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Observers design for unknown input nonlinear

descriptor systems via convex optimization
D. KOENIG

Abstract

This paper treats the design problem of full-order observers for nonlinear descriptor systems with unknown input

(UI). Depending on the available knowledge on the UI dynamics, two cases are considered. First, an unknown input

proportional observer (UIPO) is proposed when the spectral domainof the UI is unknown. Second, a proportional

integral observer (PIO) is proposed when the spectral domain of the UI is in the low frequency range. Sufficient

conditions for the existence and stability of such observers are given and proved. Based on the linear matrix inequality

(LMI) approach, an algorithm is presented to compute the observer gainmatrix that achieves the asymptotic stability

objective. An example is included to illustrate the method.

Index Terms

Lipschitz nonlinear descriptor systems, proportional integral observers, unknown input observers, linear matrix

inequalities.

I. I NTRODUCTION

Observer design for linear systems has received great attention in the literature and some extensions have been

proposed to the case of unknown inputs [9] and descriptor systems [10]. For physical processes that are described

by nonlinear models, three approaches can be distinguishedfor the design of nonlinear observers. The first one

is based on a nonlinear transformation using Lie algebra that brings the system into a canonical form and then

uses linear techniques to design state observers. Necessary and sufficient conditions for a nonlinear system to be

equivalent to the canonical form have been established in [13] and [14] but this approach necessitates conservative

conditions. The second approach is based on the linearized model. In spite of the local convergence of this method,

it is widely used in practice and generally gives better results under less restrictive conditions than the first approach.

In [26], the authors have established a necessary conditionfor the existence of a local exponential observer for

nonlinear systems. The third approach treats the observer design problem for a class of nonlinear systems which

are composed of a linear part and a vector of nonlinear functions. It was developed by [23], [8] and completed by

[7], [17], [25], [1] where sufficient conditions for global stability of the observer were established.

Damien Koenig is with Laboratoire d’Automatique de Grenoble (UMR CNRS-INPG-UJF), BP 46, 38402 Saint Martin d’Hères, Cedex,

France (e-mail: Damien.Koenig@inpg.fr).
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However, few works have been done to extend the methods mentioned above to the general representation of

nonlinear descriptor systems. In [11] and [5], linearization is used to design a state observer for nonlinear descriptor

systems without unknown inputs (UI) with application to AC/DC converters.

The work presented here considers a general class of nonlinear descriptor systems subject to UI and unknown

measurement disturbances where nonlinearities are assumed to be Lipschitz. Before presenting the main results,

a brief review of the PIO is presented. PIO are used to attenuate the effect of UI, nonlinearities and uncertain

parameters. PIO have been applied in many applications suchas robust controller design [3], fault diagnosis [15],

loop transfert recovery design [16], parameter estimation[21], state and fault estimation [12].

In this paper, two rigorous estimation algorithms that are robust to both process and sensor noise are proposed for

a class of UI nonlinear descriptor systems. The first one consists in designing a UI observer which gives a perfect

UI decoupled state estimation, while the second one consists in designing a PIO which attenuates the impact of

disturbances in the low and high spectral domains.

Notation: (.)
T is the transpose matrix and(∗) the transconjugate.(.) > 0 denotes symmetric positive definite

matrices.σ denotes singular values withσ the smallest and̄σ the largest singular values.(.)+ is the generalized

inverse matrix.

II. PROBLEM FORMULATION

Consider the nonlinear system of the form

Eẋ = Ax + Fw + Hφ (x, u, t)

y = Cx + Gw
(1)

whereE may be rank deficient,x ∈ R
n, u ∈ R

nu , w ∈ R
nw , φ : Rn × Rnu × R → Rn and y ∈ R

mdenote

respectively the state, the known input, the UI, the nonlinearity and the output vectors.E, A, H ∈ Rn×n, F ∈

Rn×nw , G ∈ Rm×nw andC ∈ Rm×n are known constant matrices. Before giving the main results, let us make the

following well-known assumptions.

A1 The nonlinearityφ (x, u, t) is globally Lipschitz inx with Lipschitz constantγ, i.e.,

‖φ (x, u, t) − φ (x̂, u, t)‖ ≤ γ ‖x − x̂‖ ,∀u ∈ R
nu , t ∈ R

A2 rank





F

G



 = nw andrank
[

C G

]

= m

A3a rank

2664 E F 0

0 G 0

C 0 G

3775 = n + rank

24 F

G

35+ rankG

A3b rank





E

C



 = n

A4a rank

24 pE − A −F

C G

35 = n + rank

24 F

G

35 ∀ R (p) ≥ 0

A4b rank

2664 pE − A −F

0 pInw

C G

3775 = n + rank

24 F

G

35 ∀ R (p) ≥ 0
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Remark 1:

1) The system (1) is singular and is affected by Lipschitz nonlinearity and UI. If we consider the system

Eẋ = Ax + f (x, t) wherex =
(

x1 x2

)T

, f (x, t) =
(

tx1 (t) 0.3 sin x2 (t)
)T

, it is clear that

the nonlinear function of this example is not fully Lipschitz due to presence of the termtx1 (t) . However,

the nonlinear function of this example can be expressed as (1), whereF =
[

1 0
]T

, w (t) = tx1 (t) ,

H =
[

0 1
]T

, φ (x, u, t) = 0.3 sin x2 (t) and whereγ = 0.3 is the Lipschitz constant. It is thus clear

that the class of nonlinear systems considered in this paperis more general than those reported in the

literature [7], [17], [25], [25].

2) If the system is globally Lipschitz (see the definition in [18]), observer proposed produces global con-

vergence of the observer error. The assumption thatφ is Lipschitz globally may be relaxed to assume

that φ is only locally Lipschitz. All the results in the ensuing sections will then be valid in some local

neighborhood around a nominal point. In that case the proposed observer, produces local convergence of

the observer error, the region of stability can be computed and its computation is shown in the last section

of [7].

3) Consider the general nonlinear system

Eẋ = f (x) + g (x)u + Fw

y = Cx + Gw
(2)

wheref (.), g (.) , are continuously differentiable function, withf(0) = 0. Let us denoteA = ∂f
∂x

∣

∣

∣

x=0
,

B = g(0). Then the given system (2) can be expanded as (1) whereφ (x, u, t) = Bu + f1 (x) + g1 (x)u,

H = In, and wheref1 (x) (resp.g1 (x)) is obtained from expandingf (x) (resp.g1 (x)) in a Taylor series

aboutx = 0.

4) A3a is necessary for the UIPO design while A3b is necessaryfor the PIO design. More precisely, for

F = G = 0, A3a is equivalent toA3b. For E = In and G = 0, A3a is equivalent to the UI decoupled

condition needed in the standard UIO [9] (i.e.rank

24 In F

C 0

35 = n + rankF ⇔ rankCF = rankF = nw). For a

full row rank E, A3a is equivalent to the generalized impulse observability(ii) given in [10].

5) A4a is necessary for the UIPO design while A4b is necessaryfor the PIO design. More precisely, for

F = G = 0, E = In, assumption A4a is equivalent to the detectability of thepair(A,C). Assumptions

A4a, A4b can often be satisfied, for engineering processes, by a preliminary control.

Like in [2], the measurementy is time integrated (i.e.,yI =
∫ t

0
ydυ ∈ R

m) in order to attenuate the noise impact

in the estimation error (see the discussions in [2] and [21]). Therefore (1) is transformed to the restricted system

equivalence (r.s.e)

Ē ˙̄x = Āx̄ + F̄w + H̄φ (x, u, t)

yI = CI x̄, y = C̄x̄ + Gw, y̆ = C̆x̄ + Ğw
(3)
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whereCI =
[

0m×n Im

]

, C̄ =
[

C 0m×m

]

, y̆T =
[

yT
I yT

]

, x̄ =





x

yI



 ∈ R
n+m, F̄ =





F

G



 ,

Ē =





E 0n×m

0m×n Im



 , Ā =





A 0n×m

C 0m×m



 , Ğ =





0m×nw

G



 , C̆ =





CI

C̄



 and H̄ =





H

0m×n



 .

Objectives:

1) If any knowledge about the spectral domain of the UIw is given, then under A1,A2, A3a and A4a the

following UIPO is proposed

ż = πz + Kp1
yI + Kp2

y̆ + TH̄φ (x̂, u, t)

ˆ̄x = z + Ny̆, x̂ =
[

In 0
]

ˆ̄x
(4)

whereπ, Kp1
, Kp2

, T andN are determined such thatx̂ asymptotically converge tox for any w and any

initial condition (eventually in a given set if it consists of local convergence).

2) If the spectral domain of the UIw is in the low frequency range, then under A1,A2, A3b and A4b the

following PIO is proposed

ż = πz + Kp1
yI + Kp2

y̆ + T F̄ ŵ + TH̄φ (x̂, u, t)

˙̂w = KI

(

yI − CI ˆ̄x
)

ˆ̄x = z + Ny̆, x̂ =
[

In 0
]

ˆ̄x

(5)

wherez, x̄, ˆ̄x ∈ R
n+m, x̂ ∈ R

n, ŵ ∈ R
nw andπ, Kp1

, Kp2
,KI , T , N are unknown matrices which must be

determined such that̄̂x, x̂ andŵ asymptotically converge tōx, x andw respectively for any initial condition

(eventually in a given set if it consists of local convergence).

3) Find the largest Lipschitz constantγ1 in the nonlinearity for which the observer (4) or (5) exists for system

(3) (r.s.e. (1))

4) Find the observer gain such that the asymptotic convergence to zero of the estimation error is satisfied.

III. O BSERVERS DESIGN

In this section, a new method is presented to design both UIPOand PIO for (1).

June 16, 2005 DRAFT
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A. UIPO

Before giving the main results, we introduce the following notations to clarify and simplify the presentation:

φ̃ = φ (x, u, t) − φ (x̂, u, t) α1 = Ψ1Θ
+
1 ϕ1

ex̄ = x̄ − ˆ̄x ∈ R
n+m α2 = Ψ1Θ

+
1 ϕ2 U1 = P1Z1

Ψ1 =
[

In+m 0(n+m)×(n+m+2nw)

]

χ1 = αT
1 P1 − βT

1 UT
1 + P1α1 − U1β1 + In+m + χ̄1

χ̄1 = γ2 (P1α2 − U1β2)
(

αT
2 P1 − βT

2 UT
1

)

β1 =
(

I2n+5m − Θ1Θ
+
1

)

ϕ1 α = σ (−χ1)

β2 =
(

I2n+5m − Θ1Θ
+
1

)

ϕ2 β̄ = σ̄ (P1)

Θ1 =

















Ē Ā F̄ 0

C̆ 0 0 Ğ

0 −CI 0 0

0 −In+m 0 0

















β = σ (P1)

ϕ1 =

















Ā

02m×(n+m)

−CI

0(n+m)×(n+m)

















ϕ2 =

















H̄

02m×n

0m×n

0(n+m)×n

















Theorem 1:If

1) there exist matricesT, N, Kp1
, π such that

TĒ + NC̆ = In+m (6)

π = TĀ − Kp1
CI (7)

Kp2
= πN (8)

NĞ = 0 (9)

T F̄ = 0 (10)

2) there exists a solutionP1, U1 to the following convex optimization problem

max γ1

subject to P1 > 0 and





(1, 1) γ1P1α2 − γ1U1β2

∗ −In



 < 0 (11)

June 16, 2005 DRAFT
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where

(1, 1) = P1α1 − U1β1 + αT
1 P1 − βT

1 UT
1 + In+m

then the objectives 1, 3, 4 hold and the UIPO (4) is a global observer (i.e., asymptotically estimatesx for anyw

and any initial estimate error). Moreover the resulting observer gainZ1 = P−1
1 U1,ensures that the estimation error

is exponentially stable, i.e.,

‖ex̄‖ ≤
√

β−1V (ex̄ (0)) exp− 1
2 αβ̄

−1
t (12)

Proof—part 1)Suppose that (6) and (9) hold, then the state estimation error ex̄ becomesex̄ = TĒx̄− z. In this

case, the dynamics of the estimation errorex̄ is described by

ėx̄ = πex̄

+
(

TĀ − πTĒ − Kp2
C̆ − Kp1

CI

)

x̄

+
(

T F̄ − Kp2
Ğ

)

w + TH̄φ̃

It follows from (6-10) that

ėx̄ =
(

TĀ − Kp1CI

)

ex̄ + TH̄φ̃ (13)

Rewriting (13) and (6,7,9,10) respectively as

ėx̄ =
[

T N Kp1 π

]

ϕ1ex̄

+
[

T N Kp1
π

]

ϕ2φ̃
(14)

[

T N Kp1
π

]

Θ1 = Ψ1 (15)

The solution of (15) depends on the rank of matrixΘ1. A solution exists if and only if (iff) [19]

rank





Θ1

Ψ1



 = rankΘ1 (16)

Using relation (16) and the definition of matrixΘ1 andΨ1, the necessary and sufficient condition for the existence

of a solution to equations (6,7,9,10) of theorem 1, or equivalently, to matrix equation (15) is A3a. Therefore, under

assumption A3a, the general solution of (15) is
[

T N Kp1
π

]

= Ψ1Θ
+
1 − Z1

(

I2n+5m − Θ1Θ
+
1

)

(17)

whereZ1 is an arbitrary matrix of appropriate dimension. Substituting (17) into (14) gives

ėx̄ = (α1 − Z1β1) ex̄ + (α2 − Z1β2) φ̃ (18)

Proof—part 2)Consider the quadratic Lyapunov function candidateV (ex̄) = eT
x̄ P1ex̄ with P1 > 0. The time

derivative ofV (ex̄) along system trajectories of (18) is

V̇ (ex̄) = eT
x̄

(

αT
1 P1 − βT

1 UT
1 + P1α1 − U1β1

)

ex̄

+2eT
x̄ (P1α2 − U1β2) φ̃

June 16, 2005 DRAFT
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From assumptionA1, we have

2eT
x̄ (P1α2 − U1β2) φ̃ ≤ 2

∥

∥

∥φ̃
∥

∥

∥

∥

∥

(

αT
2 P1 − βT

2 UT
1

)

ex̄

∥

∥

≤ 2γ ‖ex̄‖
∥

∥

(

αT
2 P1 − βT

2 UT
1

)

ex̄

∥

∥

≤ eT
x̄ χ̄1ex̄ + eT

x̄ ex̄

and thusV̇ (ex̄) ≤ eT
x̄ χ1ex̄. The inequalityeT

x̄ χ1ex̄ < 0 holds for allex̄ 6= 0 if there exists a solutionP1, U1 to the

optimization problem defined in Theorem 1. In addition, since V (ex̄) ≤ β̄ ‖ex̄‖
2 and−V̇ (ex̄) ≥ eT

x̄ (−χ1) ex̄ ≥

α ‖ex̄‖
2 then‖ex̄‖

2
≥ β̄

−1
V (ex̄) and−V̇ (ex̄) ≥ αβ̄

−1
V (ex̄) which impliesV (ex̄ (t)) < exp−αβ̄

−1
t ×V (ex̄ (0)) .

Finally, sinceβ ‖ex̄‖
2
≤ V (ex̄), we deduce (12).

Remark 2:

1) The convex, nonlinear inequalityχ1 < 0 is converted to a convex, linear inequality using the Schur

complement. Note that for a fixedγ1 the inequality (11), is linear and convex with respect to itsvariables

P1 andU1.

2) For a fixedγ1, the existence of a solution onP1 > 0, U1 of the LMI (11) needs that the matrixα1−Z1β1

is Hurwitz, since the element (1,1) in (11) impliesP1 (α1 − Z1β1) + (α1 − Z1β1)
T

P1 < 0. Let us recall

that α1 − Z1β1 can be stabilisable iff the pair
(

α1 β1

)

is detectable.

Now we can establish the necessary conditions for the existence of the proposed observer (4).

Lemma 1:The necessary conditions for the existence of the observer (4) for system (1) are:

1) A4a which is equivalent to the detectability of the pair
(

α1 β1

)

is detectable, i.e.

rank





pIn+m − α1

β1



 = n + m,∀ R (p) ≥ 0 (19)

2) A3a

Proof of part 1) is done in the appendix while the proof ofpart 2) is done above (see (16)).

The following algorithm summarizes the design procedure ofthe UIPO (4) for system (1).

Algorithm 1: Assume that lemma 1 is satisfied. Solve the convex optimization problem defined in theorem 1 and

deduceZ1 = P−1
1 U1. MatricesT, N, Kp1

, π andKp2
are computed from (17) and (8) respectively. 2

B. PIO

Before giving the main results, we introduce the following notations to clarify and simplify the presentation:

Ae =





TĀ T F̄

0nw×(n+m) 0nw×nw



 Θ2 =





Ē

C̆





Te =





TH̄

0nw×n



 Ke =





Kp1

KI



 Ψ2 = In+m

Ce =
[

CI 0m×nw

]

U2 = P2Ke ew = w − ŵ

June 16, 2005 DRAFT
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eT =
[

eT
x̄ eT

w

]

χ̄2 = P2TeT
T
e P2 + γ2In+m+nw

χ2 = AT
e P2 + P2Ae − U2Ce − CT

e UT
2 + χ̄2

Remark 3: If the spectral domain of the UIw is in low frequency range, a general approach is possible by

assuming the disturbance as piecewise constant. See the remarks on PIO design in section 3.2 [22] and remark 2

in [12].

Theorem 2:Under ẇ = 0, if

1) there exist matricesT, N, Kp1
, π such that (6-8) hold

2) there exists a solutionP2, U2 to the following convex optimization problem

max γ1

subject to P2 > 0 and





(1, 1) γ1P2Te

∗ −In



 < 0 (20)

(1, 1) = P2Ae − U2Ce + AT
e P2 − CT

e UT
2 + In+m+nw

then the objectives 2, 3, 4 hold and the PIO (4) is a global observer (i.e., asymptotically estimatesx andw for

any initial estimate error). Moreover, as in the previous section, the resulting observer gainKe = P−1
2 U2,ensures

that the estimation errore (i.e., ex̄ andew) is exponentially stable.

Proof—part 1)Suppose that (6) holds, then the state estimation errorex̄ becomesex̄ = TĒx̄ − z − NĞw. The

dynamics of the estimation errorsex̄ andew become respectively

ėx̄ = πex̄ + TH̄φ̃

+
(

TĀ − πTĒ − Kp1
CI − Kp2

C̆
)

x̄

+
(

T F̄ + πNĞ − Kp2
Ğ

)

w − T F̄ ŵ (21)

ėw = −KICIex̄ (22)

sinceẇ = 0. It follows from (6-8) that

ėx̄ =
(

TĀ − Kp1CI

)

ex̄ + T F̄ ew + TH̄φ̃ (23)

Rewriting (6) as
[

T N

]

Θ2 = Ψ2 (24)

The solution of (24) depends on the rank of matrixΘ2. A solution exists iff [19]

rank





Θ2

Ψ2



 = rankΘ2 (25)

June 16, 2005 DRAFT
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which is obviously equivalent to the assumption A3b. Then, under A3b, the general solution of (25) is
[

T N

]

= Ψ2Θ
+
2 + Z2

(

In+3m − Θ2Θ
+
2

)

(26)

whereZ2 is an arbitrary matrix, fixed by the designer such that the matrix T is of maximal rank (i.e. n+m, see the

discussion in [9]). Using the definition ofAe,Ke, Ce, Te ande, the relations (23) and (22) become

ė = (Ae − KeCe) e + Teφ̃ (27)

Proof—part 2)Consider the quadratic Lyapunov function candidateV (e) = eT P2e with P2 > 0. From assumption

A1, the time derivative ofV (e) along systems trajectories (27) givesV̇ (e) < eT χ2e. Using the Schur complement

formula,V̇ (e) < 0 for all e 6= 0 if there exists a solution onP2, U2 to the optimization problem defined in Theorem

2.

Remark 4:For a fixedγ1, the existence of a solution onP2 > 0, U2 of the LMI (20) needs that the matrix

Ae − KeCe is Hurwitz, since the element (1,1) in (20) impliesP2 (Ae − KeCe) + (Ae − KeCe)
T

P2 < 0.

Now we can establish the necessary conditions for the existence of the proposed observer (5).

Lemma 2:The necessary conditions for the existence of the observer (5) for system (1) are:

1) A4b which (underrankT = m + n) is equivalent to the detectability of thepair(Ae, Ce), i.e.,

rank

24 pIn+m+nw
− Ae

Ce

35 = n + m + nw, ∀ R (p) ≥ 0 (28)

2) A3b

Proof of part 1) is done in the appendix while the proof ofpart 2) is done above (see (25)).

Remark 5:The assumption A3b is same as the assumption b) given in [5]. A3b can be relaxed to the impulse

observability condition i.e.,

rank











E A

0 E

0 C











= n + rankE (29)

if rank
[

E H

]

= rankE (see remark 1 and proposition 1 in [12] and [15] respectively) or if the nonlinear

algebraic constraints obtained after the transformationP̆T =
[

P̆T
1 P̆T

2

]

can be rewritten with the known inputs

[15], i.e., P̆2Hφ (x, u, t) = f (y, u). Obviously A3b and (29) are less restrictive than A3a.

The following algorithm summarizes the design procedure ofthe PIO (5) for system (1).

Algorithm 2: Assume that lemma 2 is satisfied. From (26), fixedZ2 such that the matrixT is of maximal rank (i.e.

n+m) and deduceT, N. Solve the convex optimization problem defined in theorem 2 and deduce





Kp1

KI



 = Ke.

Matricesπ andKp2
are deduced from (7) and (8) respectively. 2
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IV. D ISCUSSION

SinceE is singular, system (1) can be rewritten as






E1ẋ1 = A1x1 + F1w + H̄φ (x, u, t)

y = C1x1

(30)

or







E2ẋ2 = A2x2 + Hφ (x, u, t)

y = C2x2

(31)

where

x1 =





x

ζ



 ∈ R
n+nw x2 =





x

w



 ∈ R
n+nw

A1 =





A 0n×m

0m×n −Im



 E1 =





E 0n×nw

0nw×n 0nw×nw





F1 =





F

G



 E2 =
[

E 0p×nw

]

C1 =
[

C Im

]

A2 =
[

A F

]

C2 =
[

C G

]

1) LetΘ3 =





E1 F1

C1 0m×nw



. An UIPO can be designed for (30) which satisfy constraint
[

T N

]

Θ3 = Ψ2

iff [19]

rank

24 Θ3

Ψ2

35 = rankΘ3

⇐⇒ n + rank

24 F

G

35 = rank

24 E F

0 G

35
This implies thatrankE = n (i.e. no descriptor system) which is more restrictive compared toA3a .

2) An UIPO can be designed for (31) iffrank





E2

C2



 = n+nw, or equivalently iffrank





E 0

C G



 = n+nw,

which is also more restrictive thanA3a.
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V. NUMERICAL EXAMPLE

The following example illustrates respectively the UIPO (4) and PIO (5) estimation performance. Consider (1)

described by:

E =

















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

















, A =

















−1 1 0 0

−1 0 0 1

0 −1 −1 0

0 0 0 1

















,

F =

















0 0

0 1

0 0

0 1

















, φ =

















1 0

0 1

0 0

1 0

















u(t) +

















0

0

0

−γ sin (x3)

















C =





1 0 0 0

0 0 1 1



 , G =





1 0

0 0





where the Lipschitz constant isγ, fixed to 0.15 (< γ1). In order to illustrate the robustness of each observer with

respect to the noise and UI, we disturb the process byw = (w1, w2)
T , bu = (bu1, bu2)

T and by = (by1, by2)
T

which represent respectively the UI, actuator and sensor noises. The components of the actuator and sensor noises

are described in fig. 1.b. The known input isu = (u1, u2)
T whereu1 = 0.7 sin 0.5t+ bu1 andu2 = sin 0.2t+ bu2.

A. UIPO

The lemma 1 is satisfied for allp, then we can arbitrary fixe the eigenvalues of(α1 − Z1β1). For a good estimation

performance and a maximalγ1 solution to the convex optimization problem defined in theorem 2, we propose to

set the eigenvalues of the observer in a specified LMI regionD [6]. Matrix (α1 − Z1β1) has all its eigenvalues in

the vertical strip defined by

D = {x + jy ∈ C : −h1 < x < −h2} , h1, h2 ∈ ℜ (32)

iff there existsP1 > 0 andU1, such that

P1α1 + αT
1 P − U1β1 − βT

1 UT
1 + 2h2P1 < 0

P1α1 + αT
1 P − U1β1 − βT

1 UT
1 + 2h1P1 > 0

(33)

Therefore, the convex optimization problem defined in theorem 2 consists in findingP1, U1 and the maximalγ1

subject toP1 > 0, (33) and (11). After some iterations, we findh1 = 5.5, h2 = 0.3 andγ1 = 0.249. Due to space

limitation, the matricesU1, P1, Z1, T, N, Kp1
, π and Kp2

are omitted. A satisfactory estimation is obtained for

any UI and normally distributed random actuator and sensor noises. Fig. 1.a shows that the state is well filtered.
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B. PIO

The lemma 3 is satisfied for allp. In order to compare the estimation performances for both observers, the same

LMI region D is defined (withh1 = 5.5, h2 = 0.3). There are several solutionsZ2 and we chooseZ2 =
[

I6 0
]

since it gives both maximal rankT (i.e. n+m = 6) andγ1. MatricesT andN are deduced from (26). The convex

optimization problem defined in theorem 4 consists in findingP2, U2 and the maximalγ1 subject toP2 > 0, (20)

and
P2Ae + AT

e P − U2Ce − CT
e UT

2 + 2h2P2 < 0

P2Ae + AT
e P − U2Ce − CT

e UT
2 + 2h1P2 > 0

After some iterations, we findγ1 = 0.2507. Due to space limitation, the matricesU2, P2,KI , T, N, Kp1
, π and

Kp2
are omitted. Contrary to the UIPO, the matrixZ2 is not optimal. In fact, the designer must test different values

for Z2 until maximal rankT (i.e. n + m = 6) andγ1 are obtained.

Satisfactory estimation is obtained for normally distributed random actuator and sensor noises. The observer

gives a good UI estimation and Fig. 1.d and 1.e show that the state and UI are well filtered. More precisely, the

UI attenuation properties can clearly be observed in the bode transfer function (i.e.w to ex) given in fig. 1.f while

the transferw to ŵ shows that the UI estimation error decreases at low frequencies. Fig. 1.c shows a poor state

estimation performance since the impact of the UIw1 = sin 2t is not attenuated in this spectral domain (see fig. 1.f)

although the UIPO presents a good estimation performance (see fig. 1a). Obviously, if we increaseh2 andh1, we

increase the bandwidth but we decrease the maximal Lipschitz constantγ1. For example withh1 = 20, h2 = 1 and

h1 = 50, h2 = 2, we find respectivelyγ1 = 0.172 andγ1 = 0.049. For h2 > 4 the LMI constraints are infeasible.

Example 2:Consider the system described by [17] whereE = I2, A =





0 1

1 −1



 , F = G = 0,H = I2, C =

[

0 1
]

andh1 = 7, h2 = 6. The convex optimization problem defined for the UIPO givesγ1 = 0.989 although

the Rajamani algorithm [17] gives onlyγ1 = 0.49.

Example 3:Consider the system described by [25] whereH = I4, F = G = 0, and h1 = 2.5, h2 = 0.95,

we obtainγ1 = 2.393. Then, forγ = 0.333, our observer (4) is guaranteed to be exponentially stable since the

Lipschitz constant is less thanγ1.

VI. CONCLUSION

We have presented a rigorous method for the design of observers for nonlinear descriptor systems in presence of

UI and noise. Depending on the available knowledge on the dynamics of the UI, two cases were considered. First,

for any knowledge about the dynamics of the UI, an UIPO was proposed. Second, for UI with low frequencies, a PIO

was proposed. Existence conditions of such observers have been given and proved with a strict LMI formulation.
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VII. A PPENDIX

Proof of lemma 1. Define the following nonsingular matricesV1, V2 and the full-column rank matrixV3

V1 =

24 In+m 0

−Θ+
1 ϕ1 I2(n+m+nw)

35 , V3 =

2664 In+m −Ψ1Θ
+
1

0 I2n+5m − Θ1Θ
+
1

0 Θ1Θ
+
1

3775
V2 =

2666666664 −In+m 0 0 0 0

pIn+m In+m 0 0 0

0 0 In+m 0 0

0 0 0 −Inw
0

0 0 0 pInw
Inw

3777777775
Since

rank





pIn+m Ψ1

ϕ1 Θ1



 − 2n − 3m − rankG = n + nw (34)

⇔ rank

[

pIn+m Ψ1

ϕ1 Θ1

]

V2 − 2n − 3m − rankG = n + nw

⇔ A4a

the problem of proving thatA4a ⇔ (19) is equivalent to prove that(34) ⇔ (19).

Proof of (34) ⇔ (19). From rank





Θ1

Ψ1



 = rankΘ1 ⇔ A3a, we obtain

(34) ⇔ rankV3





pIn+m Ψ1

ϕ1 Θ1



 V1 − 2n − 3m − rankG

⇔ nw + rank





pIn+m − Ψ1Θ
+
1 ϕ1

(

I2n+5m − Θ1Θ
+
1

)

ϕ1



 − m

= n + nw,∀ R (p) ≥ 0

⇔ (19)

Proof of lemma 2. Define the following full rank matrix

V4 =













T 0 N 0

0 Inw
0 0

0 0 0 Im24 0 0

0 pIm

35 0

24 Im 0

−pIm Im

35 24 −pIm

0

35 











whereV4 ∈ R
(n+m+nw+3m)×(n+m+nw+3m), T ∈ R

(n+m)×(n+m), rankT = n+m andrankV4 = n+m+nw+3m

since
[

T N

]

is of full row rank i.e.n + m. In addition, since

rank

















pĒ − Ā −F̄

0 pInw

pC̆ pĞ

CI 0

















= n + m + rankF̄ ,∀ R (p) ≥ 0

(35)

⇔ A4b
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the problem of proving thatA4b ⇔ (28) is equivalent to prove that (35)⇔(28). We obtain

(35) ⇔
rankV4

















pĒ − Ā −F̄

0 pInw

pC̆ pĞ

CI 0

















= n + m + nw,∀ R (p) ≥ 0

⇔











pI − TĀ −T F̄ + pNĞ

0 pInw

CI 0











= n + m + nw,∀ R (p) ≥ 0

⇔ (28)

Note that all the above equivalences hold using the Sylvester’s inequality,

rankÃ + rankB̃ − m ≤ rankÃB̃ ≤ min
n

rankÃ, rankB̃
o

whereÃ ∈ ℜn×m, B̃ ∈ ℜm×p.
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(c) PIO: State estimation where w1=sin2t

and w2=2
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(d) PIO: State estimation where w1=sin0.1t

and w2=2
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(e) PIO: UI estimation where w1=sin0.1t
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