

Intelligent Systems Design and Applications

Process model-based Dynamic Bayesian Networks for Prognostic

MULLER Alexandre, WEBER Philippe,

Automatic Control Research Center of Nancy (CRAN), CNRS UMR 7039

ESSTIN - 2, rue Jean Lamour F-54519 VANDOEUVRE-LES-NANCY Cedex – FRANCE [alexandre.muller, philippe.weber@esstin.uhp-nancy.fr] Tél. : 33 (0)3 83 68 51 26 – Fax : 33 (0)3 83 68 50 01

BEN SALEM Abdeljabbar

Laboratory of New Technologies French National Institute for Transportation and Safety Research

> 2, Av du G^{al} Malleret Joinville 94114 Arcueil – FRANCE [bensalem@inrets.fr]

August 26-28, 2004, Budapest, Hungary

Content

Introduction

- Prognosis process development
- Probabilistic model development
- Case study
- Conclusion

Introduction

- Industrial systems more and more complex
 - Competition and high demand of customers
 - Difficulties to optimise system/product performances
 - One solution : Maintenance
- Proactive maintenance strategy
- Prognosis process
 - Prognostic is defined as the ability to "predict and prevent" possible fault or system degradation before failures occur
 - Principle
 - Identify the current state of the system (at time t)
 - Predict the future state of the system (at time t + Δ t)
 - (Decision making)

Prognosis process development

Methodology

- Process and flow based approach
 - Functional/Dysfunctional reasoning
 - Hierarchical structure
- Elaboration of the probabilistic network
 - Formalism: BN/DBN
 - Generic rules to transform the process model into a probabilistic one
- Design of the monitoring for prognosis architecture
 - DBN variables associated to indicators
 - Monitoring / Storage

Probabilistic network development (1)

The probabilistic model goal

- Mechanisms of inference
 - Propagation of the process degradation
 - Impact's determination of this degradation on the whole system.
- Formalism : Dynamic Bayesian Network (DBN)
 - Translation into three stages
 - Definition of nodes and states
 - Structure
 - Network parameters
 - Acyclic structure required

ISDA'04 - August 26-28, 2004, Budapest, Hungary

Probabilistic network development (2)

Probabilistic network development (3)

- What are the solutions to break cycles ?
- Specifications during the design of process model
- Set of rules to delete several edge
- First solution selected
 - The temporal dimension of flows is not always the same
 - Specification of a new flow characteristic

Probabilistic network development (4)

Probabilistic network development (2)

Probabilistic network development (2)

August 26-28, 2004, Budapest, Hungary

Water heater (Physical process)

Water heater (Process model)

Water heater (Probabilistic model - DBN)

Water heater – Prognostic (1)

ISDA'04 - August 26-28, 2004, Budapest, Hungary

Water heater – Prognostic (2)

ISDA'04 - August 26-28, 2004, Budapest, Hungary

Conclusion

- The work presented in this paper explains why a methodology supporting prognosis process modelling should be formalized to take into account the characteristics and the constraints induced by its modelling tool
- Moreover, the integration of ORM specifications is in progress in our laboratory in order to develop a tool to assist the designer in developing its process & flow-based model.

August 26-28, 2004, Budapest, Hungary