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Observers design for unknown input nonlinear

descriptor systems via convex optimization

D. KOENIG

Abstract

This paper treats the design problem of full-order observers for rearlidescriptor systems with unknown input
(Ul). Depending on the available knowledge on the Ul dynamics, twoscarse considered. First, an unknown input
proportional observer (UIPO) is proposed when the spectral doofaine Ul is unknown. Second, a proportional
integral observer (PIO) is proposed when the spectral domain of thie ld the low frequency range. Sufficient
conditions for the existence and stability of such observers are givepramed. Based on the linear matrix inequality
(LMI) approach, an algorithm is presented to compute the observemggtinx that achieves the asymptotic stability

objective. An example is included to illustrate the method.

Index Terms

Lipschitz nonlinear descriptor systems, proportional integral obsgrumknown input observers, linear matrix

inequalities.

I. INTRODUCTION

Observer design for linear systems has received greattiatiein the literature and some extensions have been
proposed to the case of unknown inputs [9] and descriptdesys[10]. For physical processes that are described
by nonlinear models, three approaches can be distinguiiiretthe design of nonlinear observers. The first one
is based on a nonlinear transformation using Lie algebralifiags the system into a canonical form and then
uses linear techniques to design state observers. Negemsdusufficient conditions for a nonlinear system to be
equivalent to the canonical form have been established3dhdfd [14] but this approach necessitates conservative
conditions. The second approach is based on the linearipelgélmn spite of the local convergence of this method,
it is widely used in practice and generally gives better ltssinder less restrictive conditions than the first apgnoac
In [26], the authors have established a necessary condiiothe existence of a local exponential observer for
nonlinear systems. The third approach treats the obsersgrl problem for a class of nonlinear systems which
are composed of a linear part and a vector of nonlinear foanstilt was developed by [23], [8] and completed by

[71, [17], [25], [1] where sufficient conditions for globatability of the observer were established.

Damien Koenig is with Laboratoire d’Automatique de GrenoHlMR CNRS-INPG-UJF), BP 46, 38402 Saint Martin dté¢s, Cedex,

France (e-mail: Damien.Koenig@inpg.fr).
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However, few works have been done to extend the methods onextiabove to the general representation of
nonlinear descriptor systems. In [11] and [5], lineariaatis used to design a state observer for nonlinear descripto
systems without unknown inputs (Ul) with application to AQ converters.

The work presented here considers a general class of nanlgdescriptor systems subject to Ul and unknown
measurement disturbances where nonlinearities are adstarige Lipschitz. Before presenting the main results,
a brief review of the PIO is presented. PIO are used to attentiee effect of Ul, nonlinearities and uncertain
parameters. PIO have been applied in many applications asicbbust controller design [3], fault diagnosis [15],
loop transfert recovery design [16], parameter estimafad, state and fault estimation [12].

In this paper, two rigorous estimation algorithms that ataust to both process and sensor noise are proposed for
a class of Ul nonlinear descriptor systems. The first oneistsns designing a Ul observer which gives a perfect
Ul decoupled state estimation, while the second one cansistlesigning a PIO which attenuates the impact of
disturbances in the low and high spectral domains.

Notation: (.)" is the transpose matrix ang) the transconjugate.) > 0 denotes symmetric positive definite
matrices.c denotes singular values with the smallest and the largest singular value$.)™ is the generalized

inverse matrix.

Il. PROBLEM FORMULATION
Consider the nonlinear system of the form

Ei=Ax+ Fw+ He (x,u,t)
y=Czx+ Guw

1)

where £ may be rank deficienty € R”, u € R™, w € R™, ¢ : R" x R™ x R — R™ andy € R™denote
respectively the state, the known input, the Ul, the noslittg and the output vectordr, A, H € R"*", F' €
R G e R™*™ andC € R™*™ are known constant matrices. Before giving the main reslgtsis make the
following well-known assumptions.

Al  The nonlinearityo (z,u,t) is globally Lipschitz inz with Lipschitz constanty, i.e.,

o (z,u,t) — & (Z,u,t)|| <vl|lz—2Z|,YVu e R™ t e R

A2  rank = n,, andrank { cC G ] =m
G
E F 0
A3a rank| o G 0 =n+ rank [ F :| + rankG
cC 0 G ¢
E
A3b  rank =n
c
Ada rank|:pEA F:|_n+rank|:F:| VR(p) >0
C G G

nw

pE—A —F .

Adb  rank 0 pl, =n + rank [ :| VR(p) >0

G
C G
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Remark 1:

1) The system (1) is singular and is affected by Lipschitzlinearity and Ul. If we consider the system
T T
Ei = Ax + f(x,t) wherez = ( T, Ty ) , [z, t) = ( tzy (t) 0.3sinas (1) ) , it is clear that
the nonlinear function of this example is not fully Lipschitue to presence of the term; (¢) . However,

T
the nonlinear function of this example can be expressed Jasvflere F' = { 1 0 } ,w(t) =txy (1),

H= [ 0 1 }T, ¢ (r,u,t) = 0.3sinzs (t) and wherey = 0.3 is the Lipschitz constant. It is thus clear
that the class of nonlinear systems considered in this paperore general than those reported in the
literature [7], [17], [25], [25].

2) If the system is globally Lipschitz (see the definition &B8]), observer proposed produces global con-
vergence of the observer error. The assumption ¢haét Lipschitz globally may be relaxed to assume
that ¢ is only locally Lipschitz. All the results in the ensuing seas will then be valid in some local
neighborhood around a nominal point. In that case the pexpobserver, produces local convergence of
the observer error, the region of stability can be computetiiess computation is shown in the last section
of [7].

3) Consider the general nonlinear system

Ez = f(z)+g(x)u+ Fuw
y=Cz+ Guw

@)

where f (.), g (.), are continuously differentiable function, with(0) = 0. Let us denoted = % o’
B = ¢(0). Then the given system (2) can be expanded as (1) whéreu,t) = Bu+ fi (z) + g1 () u,
H = I, and wheref; (z) (resp.g; (x)) is obtained from expanding (z) (resp.¢; (x)) in a Taylor series
aboutz = 0.

4) A3a is necessary for the UIPO design while A3b is neceskarghe PIO design. More precisely, for

F =G =0, A3a is equivalent toA3b. For E = I,, and G = 0, A3a is equivalent to the Ul decoupled
I, F

0
full row rank E, A3a is equivalent to the generalized impulse observabjlity given in [10].

condition needed in the standard UIO [9] (i&.x = n+ rankF & rankCF = rankF = n,,). FOI a

5) Ada is necessary for the UIPO design while Adb is neceskaryhe PIO design. More precisely, for

F=G=0, E=1I,, assumption Ada is equivalent to the detectability of ther(A,C). Assumptions
Ada, Adb can often be satisfied, for engineering processes, fireliminary control.

Like in [2], the measurement is time integrated (i.ey;r = f(f ydv € R™) in order to attenuate the noise impact
in the estimation error (see the discussions in [2] and [ZIferefore (1) is transformed to the restricted system
equivalence (r.s.e)

Er=Az+ Fw+ Ho (z,u,t)

_ . . (3
yr=Crz, y=0Cz+Gw, §=0C7+Guw
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T _ F
WherEC[ = [ 0m><n Im :|a C = |: C 0m><m :| ’ ZjT = |: yT yT :| T = S Rn+7n, F =

)

yr G
_ E Onxm _ A Onxm . Omxn 9 C _
E= L I ol G = el G=| T | andH =
Om><n Im C Ome G C Om><n
Objectives:

1) If any knowledge about the spectral domain of the wlis given, then under A1,A2, A3a and Ada the
following UIPO is proposed

i=mz4 Kpyr + Kp,§ + TH} (&, u,t) @
% =2+ Ny, @:[L,o]i

wherern, K,,, K,,, T and N are determined such thatasymptotically converge te for any w and any
initial condition (eventually in a given set if it consist$ local convergence).

2) If the spectral domain of the Ul is in the low frequency range, then under A1,A2, A3b and A4é th
following PIO is proposed

i=mz+4 Kpyr + Kp,j + TFw + TH¢ (3, u,t)
= K] (y] - C]‘%) (5)
% =24 Ny, f={L10}f

&

wherez, z, ¥ € R"™™, ¢ € R", v € R" andr, K,,, K,,, K, T, N are unknown matrices which must be
determined such that, & andw asymptotically converge td,  andw respectively for any initial condition
(eventually in a given set if it consists of local converganc

3) Find the largest Lipschitz constasi in the nonlinearity for which the observer (4) or (5) existe §ystem
(3) (rs.e. (1))

4) Find the observer gain such that the asymptotic convemém zero of the estimation error is satisfied.

I1l. OBSERVERS DESIGN

In this section, a new method is presented to design both WROPIO for (1).
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A. UIPO

Before giving the main results, we introduce the followingations to clarify and simplify the presentation:

Theorem 1:If

g): d)(xvuat) - QZS((%,U,t) ‘ a1 = \:[11@1’_901

ez =T —TC€

ay = U107 ¢y ‘ U =P 7,
¥y = |: In+m O(n+m)><(n+m+2nw) :|
x1=aof P = BTU] + Pray = Ui+ Lnim + Xa

X1 =7 (Pras — U1 32) ( TU] )

B1 = (Laptsm — ©:107) o1 ‘ a=o(
B2 = (Lapgsm — ) @2 ‘ 8=
E A F 0
. y B=a(P)
C 0 0 G
0, =
0 —Cr 0 0
0 —Ipsm 0 O
A H
02m><(n+m) 02m><n
P1 = Y2 =
—Cr Omxn
0(n+m)><(n+m) 0(n+m)><n

1) there exist matrice$’, N, K,,,, = such that

TE+NC = Iim

™ :T/I—KPICI

Ky, =7N
NG =0
TF=0

2) there exists a solutio®;, U to the following convex optimization problem

June 16, 2005

max 7y

subject to P; >0 and

(1,1) mPias —7UiBa
* -1,

<0

(6)
@)
(8)
9)

(10)

11)
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where

(L,1) = Pray —UiBi + af Py — B{ UL + Lyin,

then the objectives 1, 3, 4 hold and the UIPO (4) is a globaéokes (i.e., asymptotically estimatesfor any w

and any initial estimate error). Moreover the resultingesber gainz, = Pl‘lUl,ensures that the estimation error

lezll < \/B71V (ez (0)) exp= 28 (12)

Proof—part 1)Suppose that (6) and (9) hold, then the state estimatiom efrbecomes:; = TEZ — z. In this

is exponentially stable, i.e.,

case, the dynamics of the estimation eregris described by
éz = Tez
+(TA-7TE - K,,C - K,,C1) &

+ (TF - Kmé) w+TH

It follows from (6-10) that
éz = (TA—K,Cr)ez +THo (13)

Rewriting (13) and (6,7,9,10) respectively as

s

[T N Kp W}@lei‘

- (14)
+[T N K, 77}%02¢
{T N K, W}@1:‘I’1 (15)
The solution of (15) depends on the rank of matgix. A solution exists if and only if (iff) [19]
©1
rank = rank©; (16)
vy

Using relation (16) and the definition of matré, and ¥, the necessary and sufficient condition for the existence
of a solution to equations (6,7,9,10) of theorem 1, or edeiviy, to matrix equation (15) is A3a. Therefore, under

assumption A3a, the general solution of (15) is
[ T N K, = ] = 0,0f — Z1 (Ianysm — ©107) 17)

where 7 is an arbitrary matrix of appropriate dimension. Substigit(17) into (14) gives

éz = (1 — Z151) ez + (a2 — Z132) ¢ (18)

Proof—part 2)Consider the quadratic Lyapunov function candidetée;) = el Pie; with P, > 0. The time

derivative of V' (ez) along system trajectories of (18) is
V(eg—c) = el (alTPl - BTUL + Proy — Ulﬁl) ez

+2eL (Prag — Ui f3a) &

June 16, 2005 DRAFT



From assumptiom, we have

2l (Prag — U1 f32) ¢

IN

2|9|| (a3 P - BFUT) e

2y |lez|l || (a3 Pr — BT UT ) 5|

A

T T
< ezXi€z tezex

and thusV’ (ez) < el'xiez. The inequalityel'y ez < 0 holds for alle; # 0 if there exists a solutio®;, U; to the
optimization problem defined in Theorem 1. In addition, sifi€(e;) < 3|lez]” and =V (ez) > eI (—x1) ez >
allez|? thenflez||* > B~V (ez) and—V (ez) > aB~ 'V (ez) which impliesV (e (t)) < exp=®? 't xV (ez (0)) .
Finally, since@Heg—CH2 <V (ez), we deduce (12).

Remark 2:

1) The convex, nonlinear inequality; < 0 is converted to a convex, linear inequality using the Schur
complement. Note that for a fixegl the inequality (11), is linear and convex with respect tovdsiables
P, andU;.

2) For a fixedy;, the existence of a solution o, > 0, U; of the LMI (11) needs that the matrix; — 71 3;
is Hurwitz, since the element (1,1) in (11) implié% (a1 — Z131) + (g — Zlﬁl)T P, < 0. Let us recall
that oy — Z1 31 can be stabilisable iff the pa(ra1 ﬁl) is detectable.

Now we can establish the necessary conditions for the existef the proposed observer (4).

Lemma 1:The necessary conditions for the existence of the obse#ydo( system (1) are:

1) Ada which is equivalent to the detectability of the pé&l ﬁl) is detectable, i.e.

rank Plom = 1 =n+m,VR(p) >0 (29)
b1
2) A3a
Proof of part 1)is done in the appendix while the proof pért 2) is done above (see (16)).
The following algorithm summarizes the design proceduréhefUIPO (4) for system (1).
Algorithm 1: Assume that lemma 1 is satisfied. Solve the convex optinoizairoblem defined in theorem 1 and

deduceZ; = P; 'U,. MatricesT, N, K,,, = and K,,, are computed from (17) and (8) respectively. a

B. PIO

Before giving the main results, we introduce the followingtations to clarify and simplify the presentation:

TA TF E

On,,, X (n+m) Onw X Mgy

K
T, = K. = o Uy = n+m
Onwxn KI

Ce = [ Cr Omxnw } ‘ Uy =PK,. | ey =w—0
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T
e Z[eg

6171: :| ‘ X2 = PQTeTZP2 + 72[n+m+nw

X2 = ATPy + Py A, — UsC. — CTUT + %5

Remark 3:If the spectral domain of the Ulv is in low frequency range, a general approach is possible by
assuming the disturbance as piecewise constant. See tlaekeeon PIO design in section 3.2 [22] and remark 2
in [12].

Theorem 2:Underw = 0, if

1) there exist matrice$’, N, K,,, = such that (6-8) hold

2) there exists a solutiof,, U, to the following convex optimization problem

max i

subject to P, >0 and

1,1) nPT.
(L) P <0 (20)

* -1,
(1,1) = PyA, — UsCe + ATP, — CTUT + Iiimiim,
then the objectives 2, 3, 4 hold and the PIO (4) is a global mksdi.e., asymptotically estimatesandw for
any initial estimate error). Moreover, as in the previoustise, the resulting observer gaiid, = P, U,,ensures
that the estimation errar (i.e., ez ande,,) is exponentially stable.

Proof—part 1)Suppose that (6) holds, then the state estimation egrdrecomes:; = TEZ — z — NGuw. The

dynamics of the estimation erroes ande,, become respectively
éj = Tez + TH(B

+(TA=7TE - Ky, C - K €)@

+ (TF + NG - K, G) w — TFw 1)
éw = —KiCres (22)
sincew = 0. It follows from (6-8) that
¢z = (TA— K, Cr) ez +TFe, +TH¢ (23)
Rewriting (6) as
|7 N]e:=w, (24)

The solution of (24) depends on the rank of matgix. A solution exists iff [19]

O,
rank = rank©q (25)
U,
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which is obviously equivalent to the assumption A3b. Thamjar A3b, the general solution of (25) is
{ T N } = U305 + Zs (Inyzm — ©207) (26)

whereZ, is an arbitrary matrix, fixed by the designer such that therimdt is of maximal rank (i.e. n+m, see the
discussion in [9]). Using the definition of., K., C.,T. ande, the relations (23) and (22) become

é= (A, — K.Cole+T.p (27)

Proof—part 2)Consider the quadratic Lyapunov function candidété) = e’ Pye with P, > 0. From assumption
Ay, the time derivative o/ (¢) along systems trajectories (27) givESe) < e yze. Using the Schur complement
formula,V (e) < 0 for all e # 0 if there exists a solution o, U, to the optimization problem defined in Theorem
2.

Remark 4:For a fixed~;, the existence of a solution oR, > 0, U, of the LMI (20) needs that the matrix
A. — K.C. is Hurwitz, since the element (1,1) in (20) impliés (A, — K.C.) + (A, — KeC’e)T P, <0.

Now we can establish the necessary conditions for the existef the proposed observer (5).

Lemma 2:The necessary conditions for the existence of the obseb)dio( system (1) are:
1) A4b which (underankT = m + n) is equivalent to the detectability of theuir(A., C.), i.e.,

|: p1n+m+nw - Ae
rank

=n+m+n,,VR(p)>0 (28)
CE:

2) A3b
Proof of part 1)is done in the appendix while the proof pért 2) is done above (see (25)).

Remark 5: The assumption A3b is same as the assumption b) given in . dan be relaxed to the impulse

observability condition i.e.,

E A
rank | 0 E | =n-+rankFE (29)
0 C

if rank { E H } = rankE (see remark 1 and proposition 1 in [12] and [15] respectjvelyif the nonlinear
algebraic constraints obtained after the transformaitdn= [ pPT  pT } can be rewritten with the known inputs
[15], i.e., P H¢ (z,u,t) = f (y,u). Obviously A3b and (29) are less restrictive than A3a.

The following algorithm summarizes the design proceduréhefPIO (5) for system (1).

Algorithm 2: Assume that lemma 2 is satisfied. From (26), fixadsuch that the matrif" is of maximal rank (i.e.
K
n+m) and deduc&, N. Solve the convex optimization problem defined in theorem@deduce| =~ | = K..

Kr
Matricesm and K, are deduced from (7) and (8) respectively. O
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IV. DISCUSSION

Since F is singular, system (1) can be rewritten as

Eyiy = A1z + Frw+ Ho (z,u,t)

(30)
y=Cir
Eoio = Asxo + Ho (2, u,t
or 242 242 ¢( ) (31)
y = Caomry
where
T = v € RnJrnw To = v € RnJrnw
¢ w
A = ) E, = e
Omxn _Im Onu,xn Onwxnw
= r Ey=| E Opxn, Ci=|C I,
G
Ar= A FHCF[C G|
L B . . . .
1) LetO; = . An UIPO can be designed for (30) which satisfy COHSU‘%II’F N ] O3 = U,
Cl Omxnw
iff [19]
=)
rank = rank©®s
Wy
o]l 2]
<= n+rank = rank
G 0o G
This implies thatrankE = n (i.e. no descriptor system) which is more restrictive corapgao A3a .
E E 0
2) An UIPO can be designed for (31) iftink S n+mn.,, or equivalently iffrank = N+Ny,

Cy C G
which is also more restrictive tha3a.
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V. NUMERICAL EXAMPLE

The following example illustrates respectively the UIPQ &hd PIO (5) estimation performance. Consider (1)

described by:

1 0 0 O -1 1 0 0
01 0 0 -1 0 0 1
E = VA= ,
0 010 0 -1 -1 0
0 0 0O 0 0 0 1
0 0 1 0 0
0 1 0 1 0
Fo= ¢ = u(t) +
0 0 0 0 0
0 1 10 —sin (x3)
1 0 0 O 1 0
C = 7G:
0 0 1 1 0 0

where the Lipschitz constant g fixed t00.15 (< ~1). In order to illustrate the robustness of each observer with
respect to the noise and Ul, we disturb the processvby (w1, w2)?, bu = (buy, buz)” and by = (byy, by2)”
which represent respectively the Ul, actuator and sensisesoThe components of the actuator and sensor noises

are described in fig. 1.b. The known inputiis= (u, uz)” whereu; = 0.7sin 0.5t + bu; anduy = sin 0.2t + bus.

A. UIPO

The lemma 1 is satisfied for al| then we can arbitrary fixe the eigenvalueg@f — 7, 5;). For a good estimation
performance and a maxima} solution to the convex optimization problem defined in tle®or2, we propose to
set the eigenvalues of the observer in a specified LMI rediof]. Matrix (a1 — Z151) has all its eigenvalues in

the vertical strip defined by
D={z+jyeC:—hy <z < —hs}, hi,ha €R (32)

iff there existsP; > 0 and U, such that

Piag + oleP - U061 — 1TU1T +2ho P <0 (33)
Piag +af'P—-U8, — BTUL + 201 P, > 0
Therefore, the convex optimization problem defined in theoR2 consists in finding®;, U; and the maximaly;
subject toP; > 0, (33) and (11). After some iterations, we fihd = 5.5, ho = 0.3 and~; = 0.249. Due to space
limitation, the matriced/,, Pi,Z:,T, N, K,,, = and K,,, are omitted. A satisfactory estimation is obtained for

17

any Ul and normally distributed random actuator and sens@es. Fig. 1.a shows that the state is well filtered.
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B. PIO

The lemma 3 is satisfied for gll. In order to compare the estimation performances for botfenlers, the same
LMI region D is defined (withk; = 5.5, ho = 0.3). There are several solutiots and we choose, = [ Is 0 }
since it gives both maximal rariK (i.e. n +m = 6) and~,. MatricesT and N are deduced from (26). The convex
optimization problem defined in theorem 4 consists in finding U> and the maximaty; subject toP, > 0, (20)

and
PA, + AzP —UsC, — CeTU2T +2ho Py < 0

PyA. + ATP — U,C, — CTUT 4 2h Py > 0
After some iterations, we fing; = 0.2507. Due to space limitation, the matricés, P, K;,7, N, K, , = and
K,, are omitted. Contrary to the UIPO, the maté is not optimal. In fact, the designer must test differentieal
for Z, until maximal rankT" (i.e.n +m = 6) and~; are obtained.

Satisfactory estimation is obtained for normally disttdm random actuator and sensor noises. The observer
gives a good Ul estimation and Fig. 1.d and 1.e show that tite sind Ul are well filtered. More precisely, the
Ul attenuation properties can clearly be observed in thesticahsfer function (i.ew to e,) given in fig. 1.f while
the transferw to w shows that the Ul estimation error decreases at low freqeenEig. 1.c shows a poor state
estimation performance since the impact of theutJl= sin 2¢ is not attenuated in this spectral domain (see fig. 1.f)
although the UIPO presents a good estimation performareefi{g. 1a). Obviously, if we increage, and h,, we
increase the bandwidth but we decrease the maximal Ligschbitstanty;. For example withh; = 20, hy = 1 and

hy = 50, he = 2, we find respectivelyy; = 0.172 and~; = 0.049. For hy > 4 the LMI constraints are infeasible.
0 1
Example 2:Consider the system described by [17] whéfe= [, A = JF=G=0,H=1,,C=
1 -1
[ 0 1 } andh; = 7, he = 6. The convex optimization problem defined for the UIPO gives= 0.989 although
the Rajamani algorithm [17] gives onty, = 0.49.
Example 3:Consider the system described by [25] whéfe= I,,FF = G = 0, and h; = 2.5, hy = 0.95,
we obtainy; = 2.393. Then, fory = 0.333, our observer (4) is guaranteed to be exponentially stalbleesihe

Lipschitz constant is less than.

VI. CONCLUSION

We have presented a rigorous method for the design of olrseiMenonlinear descriptor systems in presence of
Ul and noise. Depending on the available knowledge on thamjes of the Ul, two cases were considered. First,
for any knowledge about the dynamics of the Ul, an UIPO wap@sed. Second, for Ul with low frequencies, a PIO

was proposed. Existence conditions of such observers hese given and proved with a strict LMI formulation.

June 16, 2005 DRAFT



13

VII. APPENDIX
Proof of lemma 1Define the following nonsingular matricé§, V, and the full-column rank matriX

r I B Lntm —‘1’1@;’
Vi = n+m :| WVa=1| 0 Iopssm — @1@;r

L 7(9;»@1 I?(n+7n+nw)

0 (“)1@1+
[ —Tnim 0 0 0
pIn+m Iw,+m, 0 0
Vo o= 0 0 Inim 0
0 0 0 —I,, O
0 0 0 play  In,
Since
pIn+m \IJI
rank —2n — 3m — rankG = n + ny, (34)
P1 O
I’VL m ‘Il
& rcmk[p * @1}‘/2—2n—3m—rcmkG:n+nw
P1 1

& Ada
the problem of proving thatl4a < (19) is equivalent to prove thg34) < (19).

©
Proof of (34) < (19). From rank Y= rank©; < A3a, we obtain
N4

1 v
(34) & rankVs Plnm 21 Vi —2n —3m — rankG

Y1 (S]]

Lyt — V107
& Ny +rank Pintm 15141 —-m

(I2n45m — ©107) @1
= n+n,VR({p) >0

< (19)

Proof of lemma 2Define the following full rank matrix

T 0 N
0 I Naw 0
Vi= 0 0 0 I

0 0 0 I, 0 —plm
0 ply —ply  Im 0
whereV, € R(tmtnwtdm)x(ntmtny+3m) 7 c Rntm)x(ntm) popkT = n4m andrankVy = n+m-+n,+3m

since[ T N } is of full row rank i.e.n + m. In addition, since

pE—A —F
rank Ov pITi"’
pC pG (35)
Cy 0
=n+m+rankF ¥ R(p) >0
& Adb

June 16, 2005 DRAFT
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the problem of proving thatl4b < (28) is equivalent to prove that (35)28). We obtain

pE—A -F
0 I,
rankVy . P Y
(35) < pC pG
Cy 0

=n+m+n,,VR(p) >0

pl —TA —TF +pNG

0 pln,
4
Cr 0
=n+m+n,,VR(p)>0
< (28)

Note that all the above equivalences hold using the Sylvestequality,

rankA + rankB — m < rankAB < min {T‘LLTI]CA, 'rank:B}

where A € R"*™ B € RmxP.
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