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Abstract – The degradation checking of critical components 
is one of the efficient means to minimize the non expected 
stops of production system and to reduce its costs. In this 
purpose, a methodology is proposed to design a prognosis 
process taking into account the behaviour of environmental 
events (exogenous inputs). The main contribution is the 
development of the probabilistic model which is based on 
the translation of a preliminary process model into 
Dynamic Bayesian Network (DBN). Specifications are 
given to assure the coherence both of the translation and 
the resulted model. These requirements are formalized 
according to the NIAM/ORM method towards its semantic 
strength, clarity and stability. An application is proposed 
on a water heater system. 
 
 

I. INTRODUCTION 
 
In today's market, companies have to well-maintain 

their production system to face fierce competition and 
satisfy customers which requires low-cost products or 
services of high quality to be delivered quickly [1]. 
Indeed maintenance plays a critical role in a 
manufacturing organisation's ability to maintain its 
competitiveness by contributing to the reduction of 
work-in-process inventory, the improvement of 
equipment reliability, and improved productivity, quality 
and product service [2]. In that way, maintenance is an 
essential factor to dynamically optimise the 
performances by reducing the "inefficiencies" … but 
only if maintenance evolves from traditional preventive 
strategies to just-in-time or proactive ones. The 
prognosis process which is the support of the 
anticipative role is often considered as the Achilles heel 
within proactive strategy. Most of the existing 
prognostic methods are component-oriented and without 
a real formalization in the modeling. It is now not 
sufficient to face the expected performances 
optimization with regard to the complexity of the plant 
where the degradation and deviation modeling is really 
difficult due to the economic or stochastic degradation 
dependencies among components.  

In that way, this paper deals with the deployment of 
prognosis process based on a methodology described in 
section 2 which combines both a probabilistic approach 
for degradation mechanism modelling and an event one 
for dynamical monitoring. The implementation of the 
methodology is constrained by the DBN formalism 
which forbids the creation of cycle in the network as 
explained in section 3A. Thus, additional specifications 

are required to overcome this limitation. Theses 
specifications are formalized in section 3B according to 
the NIAM/ORM method. Then, a case study for a water 
heater system illustrates this work in section 4 before the 
brief conclusion drawn in section 5. 
 

II. PROGNOSIS PROCESS DEVELOPMENT 
 
This development is supported by the global 
methodology, more detailed in [3], and which is 
structured in three steps: 
 
A. Process & Flow-based approach 
 

The industrial system to be considered is modeled 
through functional analysis by using process approach 
[4]. One process is broken-up into several sub-processes, 
and the same mechanism is applied from the sub-
processes until the expected level of abstraction is 
reached (e.g. component). The proposed definition of a 
process relies on four concepts interpreted as follow: 
Support which implements the process, the Goal which 
represents the purpose of the process, the Function 
which is a desired action and the Behavior which 
explains how a system does what it is intended to do. 
The behavior can be identified as: nominal (function 
realized), degraded (partial loss of the function) and 
failing (total loss of the function). The process behavior 
is described by the causal relationships between its 
inputs flows, the support, and its outputs flows. The 
concept of Flow-based performance evaluation means 
that the performance (goal’s achievement) of a process 
can be directly measured on the produced flows and 
more precisely, on the value of its attributes. 
 
B. Elaboration of the probabilistic network 
 

The second step consists in transforming the previous 
process model into a probabilistic one which represents 
the causal relationships and temporal degradations in a 
unified way. The probabilistic model is developed by 
means of Bayesian Networks (BN) which offer 
interesting perspectives on knowledge representation 
and decision support system [5]. The model goal is to 
support the mechanisms of inference which can 
propagate, in the future, the process degradation and 
determine at every time the impact of this degradation 
on the whole system. The temporal degradation 
mechanisms are integrated to the probabilistic model by 
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means of dynamic nodes [6]. Hence, the resulting 
network is a Dynamic Bayesian Network (DBN) which 
represents the joint probability distribution over all 
variables. 
 
C. Design of the monitoring architecture.  
 

The development of the monitoring architecture 
materialising the event approach is directly deducted 
from probabilistic model: each observable variable is 
associated to an indicator. The values of these indicators 
are refreshed with the current status of the shop floor 
data and controlled in real time by means of algorithms 
[7]. These events are displayed and stored in an 
operating knowledge database adapted to the refinement 
of the probabilistic model’s parameters.  

 
III. PROBABILISTIC MODEL DEVELOPMENT   

 
The system modeled by Process & Flow-based 

approach is converted into a DBN according to several 
translation rules. The process model provides the 
information necessary to define the structure of the 
model. But it isn’t enough to create the DBN. Indeed, 
additional sources of knowledge are required to 
implement the translation Process/DBN:  
� A FMEA (Failure Mode and Effects Analysis) 

provides the potential degradation of each support. In 
addition, this analysis provides the consequences of 
degradations on the system. 

� A HAZOP (HAZard and OPerability) study (which 
consists in analysis the flows and the possible 
deviations of their attributes) allows, from a 
deviation on a flow property, to define its link with 
one degradation or failure of the process and/or 
system. 

� Knowledge of the physical relationships which links 
input flows, support and output flows for each 
process.  

� An operational database for the parameters learning 
if there is enough sufficient usage data. Otherwise, 
expert’s knowledge is used to elicit the parameters in 
terms of subjective estimates. 

 
A. Modeling stages 

 
In fact, the translation process unfolds in three stages: 

the definition of nodes & states, the creation of the 
structure and the definition of the network’s parameters.  

 
1) Nodes and states: The dynamic Bayesian network 

nodes represent the supports and the flows of processes. 
A support is associated to several nodes which 
correspond to its potential degradation modes. A flow 
contains as many nodes as its related attributes. The 
basic idea is to identify each flow attribute with a 
“static” variable and each degradation mode with a 
“dynamic” variable. A support state is defined as a 
reachable combination of the states of its degradation 
modes Mi. A state of Mi is defined either by its physical 
meaning (e.g. oxidation or corrosion level) or by the 
consequence of the degraded state on the process 
performance (e.g. % loss of conductivity). The states of 

attributes correspond to the process performance 
allocation fixed by the company.  

 
2) Structure: An edge is synonym of a conditional 

dependency between the variable that it links (e.g. the 
impact of the support’s degradation on a produced flow). 
As the processes are linked together by their common 
flow (an output flow for the upstream process can be an 
input flow for the downstream process), the model 
structure consists in specifying a set of edges which 
represents the causal relationships between the inputs 
flows, the support, and the outputs flows. By default, 
each output flow attribute can have for parents every 
attribute of the input flow and every degradation mode 
of the related process. 

 
3) Network’s parameters: Each node has a 

Conditional Probability Table (CPT) that quantifies 
either causal or temporal relationships. Root nodes have 
only prior probability distributions modeling the 
statistics of extern input flows. For causal relationship, a 
conditional probability is affected to each instance of the 
output flow attributes considering each configuration of 
input flows and support. For a temporal relationship, the 
elicitation of conditional probability defines the 
deterioration (stochastic processes). In our case, these 
processes are represented by DBN model.  

 
 

 
Fig. 1. Translation Process model / dynamic Bayesian network 

 
B. Process model specifications 

 
The Dynamic Bayesian Network used is based on an 

inference algorithm which forbids the cycle creation in 
the network. As it is presented in 2.B., the main structure 
of the DBN comes from the structure of the preliminary 
process model. Therefore, there are two solutions to 
prevent the creation of cycle.  
� The first one consists in defining particular 

restrictions on the process modeling in order to avoid 
that the designer can define a model with cycle.  
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� The second solution is based on the abolition of 
causality loop in the Bayesian network thanks to a 
set of rules which authorize arc deletion or change 
direction of some arrows [8]. However this 
manipulation leads necessary to the questioning of 
several dependence relationships stated by the 
process model. Consequently, this last strategy has 
been rejected. 

 
The process approach we proposed is based on the 
concepts introduced by popular methods for functional 
modeling such as IDEF0 (called as well SADT). These 
methods describe and decompose the organization of 
systems in a structured graphical form. Only, the 
application of a method in a specific domain requires 
some adaptation, modification of the method to take into 
account the specificities of the domain. In our case, it 
implies that the process model must be established in 
regards of the prognostic finality and by considering the 
constraints induced by the DBN formalism. 
 

1) The cycle problem: Whatever the situation, the 
creation of a cycle in the DBN results from a loop which 
already existed in the process model. So, it is important 
to understand when and why a cycle creation is possible 
in the process model. This situation occurs each time 
that a control loop is required to correct discrepancies 
between a measured process variable and the desired set 
point. As it is shown in Fig. 2, the loop “To control – 
Order – To transform – finished product – To measure – 
Product report – To control” provide irremediably the 
cycle “Order – finished product – Product report – 
Order” during the translation into DBN. 

 

Fig. 2. Illustration of the cycle problem 

 
2) The control loop interpretation: The process 

approach describes the manufacturing system 
functioning unless time consideration. In the previous 
example, an input product is transformed in a finished 
product according to an order which has been 
established thanks to the result of a measure done on the 

previous finished product. In fact there are two different 
finished product flows: 

� The first one is the “current finished product”. 
This flow represents the prognostic i.e. the 
expected state of the finished product taking into 
account to the behavior of the rest of the system  

� The second one is the “previous finished 
product” which belongs to the previous 
production cycle. This flow represents the state 
of the finished product which has been measured 
by the sensor during the previous cycle product.  

Thus, the process model contains flows which don’t 
belong to the same temporal slice (the time unit 
considered here is the manufacturing lead time). These 
flows are different and so, they can’t be represented and 
interpreted in the same way. 
 

3) Necessary specifications: To distinguish the flows 
according to their temporal dimension, the more simple 
solution is to define a new flow characteristic:  
- If the flow is related to the current manufacturing lead 
time, it is associated to the following designation: “flow 
(k+1)” or “flow” by simplification. 
- Else, a flow subjected to a measure process and used to 
provide information about the previous state of the flow 
is defined as “flow (k)”.  
In fact, this manipulation consists in adding the temporal 
dimension not included in process approach. 
 

 
Fig. 3. Flow specifications 

C. Formalization of the complementary specifications 
 

The specifications of the process approach are 
formalized according to the NIAM/ORM method. 
Normally used on data modeling [9], NIAM/ORM 
provides intuitive diagrams which express the 
information in terms of elementary relationships 
between the objects of the domain. Its main advantages 
are the semantic strength, clarity, relevance and stability 
[10]. Actually, the strong point of NIAM/ORM is the 
possible validation or checking of the model by 
verbalization. The method has been implemented for 
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instance to formalize normative knowledge in safety 
standards [11]. The tool VisioModeler1 is used to 
develop the specifications.  
The formalization of the process approach results in the 
elaboration of several ORM diagrams based on the 
general concepts described in section 2. The flow 
specifications diagrams represented Fig.3 is the only one 
included in this paper. Its interpretation reveals that a 
flow (typed as Mass, Energy or Information) is 
composed of objects characterized by attributes. In 
addition, each flow is characterized by its product-cycle 
temporal specification: either (k+1) or (k).  
  

Fig. 4. Illustration of the cycle problem 

The implementation of the specification on the previous 
example is described in Fig. 4. Contrary to Fig. 2, the 
DBN which results from the translation of the new 
process model doesn’t contain cycle. The finished 
product flow is decomposed into two flows: finished 
product (k) which expresses the state of this flow during 
the previous cycle (k) and finished product (k+1) which 
is related to the present cycle (k+1). 

 
IV. CASE STUDY 

 

 

V 

R1 

R2 

Qi 
Ti 

Qo 
To 

HP 

H sensor 

T sensor 

 
Fig. 5. Water heater physical process 

                                                           
1 Microsoft VisioModeler free software available on 
http://www.microsoft.com 

The proposed method is applied to a water heater 
process depicted in Fig. 5. The goal of the process is to 
assure a constant water flow rate Qo with a given 
controlled temperature To. The function of the process 
“Water heater” is fulfilled by controlling the valve 
position and by heating the water in a tank. The sub-
process is itself broken up into seven sub-processes 
implemented respectively by a component of the system 
(Fig. 7). The decomposition of the flows “Water to 
distribute” and “Water distributed and heated” according 
to their temporal dimension avoid the loop creation. In 
this way, the translation process is implemented without 
problem. It results in the DBN model described in Fig. 8. 
This model is a unified representation of all the 
knowledge formalised from the process model towards 
the dysfunctional analysis FMEA, HAZOP and the 
operational data.  
In a strict sense, the DBN model contains one dynamic 
variable associated to each support i.e. it is assumed that 
each component is subjected to a single deterioration 
process. Take, as an example, the Heating resistors 
model. The dysfunctional analyses lead to identify 4 
different states for this component. These states are 
defined according to their consequences on the process 
performance i.e. the maximum water temperature 
reachable by the system. The failing state (state 4) is 
achieved when To=Ti. The deterioration of the heating 
resistors is modelled by a Markovian process 
represented similarly by the DBN and the MC (Markov 
Chain) depicted in Fig. 6. The transition rates λ are fixed 
a priori according to the operating knowledge available 
for similar resistors (it is assumed that these parameters 
are time-invariant).  
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Fig. 6. Heating resistors DBN/MC model 
 
The flows are represented by their attributes (Qo,  
To, H…). The prior probabilities attached to the input 
flow are fixed by default. For the other flows, the 
definition of the CPT relies on the elicitation of a 
conditional probability p to each instance of the output 
flow attributes, e.g. To, in each configuration of its 
parents variables (E.E, Heating resistors, Heating order 
and H level for To).  
The Software BayesiaLab is used for implementing the 
inferences mechanisms (http://www.bayesia.com). 
 
N.B. What is very interesting in the DBN modelling is 
that the representation of complex system with 
dependant components is possible [12]. In fact, DBN 
offers a factorised form of the traditional MC which 
normally suffers from a combinatory explosion of the 
states number. In this case study, as each component 
have 2, 3 or 4 states, the MC model of the entire system 
would contain 1728 states while the DBN model is only 
composed of 25 nodes. 
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Fig. 8.  “Water Heater” DBN model 



 

Prognostic issued from prognosis process 
 
The prognosis process is started in order to evaluate the 
expected temperature To and  water flow rate Qo in the 
future given that all the components are new at time k=0. 
A maintenance intervention is simulated at k=1000 time 
unit. This action is assumed to be perfect i.e. the 
component is re-initialized in the nominal state.  
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Fig. 9. Temporal degradation of the heating resistors 

 

The temporal evolution of the probabilities related to the 
“Heating resistors” states is depicted in Fig. 9. This 
figure points out the impact of the maintenance action on 
the component behaviour. The propagation through the 
entire DBN model allows emphasizing the effect of this 
component degradation on the system performances. In 
this application, the performances of the system are 
evaluated directly on states of the two flow attributes To 
and Qo. Consequently, the temporal evolution of these 
parameters (shown in Fig. 10) can be considered as the 
forecasting of the system performances.  
The impact of the maintenance action done on the 
heating resistors is visible on the temporal evolution on 
To but not on Qo which is not sensitive to this action 
because the level of water is controlled independently 
from the water temperature.  
 
Finally, the concrete result of the prognosis process is a 
probability that the system reaches its finality at time k= 
2000. The prognostic said that there is 21% chance that 
the Qo will be correct and 33% that To will be correct. 
This information can be propagated to another process 
(as an input data) or directly used by a decision process. 
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Fig. 10. Temporal evolution of the expected performances of the system 

 

V. CONCLUSION & PERSPECTIVES 
 

In regard of the work done in the maintenance and 
safety academic communities, the approach introduced 
is an added value on the systemic and dynamic visions 
of the degradation modeling. The work presented in this 
paper explains why a methodology supporting prognosis 
process modelling should be formalized to take into 
account the characteristics and the constraints induced 
by its modelling tool.  
Moreover, the integration of the NIAM/ORM 
metamodel under MEGA Process2 is in progress in our 
laboratory in order to develop a tool to assist the 
designer in developing its process & flow-based model. 
As a result any user would design a process model of his 
production system translatable automatically into DBN.  
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