.

Concerning the hitting times of the cookie random walk Tn = inf{k ≥ 0 , Xk = n},
making use of Proposition 2.1, we now deduce that





Tn

n1/ν

law−→
n→∞

2E[σ]−
1
ν Sν when α ∈ (0, 1),

Tn

n log n

prob−→
n→∞

2cE[σ]−1 when α = 1.

Since Tn is the inverse of supk≤n Xk, we conclude that





1
nν supk≤n Xk

law−→
n→∞

Mν when α ∈ (0, 1),

log n
n

supk≤n Xk
prob−→

n→∞
C when α = 1,

where C
def
= (2c)−1E[σ] > 0 and Mν

def
= 2−νE[σ]S−ν

ν is a Mittag-Leffler random variable
with index ν. This completes the proof of the theorem for supk≤n Xk. It remains to prove
that this result also holds for Xn and for infk≥n Xk. We need the following lemma.
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Lemma 6.1. Let X be a transient cookie random walk. There exists f : N 7→ R+ with
limK→+∞ f(K) = 0 such that, for every n ∈ N,

P{n − inf
i≥Tn

Xi > K} ≤ f(K).

Proof. The proof of this lemma is very similar to that of Lemma 4.1 of [3]. For n ∈ N,
let ωX,n = (ωX,n(i, x))i≥1,x∈Z denote the random cookie environment at time Tn ”viewed
from the particle”, i.e. the environment obtained at time Tn and shifted by n. With this
notation, ωX,n(i, x) denotes the strength of the ith cookies at site x:

ωX,n(i, x) =

{
pj if j = i + ♯{0 ≤ k < Tn, Xk = x + n} ≤ M,
1
2

otherwise.

Since the cookie random walk X has not visited the half line [n,∞) before time Tn, the
cookie environment ωX,n on [0,∞) is the same as the initial cookie environment, that is,
for x ≥ 0,

ωX,n(i, x) =

{
pi if 1 ≤ i ≤ M,
1
2

otherwise.
(6.3)

Given a cookie environment ω, we denote by Pω a probability under which X is a cookie
random walk starting from 0 in the cookie environment ω. Therefore, with these notations,

P{n − inf
i≥Tn

Xi > K} ≤ E
[
PωX,n

{X visits −K at least once}
]
. (6.4)

Consider now the deterministic (but non-homogeneous) cookie environment ωp̄,+ obtained
from the classical homogeneous (M, p̄) environment by removing all the cookies situated
on (−∞,−1]:

{
ωp̄,+(i, x) = 1

2
, for all x < 0 and i ≥ 1,

ωp̄,+(i, x) = pi, for all x ≥ 0 and i ≥ 1 (with the convention pi = 1
2

for i ≥ M).

According to (6.3), the random cookie environment ωX,n is almost surely larger than the
environment ωp̄,+ for the canonical partial order, i.e.

ωX,n(i, x) ≥ ωp̄,+(i, x) for all i ≥ 1, x ∈ Z, almost surely.

The monotonicity result of Zerner stated in Lemma 15 of [15] yields

PωX,n
{X visits −K at least once} ≤ Pωp̄,+{X visits −K at least once} almost surely.

Combining this with (6.4), we get

P{n − inf
i≥Tn

Xi > K} ≤ Pωp̄,+{X visits − K at least once}. (6.5)

This upper bound does not depend on n. Moreover, it is shown in the proof of Lemma
4.1 of [3] that the walk in the cookie environment ωp̄,+ is transient which implies, in
particular,

Pωp̄,+{X visits − K at least once} −→
K→∞

0.
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We now complete the proof of Theorem 1.1. Let n, r, p ∈ N, using the equality
{Tr+p ≤ n} = {supk≤n Xk ≥ r + p}, we get

{sup
k≤n

Xk < r} ⊂ { inf
k≥n

Xk < r} ⊂ {sup
k≤n

Xk < r + p} ∪ { inf
k≥Tr+p

Xk < r}.

Taking the probability of these sets, we obtain

P{sup
k≤n

Xk < r} ≤ P{ inf
k≥n

Xk < r} ≤ P{sup
k≤n

Xk < r + p} + P{ inf
k≥Tr+p

Xk < r}.

But, using Lemma 6.1, we have

P{ inf
k≥Tr+p

Xk < r} = P{r + p − inf
k≥Tr+p

Xk > p} ≤ f(p) −→
p→∞

0.

Choosing x ≥ 0 and r = ⌊xnν⌋ and p = ⌊log n⌋, we get, for α < 1, as n tends to infinity

lim
n→∞

P

{
infk≥n Xk

nν
< x

}
= lim

n→∞
P

{
supk≤n Xi

nν
< x

}
= P {Mν < x} .

Of course, the same method also works when α = 1. This proves Theorem 1.1 for
infk≥n Xk. Finally, the result for Xn follows from

inf
k≥n

Xk ≤ Xn ≤ sup
k≤n

Xk.
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