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Abstract

At present no theory of a massive graviton is known that is consistent with experi-
ments at both long and short distances. The problem is that consistency with long
distance experiments requires the graviton mass to be very small. Such a small
graviton mass however implies an ultraviolet cutoff for the theory at length scales
far larger than the millimeter scale at which gravity has already been measured. In
this paper we attempt to construct a model which avoids this problem. We consider
a brane world setup in warped AdS spacetime and we investigate the consequences
of writing a mass term for the graviton on an infrared brane where the local cutoff
is of order a large (galactic) distance scale. The advantage of this setup is that
the low cutoff for physics on the infrared brane does not significantly affect the
predictivity of the theory for observers localized on the ultraviolet brane. For such
observers the predictions of this theory agree with general relativity at distances
smaller than the infrared scale but go over to those of a theory of massive gravity
at longer distances. A careful analysis of the graviton two-point function, however,
reveals the presence of a ghost in the low energy spectrum. A mode decomposition
of the higher dimensional theory reveals that the ghost corresponds to the radion
field. We also investigate the theory with a brane localized mass for the graviton
on the ultraviolet brane, and show that the physics of this case is similar to that
of a conventional four dimensional theory with a massive graviton, but with one
important difference: when the infrared brane decouples and the would-be massive
graviton gets heavier than the regular Kaluza–Klein modes, it becomes unstable
and it has a finite width to decay off the brane into the continuum of Kaluza–Klein
states.

http://arxiv.org/abs/hep-th/0312117v2


1 Introduction

Recently there has been considerable interest in theories of gravitation which deviate
from Einstein’s gravity at very long distances (for example, [1–5]). However there has
been no consistent theory yet proposed which is consistent with all observations at both
macroscopic and microscopic length scales [6–11]. Conceptually perhaps the simplest
modification is a mass term for the graviton [12]. However this theory suffers from three
difficulties which are typical of theories of massive gravity as a whole. Firstly, unless
the mass term has the Fierz-Pauli form the theory has a ghost [12, 13]. Secondly, for a

graviton massmg this theory has a cutoff (m4
gM4)

1
5 [7], whereM4 is the Planck scale. This

cutoff is much too low for the theory to be simultaneously consistent with experiments
at microscopic and macroscopic scales. Thirdly, even for arbitrarily small graviton mass
the longitudinal component of the massive graviton does not decouple from sources. This
fact, which was first observed by van Dam, Veltman and Zakharov [13], implies that the
tensor structure of the gravitational interaction deviates from that of Einstein gravity.
While there are indications that suitable ultraviolet completions may be free of the latter
problem [14–17] to date no completely satisfactory candidate theories are known [8–11].

In the absence of a known Higgs mechanism for gravity it might seem that these
problems pose an insurmountable obstacle in constructing any experimentally viable
theory of a massive graviton. However a closer examination suggests that this need not be
the case. Consider the five dimensional brane model of Randall and Sundrum (RS) [18].
This is a simple example of a theory where the local cutoff varies from point to point in
the higher dimensional space. In particular in the far infrared the cutoff of the theory is
below the millimeter scale, where gravity has been measured in the laboratory. This low
cutoff is completely consistent with these experiments because physics measurements on
the brane at any four momentum scale p are exponentially insensitive to points in the
bulk where the local cutoff is lower than the scale p.

The success of this theory suggests a means whereby the problems normally associ-
ated with theories of massive gravity can be avoided. To the single brane model of Randall
and Sundrum we add a second brane deep in the infrared such that the compactification
radius, which is the inverse mass of the lightest Kaluza–Klein state, is of order galactic
size. On this second brane we add a brane localized mass term for the graviton. The
extra dimension just corresponds to an interval with two boundaries (see Ref. [19] for sim-
ilar constructions for gauge theories and their application for the problem of electroweak
symmetry breaking). Since two point correlators with external legs on the ultraviolet
brane are exponentially insensitive to physics on the infrared brane for four momenta
above the compactification scale we expect that conventional Einstein gravity will be
reproduced on the ultraviolet brane at distances shorter than the compactification scale.
However, at distances longer than the compactification scale, the theory is sensitive to
infrared physics, with the consequence that below this scale the theory with a Fierz-Pauli
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mass term is expected to resemble the four-dimensional Fierz–Pauli theory of a massive
graviton. This then would be a concrete realization of a an experimentally viable theory
of massive gravity. In this paper we investigate this proposal in detail. This picture is
correct, at the price of a serious drawback though: while the theory does indeed repro-
duce Einstein gravity at sub-galactic length scales the low energy spectrum in the four
dimensional effective theory contains, in addition to a massive graviton, a ghost state. A
mode decomposition of the higher dimensional theory reveals that it is the radion field
which is a ghost. 1 We also find that this conclusion is rather general: even allowing
for a non-Fierz-Pauli mass term on the IR brane the radion field is always a ghost. The
analysis of the more general case is provided in Appendix B.

In the following sections we explore in detail the model we are investigating. We
compute the graviton two point function with external legs on the ultraviolet brane and
show that while the predictions of the theory agree with those of general relativity for
observers on the ultraviolet brane probing distance scales shorter than the compactifica-
tion radius, the light states consist of a massive graviton and a ghost. We then perform
a mode decomposition of the linearized theory for both the transverse traceless modes
and the radion. This reveals that the transverse traceless modes of the theory without a
mass term smoothly go over to the transverse traceless modes of the theory with a mass
term as the mass term is turned on. However the same is not true of the radion. Instead,
the radion changes discontinuously into a ghost as soon as the mass term is turned on.
We also study the theory with a mass term on the ultraviolet brane and show that the
predictions of this theory for observers on the ultraviolet brane agree with those of a four
dimensional theory with a massive graviton. However there is one important difference:
if the extra dimension is sufficiently large that the would-be graviton is heavier than the
lightest regular Kaluza–Klein states, then it becomes unstable and it has a finite though
small width to decay into the regular Kaluza–Klein states.

2 Brane Localized Fierz–Pauli Mass Term

2.1 Bulk equations of motion

We consider a brane world model whose dynamics is governed by the following action:2

S =

∫

d5x
√

|g|
( R
2κ25

− Λ + (−σi + Li) δ(
√
g55(z − zi))

)

(1)

1Under certain circumstances theories with ghosts may in fact be viable [20,21]. However we do not
pursue this possibility here.

2Our conventions correspond to a mostly plus signature (−+ . . .+) and the definition of the curvature
is such that an Euclidean sphere has a positive curvature. Bulk coordinates will be denoted by capital
Latin indices and brane coordinates by Greek indices.
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zi=1,2 are the locations of the two branes, Λ is the bulk cosmological constant, and
κ5 is related to the 5D Planck (fundamental) scale M5 by M3

5 = 1/2κ25, σi are the
brane cosmological constants (tensions) and Li are Lagrangian densities describing some
boundary localized matter fields. We will fine-tune the bulk and brane cosmological
constants such that the background geometry corresponds to the well-known Randall–
Sundrum solution:

ds2 =

(

R

z

)2
(

ηµνdx
µdxν + dz2

)

(2)

with R−1 =
√

−κ25Λ/6, σUV = 6/(κ25R) and σIR = −σUV . The location of the branes are
such that the warp factor, R/z, is set to one on the ultraviolet (UV) brane (z1 = R), and
it is exponentially smaller on the infrared (IR) brane (z2 = R′ ≫ R).

The aim of this paper is to study the spectrum of the physical excitations when non-
trivial gravitational interactions are introduced on the branes. We thus need to consider
gravitational fluctuations around the RS background solution:

ds2 = e2A (η
MN

+ h
MN

) dxMdxN , with A = − ln(z/R). (3)

In the bulk, the Einstein’s equations are of course independent of brane interaction
terms. At the linear level and in absence of any matter beside the bulk cosmological
constant, these equations read

E
(1)
MN ≡ G

(1)
MN + κ25Λ e

2AhMN = 0, (4)

where G
(1)
MN is the linear piece of the Einstein tensor. Using the Einstein equations of the

background solution, we finally arrive at

E(1)
µν = 1

2
(∂µ∂

σhνσ + ∂ν∂
σhµσ −�hµν − ∂µ∂νh)− 1

2
(∂σ∂ρh

σρ −�h) ηµν

−1
2
(h′′µν − h′′ηµν)− 3

2
(h′µν − h′ηµν)A

′

−1
2
∂µ∂νh55 +

1
2
(�h55 − 3A′′h55 − 3A′h′55 − 9A′2h55)ηµν

+1
2

(

∂µh
′
ν5 + ∂νh

′
µ5

)

− ∂σh′σ5 ηµν +
3
2
A′ (∂µhν5 + ∂νhµ5)− 3A′∂σhσ5 ηµν , (5)

E
(1)
µ5 = 1

2
(∂σhσµ − ∂µh)

′ + 3
2
A′∂µh55 +

1
2
∂µ∂

σhσ5 − 1
2
�hµ5 + 3A′′hµ5 − 3A′2hµ5, (6)

E
(1)
55 = −1

2
(∂σ∂ρhσρ −�h) + 3

2
A′h′ − 6A′2h55 − 3A′∂σhσ5, (7)

with the following conventions: 4D indices are raised and lowered using the flat Minkowski
metric, h is the 4D trace hµ

µ, � = ∂σ∂σ and a prime denotes a derivative with respect
to the z coordinate.

The bulk equations are obviously covariant under an infinitesimal general coordinate
transformation that reads at the linear order:

δxM = ξM , (8)

δhµν = −∂µξν − ∂νξµ − 2A′ξ5 ηµν , δhµ5 = −ξ′µ − ∂µξ
5, δh55 = −2

(

ξ5eA
)′
e−A. (9)
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Clearly, this reparametrization invariance allows to restrict ourselves to generalized Gaus-
sian normal (GGN) systems of coordinates:

h55 = hµ5 = 0 , brane embeddings: z = fi(x), i = 1, 2 . (10)

Within these generalized Gaussian normal gauges, there is still a residual reparametriza-
tion invariance involving arbitrary functions, ζ and ζµ, of the 4D coordinates :

ξ5(x, z) = z
R
ζ(x), (11)

ξµ(x, z) = ζµ(x)− 1
2
z2

R
∂µζ(x), (12)

and the transformation of the metric fluctuations is

δhµν =
z2

R
∂µ∂νζ +

2

R
ζ ηµν − ∂µζν − ∂µζν . (13)

Clearly, with an appropriate choice of ζ we can maintain the GGN gauge fixing condi-
tions (10) and straighten one of the branes which will now be located at a constant z.
This gauge choice for which the UV (IR) brane is straight will be called GNUV (GNIR),
generalized Gaussian normal gauge with respect to the UV (IR) brane. There is finally
a third special generalized Gaussian normal gauge for which the 4D fluctuations are TT,
ie, traceless, h = 0, and transverse, ∂σhσµ = 0. 3 This gauge will be denoted GNTT.
Each gauge has its own advantage: in the GNTT gauge it will be easy to solve the
bulk equations of motion while in the GNUV and GNIR gauges it will be easy to solve
the boundary conditions. In the following sections we will explain how these different
gauges are related to each other depending on the interactions and the matter localized
on the branes. Finally note that the GNUV and GNIR gauges still possess usual 4D
reparametrization invariance associated to the ζµ(x).

2.2 Boundary conditions in presence of brane mass term

We now want to add some brane localized interactions for the gravitational degrees of
freedom. More precisely, we are interested in a localized mass term. Working in the
generalized Gaussian system of coordinates in which the brane we want to add the mass
term on is straight, the mass term is for simplicity chosen to be of the Fierz–Pauli form 4:

L = −1
8
f 4
UV

∫

d4x (hµνh
µν − h2)|z=R − 1

8
f 4
IR

R4

R′ 4

∫

d4x (hµνh
µν − h2)|z=R′. (14)

3To see this, first note that the residual gauge invariance can be used to set h = 0 and ∂νhνµ = 0 at
a point z = z0. Then the (µ5) equation implies that ∂µh − ∂νhνµ = 0 everywhere in the bulk. Using
this result the (55) equation then implies h′ = 0 everywhere. But since h = 0 at a point, it is zero
everywhere. Then ∂νhµν = 0 in the bulk.

4The powers of the warp factor are determined by the requirement that in the coordinate system
where eA = 1 at the IR brane say, the boundary condition on that brane is independent of the warp
factor on the UV brane.
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Of course, since the mass terms (14) explicitly break general coordinate invariance, their
forms will not be the same in different system of coordinates and it will have to be
determined by coordinate transformation from the appropriate GGN gauge. 5 Note in
particular that the two mass terms are not written in the same coordinate systems: the
UV mass term is written in the GNUV gauge while the IR mass term is written in the
GNIR gauge.

More general, non-Fierz–Pauli mass terms may also be considered. For brevity, the
analysis of these more general mass terms is provided in the Appendix B. The conclusions
of this and subsequent sections is unchanged in the more general case : an additional
state is present, but it decouples and the radion is always a ghost.

The effect of the mass term and additional matter localized on the brane is to modify
the usual Neumann boundary condition for the metric fluctuations. The new boundary
condition gets simplified on the GGN gauge where the brane is straight. In the GNUV
gauge, the boundary condition at the UV brane is

h′µν = −κ25(SUV
µν − 1

3
ηµνS

UV − f 4
UV hµν), (15)

where SUV
µν is the stress-energy tensor for the matter localized on the UV brane, SUV is

its trace, SUV
µν η

µν . Similarly the boundary condition at the IR brane is

h′µν = κ25(S
IR
µν − 1

3
ηµνS

IR)− κ25f
4
IR

R

R′
hµν . (16)

where warp factors have been absorbed into our definition of SIR
µν . These boundary

conditions are obtained by varying the brane localised mass term action given above,
and then adding that to the left-side of the linearized Einstein equations. The boundary
conditions are then obtained by requiring the cancellation of the boundary terms in
the variation of the action (see for instance [19] for an analogous computation in gauge
theories). For later convenience it is useful to introduce the following parameters that
have the dimension of a mass

λIR(UV ) = κ25f
4
IR(UV ) . (17)

We can find the graviton Kaluza–Klein spectrum by solving the bulk equations for
transverse and traceless excitations, supplemented by the above boundary consitions in
the absence of matter on the branes. The presence of the brane mass terms lifts the
zero mode from the spectrum. For instance in the presence of a mass term on the IR
brane only and in the limit λIR ≪ R−1, the lightest spin-2 state has a mass given by (see
Section 4.1 for details)

m2
0 ∼ 2

κ25f
4
IR

R

(

R

R′

)4

∼ 2

M2
P l

(

R

R′
fIR

)4

(18)

5In an abuse of language we will still refer to generalized coordinate transformations as “gauge
transformations”, even though this symmetry is explicitly broken.
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where M2
P l ∼ R/κ25 is approximately the four-dimensional Planck mass.

The spectrum of light states with mass below the effective compactification scale
1/R′ is seen to also contain a massless scalar, the radion. Part of this paper is devoted
to the identification of the properties of this perturbation.

2.3 State counting

In this section we count the number of degrees of freedom in the gravity theory with
a brane localized Fierz–Pauli mass term. In the theory without such a mass term the
spectrum consists of a massless spin-2 field with two polarizations, a radion and a tower
of massive spin-2 Kaluza–Klein resonances with five polarizations each. Here we show
that once the mass term is introduced the spectrum changes only in that the lightest
spin-2 field is now massive and therefore has the five polarizations associated with a
massive spin-2 particle.

In doing so we will make use of the important result that in the presence of the
brane mass term and in the absence of any additional matter on the massive brane, the
gauge GNIR(GNUV) is equivalent to the GNTT gauge. In subsequent sections we will
also make use of this result.

Before demonstrating this, we note that this is similar to the situation with a massive
U(1) vector boson Aµ. There one has no gauge invariance, but a priori four degrees of
freedom. However, the equations of motion for the vector boson imply that ∂µA

µ =
0, eliminating one of the unphysical perturbations. Thus the theory describes three
fluctuating degrees of freedom, the correct number for a massive spin–1 particle.

Similarly, a massive graviton in four dimensions a priori describes ten degrees of
freedom, but has no gauge invariance. As with the massive vector boson, one finds that
for the Fierz–Pauli mass term, the equations of motion imply that the metric is transverse
and traceless. This eliminates five perturbations leaving five, which is the correct number
for a massive spin-2 particle [12, 22].

The situation with the brane localized mass term is similar, but naively worse. This
is because we are describing a five dimensional gravitational theory, which a priori has
fifteen degrees of freedom. Since the brane mass term explicitly breaks general coordinate
invariance, there is a concern that additional states which were previously eliminated by
the gauge invariance are now reintroduced. This would be a disaster for the model, just
as for a massive graviton theory with a mass-term in a non-Fierz–Pauli combination.

However, just as in the massive vector and graviton examples given above, we shall
see that the equations of motion imply that for a Fierz–Pauli mass term defined in
GNIR(GNUV) gauge, the metric is additionally TT in absence of any additional matter
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on the brane. Thus the only degrees of freedom are massive gravitons which involve only
five physical polarizations and a massless radion associated with the movement of the
brane. In addition, since this result will follow from the properties of the bulk equations
of motion and the IR(UV) boundary condition, these conclusions are unchanged if a
source is placed on the opposite UV(IR) brane.

To see this, let us consider the case of a mass term added on the IR brane and let
us work in the GNIR gauge where the IR brane is straight. The IR boundary condition
for the combination Hµ ≡ ∂νhνµ − ∂µh is

∂zHµ|z=R′ = −λIR
R

R′
Hµ|z=R′ . (19)

Now the (µ5) equation implies that ∂zHµ = 0, so the left-side of the equation above van-
ishes identically. Since λIR 6= 0, we learn thatHµ vanishes at the location of the IR brane.
But since by the (µ5) equation Hµ is constant in the bulk, we find that it actually vanishes
identically. Using this result the (55) component of the bulk Einstein equations implies
that ∂zh = 0 identically. Next consider the IR boundary condition again, but written as
∂zhµν |z=R′ = −λIRR/R′ hµν |z=R′. The trace of this implies ∂zh|z=R′ = −λIRR/R′ h|z=R′,
which when combined with the previous result implies that h|z=R′ = 0. But ∂zh = 0, so
h vanishes in the bulk. From this result and Hµ = 0, it follows that ∂νhνµ = 0 identically.

The introduction of a brane localized Fierz–Pauli mass term (14) therefore implies
that the metric is transverse and traceless in the GGN gauge where the brane is straight
(the GNIR gauge is also GNTT). Thus at the massive level there are only five degrees of
freedom, corresponding to the helicity states of a massive graviton. The brane localized
Fierz–Pauli mass term does not introduce any additional massive degrees of freedom that
were not already present in the RS model.

These results may be understood by noting that the model still has a large residual
general invariance generated by coordinate transformations that vanish at the location
of the brane. Referring to (9), this requirement implies ξµ|z=R′ = 0 and ξ5|z=R′ = 0.
Thus the only gauge transformations explicitly broken by the brane mass term are those
associated with the would–be zero mode graviton and the bending of the brane.

3 Two-Point Function Analysis

In this section we obtain expressions for the graviton two-point correlator with external
legs on the UV brane.6 We consider first the case with a mass term on the UV brane and
then the case with a mass term on the IR brane. This calculation serves two purposes.

6The analogous calculation for the case of a gauge field with a brane localized mass term may be
found in [23].
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We will be able to determine the extent to which observers on the UV brane find the
theory to deviate from Einstein’s gravity at any particular length scales. We will also be
able to determine the masses of the light modes in the four dimensional effective theory.
This is precisely the physics we are most interested in determining.

The metric perturbation in the linear approximation created by a source S will be
given by

hMN(x, z) =

∫

d4x′dz′
√

|g|∆PQ
MN(X,X

′)SPQ(x
′, z′) , (20)

where ∆ is the Green’s function. We are mostly interested in physics for an observer on
the Planck brane and so we want to compute the two-point correlator with both external
legs on the UV brane. Finding this correlator is equivalent to computing, in the GNUV
coordinates, the metric perturbation on the UV brane as a response to a source localized
on the UV brane too.

To obtain the two-point function we closely follow the work of Garriga and Tanaka [24].
The approach is to determine, at a point on the UV brane, the linearized gravitational
field created by a source on the same UV brane. This can be related in a simple way to
the graviton two-point correlator with external legs on the UV brane. The key observa-
tion is that it is convenient to first work in the GNTT gauge where the bulk equations
are very simple. In this gauge the equations in the bulk reduce to

(

�+ ∂2z −
3

z
∂z

)

hµν = 0 . (21)

However, in this gauge both branes will in general not be straight and the bending of each
brane provides an additional contribution to the stress tensors on the two boundaries,
modifying the boundary conditions. The main effort of these sections is to determine this
modification. With that information and the solution to the propagator in the GNTT
gauge, we can readily evaluate the perturbation in the GNIR(GNUV) gauge .

We consider below two cases. In the first example, both the Fierz–Pauli mass term
and the source are located on the UV brane, and the perturbation on the UV brane is
determined. In the second, the Fierz–Pauli mass term is placed on the IR brane, with
the source still placed on the UV brane.

3.1 Fierz–Pauli Mass term on the Planck Brane

In GN coordinates around the Planck brane (GNUV), the UV boundary condition is

∂zh
GNUV
µν |z=R

= λUV h
GNUV
µν |z=R

− κ25

(

SUV
µν − 1

3
SUV ηµν

)

. (22)
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with
λUV = κ25f

4
UV . (23)

In order to be able to solve the Einstein’s equations in the bulk, it is useful to perform
a coordinate transformation in order to obtain a graviton perturbation that is trans-
verse and traceless. The transformations (11) and (12) to TT coordinates yields a new
boundary condition:

∂zh
GNTT
µν |z=R

= λUV h
GNTT
µν |z=R

− κ25Σµν (24)

where the source term now includes a brane-bending contribution:

Σµν = Sµν −
1

3
ηµνS − 2

κ25
∂µ∂νζ +

λUV

κ25

(

R∂µ∂νζ +
2

R
ζηµν − ∂νζµ − ∂µζν

)

. (25)

The gauge parameters ζ and ζµ are chosen so that in the new frame the metric is TT.
Since Σµν is the source for the metric perturbation in the GNTT gauge, it must must
be transverse and traceless too. This leads to the two conditions below on the gauge
parameters:

(i) λUV

(

6
R
∂µζ − ∂µ∂σζ

σ +�ζµ
)

= 0, (26)

(ii) −κ2
5

3
S − 2�ζ + λUV

(

8
R
ζ +R�ζ − 2∂σζ

σ
)

= 0. (27)

3.1.1 Massless case: λUV = 0

To begin though, first suppose that no mass term is present. Then we should recover the
results of Garriga and Tanaka [24]. In this case the TT conditions simplify and reduce
to the single requirement that �ζ = −κ25S/6. In the GNTT coordinates, the source is
thus related to the brane stress-energy stress-energy tensor by:

Σµν = Sµν −
1

3

(

ηµν −
∂µ∂ν
�

)

S (28)

which is manifestly transverse and traceless. The solution for the metric fluctuations in
the bulk is:

hGNTT
µν (x, z) = −κ25

∫

d4x′∆(x, x′; z, R)Σµν(x
′) (29)

where ∆ is the Green’s function for a scalar field in the Randall–Sundrum background. It
satisfies the boundary conditions ∂z∆|z=R

= ∂z∆|
z=R′

= 0 and it’s solution may be found
in the appendices. Back in the GN system the metric perturbation on the brane is

hGNUV
µν (x,R) = hGNTT

µν (x,R) + ηµν
κ25
3R

1

�
S . (30)
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where we have substituted for ζ and dropped terms involving longitudinal four-dimensional
derivatives. At long distances (see the Appendix, eq. (A.10)), q ≪ R−1, the propagator
becomes

∆(x,R; x′, R) → 2

R

1

1− (R/R′)2
1

�
δ4(x− x′) (31)

and the metric perturbation in the GNUV coordinate is then [24] (again dropping terms
involving longitudinal four-dimensional derivatives)

hGNUV
µν = −2κ25

R

1

1− (R/R′)2
1

�

(

Sµν −
1

2
ηµνS

)

− κ25
3R

(

R

R′

)2
1

1− (R/R′)2
ηµν
�
S . (32)

The crucial factor of 1/3 from the gauge transformation ζ has been combined with the
1/3 factor appearing in the trace part of the Green’s function to obtain the correct factor
of 1/2 for a massless graviton [24]. The part that is left over is interpreted as due to
the exchange of the radion, and appears here with the correct sign to describe a physical
propagating particle.

The important point in this review of the results of Garriga and Tanaka is to draw
attention to the technical reason for recovering the correct tensor structure of the massless
graviton: the transformation between the GNTT and GNUV coordinate system involved
a bending of the brane, ζ , was non-vanishing. By contrast, a transformation involving ζµ
can only modify the part of the graviton propagator involving derivatives of the source,
leaving the part involving the trace untouched. This is the situation encountered when,
on the brane, a graviton mass term is turned on.

3.1.2 Massive case: λUV 6= 0

For a non-zero mass term on the brane the first requirement (26) becomes non-trivial
and implies that

�ζ = 0 . (33)

Decomposing the vector ζµ into a scalar and a transverse part, ζµ = ζTµ − ∂µφ with
∂σζTσ = 0, the second condition (27) relates the scalar part to the brane stress-energy
tensor:

�φ =
κ25

6λUV

S − 4

R
ζ . (34)

A consistent solution to the TT conditions is to set ζ = ζTµ = 0. This leads to the same
expression (28) for the source Σµν in terms of the boundary stress–tensor Sµν . Crucially
though, the coordinate transformation needed to reach the GNTT frame now involves
ζµ rather than ζ . Thus there is no brane bending to compensate the 5D structure of the
brane propagator and we expect that gravity is never Einsteinian on the brane.
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Going back to the GNUV frame using

hGNUV
µν = hGNTT

µν − 2∂µ∂νφ, (35)

we get a different expression for the metric fluctuation compared to when no brane mass
term is present:

hGNUV

µν (x, z) = −κ25
∫

d4x′∆(x, x′; z, R)

(

Sµν −
1

3

(

ηµν −
∂µ∂ν
�

)

S

)

− κ25
3λUV

∂µ∂ν
�

S. (36)

Here ∆ is the Green’s function for a scalar field in the Randall–Sundrum background with
a mass term on the UV brane. It satisfies the boundary conditions ∂z∆|z=R

= λUV∆|z=R

and ∂z∆|
z=R′

= 0. It’s expression is given in the appendix.

As already mentioned, unlike the case with no brane mass term, here there is no
brane bending. Thus the trace part of the propagator is the same in the GNTT and
GNUV coordinate systems; in particular, the factor of 1/3 does not change and Einstein
gravity is not recovered.

In order to decouple the IR brane (R/R′ → 0) while keeping fUV held fixed, we
consider the long distance limit qR ≪ 1 but keeping qR′ ≫ 1 in order to probe the
fifth dimension. Using the approximate expression (A.12) of the propagator found in the
Appendix for this limit, we arrive at

hGNUV
µν (x,R) = −2κ25

R

1

�−m2

(

Sµν −
1

3

(

ηµν −
∂µ∂ν
m2

)

S

)

, (37)

where m2 = 2λUV /R. This is the correct propagator for a massive spin-2 particle [22],
up to and including the derivative terms that scale as m−2. At distances R ≪ r ≪ R′,
it is not surprising then to find that the perturbation is dominated by the exchange
of a single massive spin–2, with the exchange of the KK tower suppressed as in the
Randall–Sundrum model.

At energy scales much below the compactification scale, r ≫ R′, the theory is four-
dimensional and the only light states are the radion and a massive graviton, for which
there will be a vDVZ discontinuity. But in the limit just considered, where the IR
brane is decoupled first, we cannot appeal to these arguments, as the theory is never
four–dimensional. Nevertheless, the result above, (37), demonstrates that even in this
intrinsically five-dimensional limit there is still a discontinuity.

Since in this limit there is a mass gap between the would-be zero mode graviton and
the continuum of bulk gravitons that goes down to zero, following the reasoning of [29] one
may suspect that the graviton studied here in unstable. In the appendix the two-point
function is evaluated for complex, time-like q2. There we find that the light graviton
studied above does have a complex pole, with a lifetime Γ given by Γ/m ∼ (mR)2.
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This lifetime is parametrically identical to the scalar example studied in [29]. Since here
though R−1 >∼ 10−3 eV and m <∼ H0, the lifetime is much longer than the age of the
universe.

Finally, one may be puzzled by the absence of any term in (36) that could possibly
be interpreted as due to the exchange of a radion with non-derivative couplings. As
shown at the end of Section 4, the radion is normalizable and physical (not a ghost), and
has a wavefunction that is localized about the IR brane. However, in contrast to RS,
here the radion wavefunction vanishes at the UV brane and has only derivative couplings
to sources located there. Therefore it does not contribute to the two-point correlation
function of two conserved sources located at the UV brane.

3.2 Fierz–Pauli Mass term on the Infra-Red brane

We consider the case where the Fierz–Pauli mass term is on the IR brane. The source
remains on the UV brane.

The first observation is that in the GGN coordinate system with respect to the IR
brane (GNIR), the metric is additionally TT, since there is no source on the IR brane (see
Section 2). Thus the metric satisfies (21) in the bulk, with the IR boundary condition

∂zh
GNTT
µν |

z=R′
= −λIR

R

R′
hGNTT
µν |

z=R′
, (38)

with
λIR = κ25f

4
IR. (39)

In this gauge however the UV brane is bent, due to the source located there. To
determine the UV boundary condition in the GNTT gauge, we first consider the GN
coordinates with respect to the UV brane (GNUV) and then perform a coordinate trans-
formation. In the GNUV gauge, the UV boundary condition is

∂zh
GNUV
µν |z=R

= −κ25
(

Sµν −
1

3
ηµνS

)

. (40)

Inserting the transformations (11) and (12) relating the GNUV gauge and GNTT gauge
metric into the above boundary condition give the desired UV boundary condition in the
GNTT gauge:

∂zh
GNTT
µν |z=R = −κ25Σµν , (41)

where the source term now includes a brane-bending contribution:

Σµν = Sµν −
1

3
ηµνS − 2κ−2

5 ∂µ∂νζ . (42)
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As before, requiring that this source is transverse and traceless fixes �ζ = −κ25S/6. In
GNTT gauge then, the UV source is

Σµν = Sµν −
1

3

(

ηµν −
∂µ∂ν
�

)

S . (43)

The solution for the metric perturbation in the bulk is

hGNTT
µν (x, z) = −κ25

∫

d4x′∆(x, x′; z, R) Σµν(x
′), (44)

where ∆ satisfies the Green’s function equation

(

�+ ∂2z −
3

z
∂z

)

∆(x, z; x′, z′) =
z3

R3
δ(4)(x− x′)δ(z − z′), (45)

with boundary conditions ∂z∆|z=R = 0 and ∂z∆|z=R′+λIR(R/R
′)∆|z=R′ = 0. The Green’s

function ∆ is given in the Appendices, and more details can be found there.

Back in the GNUV coordinate system, the metric perturbation is

hGNUV
µν (x,R) = hGNTT

µν (x,R) + ηµν
κ25
3R

1

�
S, (46)

where we have substituted for ζ and dropped terms involving four-dimensional deriva-
tives. Using results (A.7)-(A.9) obtained in the Appendix, at long distances where we
cannot probe the KK excitations, qR′ ≪ 1, the asymptotic form of the propagator is

∆(x,R; x′, R) → N
�−m2

δ(4)(x− x′), (47)

where N and m2 may be found in the Appendix. Focusing on non-derivative terms, in
this limit the GNUV metric perturbation reduces to

hGNUV
µν (x,R) = −κ25

N
�−m2

(

Sµν −
1

3
ηµνS

)

+ ηµν
κ25
3R

1

�
S. (48)

The last term is due to the gauge transformation between the GNTT and GNUV coor-
dinates and is independent of the IR boundary mass term.

In this limit the first two terms describe the exchange of a massive graviton, and the
last term describes the exchange of a massless scalar (the radion). But the sign of the
last term implies that the radion is ghost. This conclusion is independent of the size of
the IR Fierz–Pauli mass, fIR.

An interesting limit to look at is when 4D momenta can only probe the lightest
graviton and not the regular KK excitations: m ≪ q ≪ 1/R′, then N → 2/(1 −
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(R/R′)2)/R and the metric perturbation on the UV brane becomes (again dropping
terms involving longitundinal 4D derivatives)

hGNUV

µν |R = −2
κ25
R

1

1− (R/R′)2
1

�

(

Sµν − 1
2
ηµνS

)

− κ25
3R

ηµν
1− (R/R′)2

R2

R′ 2

1

�
S, (49)

with O(λ
IR
R) corrections not included. This expression goes smoothly over to the result

for Randall–Sundrum.

Finally, we can see that for UV brane observers Einstein gravity is recovered at
distances shorter than the compactification scale. Consider qR′ ≫ 1 but qR ≪ 1. In
this limit all dependence on the IR brane disappears. Using results (A.11) obtained in
Appendix, the perturbation on the UV brane is indeed found to be (still dropping terms
involving longitundinal 4D derivatives)

hGNUV
µν (x,R) = −2κ25

R

1

�

(

Sµν −
1

2
ηµνS

)

. (50)

Nevertheless when fIR 6= 0, the theory has a ghost which is responsible for the recovery
of 4D gravity on the Planck brane. We will show in Section 4 that the ghost mode is the
radion.

4 Mode Decomposition Analysis

4.1 Spin-2 excitations: gravition mass spectrum

We are first interested in the spectrum and the KK decomposition of the spin-2 exci-
tations. In the GNTT gauge, the bulk equations of motion do not couple the different
polarizations and thus simply reduce to the a scalar equation of the form:

�φ+ φ′′ − 3
z
φ′ = 0. (51)

The mode decomposition can be written as

φ(x, z) =
∑

n

( z

R

)2

ψn(z)φn(x), (52)

the wavefunctions ψn(z) then satisfy a Bessel equation of order ν = 2 (mn is the 4D mass
of the eigenmode):

ψ′′
n +

1
z
ψ′
n +

(

m2
n − 4

z2

)

ψn = 0, (53)

whose solutions are
ψm(z) = AnJ2(mnz) +BnY2(mnz), (54)
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where the two constants are fixed by the boundary and the normalization conditions.
The boundary conditions for the spin-2 excitations are unaffected by coordinate trans-
formations of the form (11)-(12) and therefore take the same form within the GNTT
gauge as in the GNUV and GNTT gauges:

(

ψ′
n +

(

2

R
− λUV

)

ψn

)

|z=R

= 0; (55)

(

ψ′
n +

(

2

R
+ λIR

)

R

R′
ψn

)

|z=R′

= 0. (56)

Clearly as soon as a nonvanishing mass term is turned on at either brane, the would
be massless mode, ψ = R2/z2, cannot satisfy the boundary conditions: the massless
mode gets lifted by the brane localized masses. For the massive modes, the boundary
conditions (55)-(56) lead to the quantization equation:

mnJ1(mnR)− λUV J2(mnR)

mnY1(mnR)− λUV Y2(mnR)
=
mnJ1(mnR

′) + λIR
R
R′
J2(mnR

′)

mnY1(mnR′) + λIR
R
R′
Y2(mnR′)

. (57)

Let us examine the solutions of this quantization equation in the two special cases when
a single brane mass term is turned on at either the IR or the UV brane.

4.1.1 Mass term on the IR brane (λUV = 0, λIR 6= 0)

Assuming that mnR
′ ≪ 1 and expanding the Bessel functions near the origin, we find

that the lightest mode has a mass approximately given by

m2
0 =

8

R′ 2

λIRR

4 + λIRR

(

R

R′

)2

. (58)

There is a gap of order R/R′ between this lowest mode and the regular KK modes that
have mass

mn ∼ xn
R′

(59)

where xn ∼ (n+ 1/4)π are the roots of the J1 Bessel function: J1(xn) = 0.

The normalization of the wavefunction can be found analytically using theWronskian
method (see for instance Ref. [27]). We found

ψn(z) ≡ ψmn
= Nn

(

J2(mn z)−
J1(mnR)

Y1(mnR)
Y2(mn z)

)

, (60)

with
1

N 2
n

=
2

π2m2
nR

(

λ2IRR
2 + 4λIRR +m2

nR
′ 2

(λIRRY2(mR′) +mnR′ Y1(mR′))2
− 1

Y 2
1 (mnR)

)

. (61)
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4.1.2 Mass on the UV brane (λIR = 0, λUV 6= 0)

For a large warp factor, R′/R ≫ 1, the quantization equation (57) can approximately
simplified to

(mnY1(mnR)− λUV Y2(mnR)) J1(mnR
′) = 0, (62)

the solutions of which form the regular KK modes again obtained from the roots, xn, of
the J1 Bessel function:

mn ∼ xn
R′
. (63)

On top of this tower, there is another mode that is continuously connected to the massless
graviton when λUV goes to zero. For this special mode to be parametrically lighter
than the regular KK modes, the mass term added on the UV brane must be small
enough. More precisely, when λUVR ≪ (R/R′)2, then the mass of the lightest graviton
is approximated by

m2
0 = λUVR

(

R′

R

)2
2

R′ 2
. (64)

The mass of this mode can become larger than the compactification scale when 1/R′

gets smaller and smaller and λUVR held fixed. In the limit 1/R′ → 0, it becomes non-
normalizable and is no longer in the spectrum. Instead, a resonance with a finite lifetime
is found (see Appendix A.3).

4.2 The radion as a ghost

4.2.1 The radion wavefunction

To provide further evidence that the interpretation of the two–point function obtained
previously is indeed correct, in this section the radion’s wavefunction is determined and
its effective action computed. The principal result of this section is a confirmation that
when the Fierz–Pauli mass term is on the IR brane the radion is a ghost.

This conclusion is unchanged even if we allow for a non-Fierz-Pauli mass term on
the IR brane. The details of that analysis are provided in Appendix B.

In fact, the wavefunction is rather straightforward to obtain in the GNTT coordinate
system. By Lorentz covariance the metric describing massless scalar fluctuations Φi must
be proportional to ∂µ∂νΦ

i with �Φi = 0. Inspecting Einstein’s equations in GNTT
coordinates the general solution is trivial to obtain. It is :

hGNTT
µν = − z4

2R3
∂µ∂νf + ∂µ∂νφ , (65)
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where f and φ are massless scalars. At this point the boundary conditions are not yet
imposed, since the branes are in general bent. For future reference, in this system the
UV and IR branes are located at zUV = R − ζ(x) and zIR = R′ − (R′/R)φ2(x) (the
normalization is chosen for later convenience).

As a check on this result, the wavefunction of Charmousis, Gregory and Rubakov
(CGR) [25] for the radion is now recovered. To do this, transform to the GNUV co-
ordinate system z(GNUV ) = z + (z/R) ζ where the UV brane is straight and located at
zUV = R. The IR brane is located at zIR = R′ − (R′/R) η(x) with η = φ2 − ζ . The new
metric is

hGNUV
µν = − z4

2R3
∂µ∂νf + ∂µ∂νφ+

z2

R
∂µ∂νζ +

2

R
ηµν ζ. (66)

The UV boundary condition in this system is ∂zh
GNUV
µν |z=R = 0 and determines the

unknown function ζ to be ζ = f with φ still unconstrained. This gives the CGR solution

hGNUV
µν =

(

− z4

2R3
+
z2

R

)

∂µ∂νf +
2

R
ηµν f + ∂µ∂νφ . (67)

Actually this is not quite the CGR solution, for here there is the additional term propor-
tional to φ. In the RS1 model with no brane mass term, this term can be gauged away.
This is because in the restricted GN coordinate system with the Planck brane straight
and no mass term on any brane, there is a residual gauge invariance given by ζµ = ∂µφ/2
that may be used.

When the IR brane mass term is present this gauge invariance does not exist and
φ cannot be eliminated in this way. It is seen below that in unitary gauge this mode is
eliminated by the IR boundary condition. In a non-unitary gauge φ corresponds to the
Goldstone boson associated to the longitudinal component of the graviton.

To determine the radion function in the GNIR coordinate system with the IR brane
straight, it is useful to recall the following result, derived previously in Section 2. Namely,
when the IR brane mass term is present the metric in these coordinates is in addition
TT. But the most general solution of Einstein’s equations for a massless scalar in GNTT
gauge was already obtained. It is

hGNIR
µν = hGNTT

µν =

(

− z4

2R3
+ γ

)

∂µ∂νf + ∂µ∂νφ . (68)

(Compared with previous notation here we have defined φ slightly differently and pulled
out a factor γ). This contains two massless scalars. One of these is the radion and
the other, as mentioned above, is the Goldstone boson corresponding to the longitu-
dinal component of the graviton. In the unitary gauge the IR boundary condition is
∂zh

GNTT
µν |

z=R′
= −λ

IR
(R′/R) hGNTT

µν |
z=R′

. This determines φ in terms of f , or equiva-
lently, determines γ after setting φ = 0.
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In a non-unitary gauge φ is no longer zero. But the IR boundary condition is then
modified due to an extra term coming from the Goldstone boson, which may be identified
with φ.

In summary, in GNIR gauge (68), with φ = 0, is the radion wavefunction.

4.2.2 The radion kinetic term

The wavefunction obtained above is not very useful for determining the effective action,
since the UV brane is not straight. We would like to compute the effective action in a
coordinate system with both branes straight.

To do this, begin in the GNIR gauge. The radion wavefunction is given by (68),
and the UV brane is located at z = R − ζ(x). We first need to find the position of the
UV brane in the GNIR gauge. But this has been determined already, since here the UV
boundary condition is the same as in RS1. Hence equation (66) and (67) yield ζ = f .

Next we straighten both branes. To do this, it is easiest to start again in the
GNIR=GNTT coordinates where the IR brane is straight and the radion wavefunction
is given by (68), and perform a final coordinate transformation of the form

z(rad) = z − z F (z)

R
f(x) (69)

maintaining hµ5 = 0 but not h55 = 0. F is an arbitrary function with the only restriction
that both branes are now straight, which implies F (R′) = 0 and F (R) = −1. The
normalization of the radion wavefunction will be found to depend only on the values of
F at the location of the branes, and not on its particular shape. The metric in this final
coordinate system is

h(rad)µν = c(z)∂µ∂νf − 2

R
F (z)fηµν ,

h
(rad)
55 =

2z

R
F ′f , (70)

with

c(z) = − z4

2R3
+ γ − 2

∫ z

dz′
z′

R
F (z′) . (71)

It is straightforward to verify that for arbitrary F , restricted to the boundary conditions
F (R′) = 0 and F (R) = −1, this expression satisfies the equations in the bulk and also
both boundary conditions.

An inspection of this solution indicates a significant difference between the radion
here and in the RSI model. Here the brane mass term forces the non-TT part of the radion
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wavefunction to vanish at the IR brane. That is, here F (R′) = 0. This is equivalent to
the requirement that the metric be traceless in the GNIR coordinate system. This fact
is instrumental in turning the radion into a ghost.

To determine the radion kinetic term we want to integrate out the short-distance
variation of the metric. To do this we follow the methodology of [6], [26]. For full
details, such as carefully adding the Gibbons–Hawking boundary term and seeing that
the massive gravitons decouple, or for the more general case of a non-Fierz–Pauli mass
term, see Appendix B. Here we quote the main results for the case of the Fierz–Pauli
mass term. Expanding the action to quadratic order gives

Seff = − 1

4κ25

∫

d4xdz

(

R

z

)3

hABEAB[hCD]+boundary terms+brane mass term . (72)

Next we insert the expression (70) for the radion into the action, without using its four-
dimensional equations of motion. Since non-derivative terms in the wavefunction satisfy
Einstein’s equation, we are guaranteed that the integrand is of the form f�f . It is then
a matter of collecting terms appearing in the linearized Einstein equations which have
four-dimensional derivatives. Then we find 7

Seff = − 1

4κ25

∫

d4x

∫ R′

R

dz

(

R

z

)3

hABEAB[hCD] + brane mass term

− 1

8κ25

∫

d4x

(

R

z

)3

[hµνh′µν − hh′]|R′

R +
3

8κ25

∫

d4x
R3

z4
h55h|R

′

R

= − 3

2κ25R

∫

d4x f�f

∫ R′

R

dz F ′

= − 3

2κ25R
(F (R′)− F (R))

∫

d4xf�f (73)

Since F (R′) = 0 and F (R) = −1, the radion kinetic term is

Seff = − 3

2κ25R

∫

d4xf�f (74)

which has the wrong sign. The radion is a ghost!

Repeating this calculation for RS1 provides an independent check on the overall sign,
since here the radion is known to be healthy. In fact, the formula is the same and the
boundary condition in the UV is the same, but the IR boundary condition is different.
So FRS1(R) = −1 and FRS1(R

′) = −(R′ 2/R2), implying that the radion has a physical
kinetic term.

It is straightforward to repeat this exercise when the Fierz–Pauli mass term is on the
UV brane. The radion wavefunction in the GNUV coordinates is still given by (68), but

7We have added in the boundary terms. For more details see Appendix B.
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here the integration constant γ is different in order to satisfy the UV boundary condition.
Just as in the previous example, here it is the IR boundary condition that determines
the position of the IR brane in the GNUV gauge. One finds ζ = (R′ 2/R2)f , which not
surprisingly, is the same as in RS1. Then starting from GNUV coordinates, we straighten
the IR brane, keeping the UV brane straight and maintaining hµ5 = 0. In the notation
of (69), this requires F (R) = 0 and F (R′) = −(R′ 2/R2). The computation of the radion
kinetic term proceeds as before, and one arrives at (73). Here though one finds that the
radion has a healthy kinetic term and is not a ghost. The radion wavefunction is also
peaked at the IR brane and in the limit that the IR brane is decoupled the radion is
not normalizable. All of these properties of the radion are also found to occur in the
RS model. These results with a UV mass term are not surprising, since all we are doing
here is adding a small perturbation on the UV brane where in the RS model the radion
already had an exponentially small support.

Finally, a minor puzzle raised in Section 3 is now resolved. In the computation (36)
of the perturbation due to a source on the UV brane there was no term that could be
interpreted as due to the exchange of a radion with non-derivative couplings. The reason
for this is that the non-derivative component of the radion appearing in hµν – see (70) –
vanishes on the UV brane since in this model F (R) = 0.

These conclusions generalize to the case with a non-Fierz-Pauli mass term. Here we
summarize the results of Appendix B. If the mass term is on the IR brane, the radion
is still a ghost but now there is an additional state that is decoupled and has a physical
kinetic term. If the mass is on the UV brane, the radion still has a physical kinetic
term, but now there is an additional state that is a ghost. Both of these results are not
surprising from the perspective of the AdS/CFT correspondance.

5 Conclusions

We have investigated the physics of brane-localized mass terms for the graviton in warped
backgrounds. We have performed a linearized analysis of the graviton two point correlator
as well as a mode decomposition of the five dimensional theory. We find that if the mass
term is localized on the UV brane, observers on that brane see physics similar to that
of a massive graviton in four dimensions. One important distinction, however, is that if
the graviton mass is larger than the mass of the lightest Klauza-Klein modes it can now
decay off the brane into these states.

A Fierz-Pauli mass term for the graviton on the IR brane reproduces Einstein’s
gravity for observers localized on the UV brane at length scales shorter than the inverse
mass of the lightest Kaluza–Klein modes. At length scales longer than this the spectrum
consists of a massive graviton and a ghost. It is the radion field which is the ghost.
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For a non-Fierz-Pauli mass term on the IR brane there is an additional, physical
state in the theory. But the radion field is still a ghost. For a non-Fierz-Pauli mass term
on the UV brane the radion is physical but now there is an additional state in the theory
that is a ghost.

It is of interest to consider whether there are simple modifications of this theory
that could evade this problem. In models of latticized gravity [30] the radion excitation
is absent, but unitarity is still maintained up to scales larger than the compactification
scale. It is therefore conceivable that a latticized version of the model we have considered
could be a successful realization of a theory which modifies gravity at long distances.

Appendix

A Scalar Propagator

A.1 General expression

The scalar Green’s function equation with mass terms localized on the UV and IR branes
and a source at z = z′ is solution of the bulk equation

(

∂2z −
3

z
∂z − q2

)

∆ =
z3

R3
δ(z − z′), (A.1)

supplemented by the two boundary conditions at the UV and IR branes:

∂z∆|R = λUV ∆|R and ∂z∆|R′ = −λIR
R

R′
∆|R′ . (A.2)

The Green’s function solution to this differential equation is obtained by first solving
the homogeneous equation to the left (z < z′) and to the right (z > z′) of the source. This
gives two solutions ∆< and ∆>, respectively, each having two undetermined integration
constants. The boundary conditions at the UV and IR branes fixes the ratio of the
integration constants in each region. Matching these two solutions at z = z′ requires
continuity of the solution,

∆<|z=z′ = ∆>|z=z′ (A.3)

and the source equation implies

∂z(∆> −∆<)|z=z′ =
z′ 3

R3
. (A.4)
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The first condition determines the ratio of integration constants between the left and
right regions, and the second condition fixes their overall normalization. The unique
solution, for space-like q2, is

∆(z, z′) =
(zz′)2

R3

1

αδ − βγ
(αK2(qz>)− βI2(qz>)) (γK2(qz<)− δI2(qz<)) , (A.5)

where z< = Min(z, z′) and z> = Max(z, z′) and with

α = I1(qR
′) +

λIRR

qR′
I2(qR

′) ,

β = −K1(qR
′) +

λIRR

qR′
K2(qR

′) ,

γ = −I1(qR) +
λUV

q
I2(qR) ,

δ = K1(qR) +
λUV

q
K2(qR) . (A.6)

A.2 Mass on the IR brane (λUV = 0, λIR 6= 0)

In the long distance limit qR′ ≪ 1, by expanding the Bessel functions around the origin
we get the leading form of the propagator with both legs on the UV brane

∆(R,R, q2) → N
�−m2

δ(4)(x′ − x) , (A.7)

with

N =
2

R

1 + 1
4

(

1− R4

R′ 4

)

λ
IR
R

1− R2

R′ 2 +
1
4

(

1− 2 R2

R′ 2

)

λ
IR
R
, (A.8)

and

m2 =
8λ

IR

R(4 + λ
IR
R)

(

R

R′

)4

. (A.9)

to leading order in R/R′. We recover the expression (58) for the lightest graviton found
in Section 4.1. As another check, note that in the limit λIRR → 0, the RS1 result
N → 2/(1− (R/R′)2)/R, is recovered:

∆(R,R, q2) → 2

R(1− R2

R′ 2 )

1

�
δ(4)(x′ − x) , (A.10)

In the limit λIRR ≪ 1, we obtain m2 = 2λIR(R/R
′)4/R. Using λIR = κ25f

4
IR, where

f 4
IR is the coefficient of the Fierz–Pauli (bare) mass term, gives m2 = 2(fIRR/R

′)4/M2
P l,
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the same result obtained in the low–energy effective theory in the mass insertion approx-
imation. In the opposite limit, λIRR ≫ 1, m2 = (R/R′)4/R2, which is independent of
the brane mass term and is always less than the compactification scale 1/R′.

At distances below the compactification length scale, qR′ ≫ 1, but still above the
AdS length scale, qR≪ 1, the leading term in the propagator is

∆(R,R, q2) → 2

R

1

�
δ(4)(x′ − x). (A.11)

A.3 Mass on the UV brane (λ
IR

= 0, λ
UV

6= 0)

Using the asymptotic properties of the Bessel functions, it is straightforward to perform
the long distance limit qR ≪ 1 while still probing the extra dimension qR′ ≫ 1, and we
obtain the asymptotic form of the propagator with both legs on the UV brane

∆(R,R, q2) → 2

R

1

�−m2
δ(4)(x′ − x) , (A.12)

where

m2 = 2
λUV

R
, (A.13)

to leading order in λUVR.

While the validity of this result requires λUVR ≪ 1, it does not restrict the relative
size between the graviton mass m and the compactification scale 1/R′. Thus we can use
these results in the limit that the IR brane is decoupled, 1/R′ → 0. In this limit there
is a mass gap, with a continuum of bulk graviton states down to 0. Following [29], we
expect the massive graviton (A.13) to be unstable. To see this one has to compute the
propagator for time-like momenta p2 = −q2 < 0.

Sending the IR brane to infinity, R/R′ → 0, and imposing that positive frequency
waves are ingoing at z = ∞ (or equivalently, performing the analytic continuation of the
propagator in (A.5) and (A.6)), gives

∆(z, z′) =
(zz′)2

R3

H
(1)
2 (qz>)H

(1)
2 (qz<)B(qz>)

qH
(1)
1 (qR)− λUVH

(1)
2 (qR)

(A.14)

with

B(qz>) = qJ1(qR)− λUV J2(qR)−
(

qH
(1)
1 (qR)− λUVH

(1)
2 (qR)

) J2(qz<)

H
(1)
2 (qz<)

. (A.15)

H
(1)
ν = Jν + iYν is the Hankel function of the first kind of order ν.
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As a check, note that in the limit of a vanishing Fierz–Pauli mass, λUV = 0, we
recover the RS2 propagator found in [28].

The interesting result is the presence of a pole at

q
H

(1)
1 (qR)

H
(1)
2 (qR)

− λUV = 0 . (A.16)

This is almost identical to the equation solved by [29] in a related context. There they
found a complex pole. Following [29], we expand this equation in the qR≪ 1 limit using
asympotic properties of the Bessel functions and

H
(1)
1 (qR)

H
(1)
2 (qR)

=
Y1(qR)

Y2(qR)

(

1− i
J1(qR)

Y1(qR)
+ · · ·

)

(A.17)

where the ellipses denoted terms suppressed by qR. The solution to (A.16) is given by

m = m0 − iΓ (A.18)

with m2
0 = 2λUV /R and Γ/m0 = π(m0R)

2/8.

B Non-Fierz–Pauli mass term on the IR brane

This Appendix analyses the gravitational spectrum for the case of a generic non-Fierz-
Pauli mass term for the graviton on the IR brane.

The bulk action is

Sbulk =

∫

d5x
√
g

( R
2κ25

+ · · ·
)

(B.1)

where the . . . includes in particular the Gibbons–Hawking boundary terms. The action
on the IR brane is taken to be

SIR =
1

8κ25

(

R

R′

)3 ∫

d4x (ah2µν − bh2)|z=R′ . (B.2)

The case a = b = −κ25f 4
IRR/R

′ gives the Fierz–Pauli mass term studied in section 2.
Since this brane action is not coordinate invariant, we need to specify the coordinates in
which the action has this form. We choose it to describe the so-called GNIR coordinates,
where h55 = hµ5 = 0 locally near the brane.

From the equations of motion we obtain the boundary condition at the IR brane to
be

(∂zh
GNIR
µν − ηµν∂zh

GNIR)|z=R′ = (ahGNIR
µν − bηµνh

GNIR)|z=R′ . (B.3)
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As in four-dimensional massive gravity with a non-Fierz-Pauli mass term, here we
expect the existence of an additional propagating scalar degree of freedom, corresponding
to the trace of the metric.

Indeed, solving the bulk equations of motion and the boundary conditions allows for
a non-zero trace of the form

h(x, z) = Φ(x) +
1

6
(R′2 − z2)

b− a

a
�Φ(x) (B.4)

where again h = hµµ and � = ∂µ∂µ and Φ is a 4D scalar field. The boundary condi-
tion (B.3) then simply determines the mass of Φ:

m2
Φ =

a

R′

(a− 4b)

(b− a)
. (B.5)

Next, we would like to determine whether this field Φ is a ghost, and whether the
radion is still a ghost when the mass term is not of the Fierz–Pauli form. To this end,
we will need to compute the off-shell 4D effective action.

First note that on-shell and in GNIR coordinates the most general solution to the
bulk equations of motion and the IR boundary condition is given by

hGNIR
µν = Hµν(x, z) +

(

− z4

2R3
+ γ

)

∂µ∂νf(x) + λ1(z)∂µ∂νΦ(x) + λ2Φ(x) ηµν (B.6)

where the function λ1 and the two constants λ2 and γ are given by

γ =
R′4

2R3
− 2

a

R′3

R3
, (B.7)

λ2 =
a− b

3a
, (B.8)

λ1(z) =
4b− a− 1

2
(z2 −R′2)(b− a)m2

Φ

3am2
Φ

. (B.9)

Satisfying the boundary conditions and equations of motion implies that (i) Hµν is trans-
verse and traceless, (ii) f is massless and it is identified with the radion of the previous
sections, and (iii) Φ is the additional degree of freedom identified above with mass given
by (B.5).

To find the effective four-dimensional action for these states we need to provide an
off-shell decomposition of the metric fluctuation hµν . The decomposition (B.6) is unique
once f is related to the brane bending of the UV brane in the GNIR coordinates and
once Φ is defined as the trace of the metric fluctuation at the boundary :

hGNIR|z=R′ ≡ Φ . (B.10)
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This provides for an off-shell definition of the trace of Hµν .

The effective action is most easily computed in the coordinate system where the
branes are parallel and fixed at z = R and z = R′ (so-called ‘rad’ coordinates). Thus in
the action given below, the metric appearing there is in the ‘rad’ coordinates. The metric
in these coordinates is obtained by transforming from GNIR coordinates to a coordinate
system with both branes parallel. This gives

hradµν = hGNIR
µν − 2

R
ηµνF (z)ξ(x)− 2

∫ z

R

dz
z′

R
F (z′)∂µ∂νξ(x) , h55 =

2z

R
F ′ξ(x) (B.11)

where

ξ(x) = f(x) +
R

6

b− a

a
Φ(x) (B.12)

is the transformation needed to straighten the UV brane.

The five-dimensional action is given by

S = − 1

4κ25

∫

d5x

(

R

z

)3

hABEAB[hCD]

− 1

8κ25

∫

d4x

(

R

z

)3

[hµνh′µν − hh′]|R′

R +
3

8κ25

∫

d4x
R3

z4
h55h|R

′

R . (B.13)

To this must be added the non-FP brane mass term (B.2). Each of these terms require
some explanation. The variation of the first term gives (5)–(7), the linearized equations
of the motion in the bulk . The terms in the second line are the linear equivalent of the
Gibbons–Hawking terms: variation of the term on the first line produces terms on the
boundary that are cancelled by the variation of the terms appearing in the second line.
All boundary terms of the type O(δh′AB) are cancelled this way. Terms that don’t cancel
are of the form δhµνOµν . Requiring that they vanish gives the boundary conditions in
‘rad’ coordinates. Using (B.11), one finds they are equivalent to the GNIR boundary
conditions (B.3) that were previously inferred from the equations of motion.

As previously mentioned, to this action must be added the non-Fierz–Pauli brane
action. The only important point to note is that it must be evaluated in GNIR coor-

dinates. (We could evaluate it in ‘rad’ coordinates, but that would involve a lengthy
substitution of hGNIR in terms of hrad into the brane action.)

After a lengthy computation, substituting (B.11) into the bulk action (B.13), using
(B.6), and including the brane mass term action (B.2), gives (without of course using
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the four-dimensional equations of motion)

Seff = − 1

4κ25

∫ R′

R

d5z
R3

z3
HµνEµν [Hρσ] +

a

8κ25

R3

R′3

∫

d4x (H2
µν −H2)|z=R′

− 1

8κ25

∫

d4x
R3

z3
[HµνH ′

µν −HH ′]|R′

R − 3

2κ25R

∫

d4xf�f

+
(b− a)2R3

24a2κ25R
′2

∫

d4xΦ�Φ +
(b− a)(4b− a)R3

24aκ25R
′3

∫

d4xΦ2 . (B.14)

The first two lines describe the action for the massive gravitons and their (linearized)
Gibbons–Hawking terms. Note that for the massive gravitons their mass term has been
written in the Fierz–Pauli form. This guarantees that for these states there are five on-
shell degrees of freedom. The last term in the second line and all the terms in the last
line describe the quadratic action for the radion and and the Φ field.

We briefly highlight many significant cancellations that occured before arriving at
this result. First note that both the radion and the Φ field have decoupled from each
other and from all the spin-2 gravitons. This reassures us that at the quadratic level
(B.6) correctly decouples all the fields from each other. Further, all quadratic terms
involving more than two derivatives also canceled.

From the action (B.14) we find that Φ is not a ghost, in contrast to what occurs
in purely four dimensional massive gravity with a non-FP mass term. This may not be
surprising, since in the AdS/CFT correspondence the non-FP mass term on the IR brane
does not correspond in the CFT to adding a non-FP mass term, but rather to breaking
general coordinate invariance in the IR. 8 From the action (B.14), we read off that the
mass of Φ is given by

m2
Φ =

a

R′

(a− 4b)

(b− a)
, (B.15)

which agrees with the previous computation using the 5D equations of motion. This
provides a non-trivial consistency check that the computation of the effective action is
correct.

We find that even for the more general non-Fierz–Pauli mass term the radion is still
a ghost. The value of its kinetic term is independent of whether or not the brane mass
term has the Fierz-Pauli form.

These results generalise our conclusion that the radion is ghost when the mass term
has the Fierz–Pauli form. That is, in a theory with a non-Fierz–Pauli mass term on the
IR brane the radion is always a ghost.

8We have explicitly checked that when a non-Fierz–Pauli mass term is added on the UV brane the
scalar field Φ is now a ghost as it could have also been guessed from the AdS/CFT correspondence.
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Note Added

While this work was being completed, a work appeared [31] that proposes a long distance
modification of gravity based a Lorentz violating theory. The model makes use of a ghost
that condenses. A connection between the presence of ghosts and Lorentz violations has
also recently been studied in [21]
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J. Hubisz, Y. Shirman and J. Terning, hep-ph/0310355.

[20] M. Luty, talk at “Theory and Phenomenology of Physics at the TeV Scale”, July
2nd 2003, Aspen Center for Physics, Colorado, USA; N. Arkani-Hamed, talk at “Su-
perstring Cosmology Conference”, Oct. 24th 2003, KITP, Santa Barbara, California,
USA.

[21] J. M. Cline, S. Jeon and G. D. Moore, hep-ph/0311312.

30



[22] D.G. Boulware and S. Deser, Phys.Rev.D6:3368-3382,1972.

[23] Z. Chacko and E. Ponton, JHEP 0311, 024 (2003) [hep-ph/0301171].

[24] J. Garriga and T. Tanaka, Phys. Rev. Lett. 84, 2778 (2000) [hep-th/9911055].

[25] C. Charmousis, R. Gregory and V. A. Rubakov, Phys. Rev. D 62, 067505 (2000)
[hep-th/9912160].

[26] Z. Chacko and P. J. Fox, Phys. Rev. D 64, 024015 (2001) [hep-th/0102023].

[27] E. C. Titchmarsh, Eigenfunction Expansions, Part I; Oxford University Press 1962.

[28] S. B. Giddings, E. Katz and L. Randall, JHEP 0003, 023 (2000) [hep-th/0002091].

[29] S. L. Dubovsky, V. A. Rubakov and P. G. Tinyakov, Phys. Rev. D 62, 105011 (2000)
[hep-th/0006046].

[30] N. Arkani-Hamed and M. D. Schwartz, hep-th/0302110; M. D. Schwartz, Phys. Rev.
D 68, 024029 (2003) [hep-th/0303114]; C. Deffayet and J. Mourad, Phys. Lett. B
589, 48 (2004) [arXiv:hep-th/0311124].

[31] N. Arkani-Hamed, H.C. Cheng, M. Luty, S. Mukohyama, JHEP 0405, 074 (2004)
[arXiv:hep-th/0312099]; N. Arkani-Hamed, P. Creminelli, S. Mukohyama, M. Zal-
darriaga, JCAP 0404, 001 (2004) [arXiv:hep-th/0312100].

31


