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The aim of this paper is first to review the derivation of a model describing the propagation of an optical wave in a photorefractive medium and to present various mathematical results on this model: Cauchy problem, solitary waves.

Introduction

A modification of the refraction index in LiNbO 3 or LiTaO 3 crystals has been observed in the 1960s and first considered as a drawback. This photo-induced variation of the index is called the photorefractive effect and occurs in any electro-optical or photoconductive crystal. Applications have been found in the 1970s-1980s to real-time signal processing, phase conjugation, or amplification of beams or images.

In this paper we are interested in deriving a not-too-simple but tractable mathematical model for the propagation of light in such materials. Solitonic propagation is one of our concern but we focus here on initial value problems.

A very complete review of solitonic propagation in photorefractive media may be found in [START_REF] Delre | Photorefractive spatial solitons[END_REF]. Our derivation follows the same guidelines as theirs but point out the different approximations made for future mathematical studies.

The outline of the paper is the following. In Sec. 2 we first derive the Kukhtarev model for the material and then couple it to a wave propagation model for light to obtain a complete set of equations. A 1D model is obtained keeping only one of the two transverse space variables. This is a saturated nonlinear Schrödinger equation, the mathematical theory of which is addressed in Sec. 3 in arbitrary dimension. Section 4 is devoted to the study of the full 2D model with emphasis on the Cauchy problem and the solitary wave solutions.

Derivation of the Model 2.1 The photorefractive effect

The propagation of an optical wave in insulating or semi-insulating electrooptical crystals induces a charge transfer. The new distribution of charges induces in turn an electric field which produces a variation of the refraction index. The main characteristics of this effect are the following: (1) Sensibility to energy (and not to the electric field), [START_REF] Berestycki | An ODE approach to the existence of positive solutions for semilinear problems in R N[END_REF] Nonlocal effect (charge distributions and the electric field are not located at the same position), (3) Inertia (charges need a certain time to move), (4) Memory and reversibility (in the dark the space charge, and therefore the index variation, is persistent but an uniform light redistributes uniformly all charges -this yields applications to holography).

The sensibility to energy reminds us of Kerr media yielding the classical cubic nonlinear Schrödinger (NLS) equation. The nonlocal effects will of course complicate the mathematical analysis compared to NLS equations, but the general ideas will be the same. In our final model, inertial effects will be neglected since time is removed from the material equations. Memory and reversibility effects involve ion displacement in materials like Bi 2 TeO 5 , which we will not take into account in the present study.

The Kukhtarev model

The physical modeling of the photorefractive effect assumes that charges are trapped in impurities or defaults of the crystal mesh. We chose here to derive the model only in the case when charges are electrons. Some materials like semi-conductors necessitate to model both electrons and holes. Therefore we restrict our study to insulating media.

Charge equation

Electrons come from donor sites with density N D . This density is supposed to be much greater than that of the acceptor sites (impurities) which we denote by 

ρ = e(N + D -N A -n e ), (2.1) 
where e is the electron charge and n e the electron density.

Evolution of ionized donor sites

Photoionization and recombination affect the density of ionized donor sites.

Photoionization is proportional to the density of not ionized donor sites (N D -N + D ). In the dark it is proportional to a thermal excitation rate β but is also sensitive to light intensity I em with a photoexcitation coefficient s. Recombination is proportional to the density of electrons and occurs over a time scale τ = 1/(γ r N + D ) which does not depend on n e if the excitation rate is low, therefore the total evolution of ionized donor sites is

∂ t N + D = (β + sI em )(N D -N + D ) -γ r n e N + D . (2.2)

Charge transport

Now the main point is to describe the three phenomena which contribute to the charge transport or current density. The first phenomenon is isotropic and is due to thermal diffusion. It is proportional to the gradient of the electron density. The electron mobility is denoted by µ, T is the temperature and k B the Boltzmann constant. The second phenomenon is drift and is collinear to the electric field E tot . Finallly, the photovoltaic effect is collinear to the optical axis c and proportional to the non-ionized donor density and the field intensity with a photovoltaic coefficient β ph . The total current density is therefore

J = eµn e E tot + µk B T ∇n e + β ph (N D -N + D )cI em . (2.3)

Closure of the model

The closure of the model is first based on charge conservation and the Poisson equation:

∂ t ρ + ∇ • J = 0, (2.4) ∇ • (ε 0 εE sc ) = ρ. (2.5)
The crystal is anisotropic and this is accounted for in the relative permittivity ε which is a tensor. A careful analysis of the different electric fields has to be done. In Poisson equation (2.5), E sc is the space charge field which is induced by the charge density. The total field E tot only occurs in the equations through its gradient (Eqs. (2.4) and (2.3)). Two fields are constant and disappear in the final equations: the photovoltaic field

E ph = β ph γ r N A c/eµs = E ph c
, and an external field E ext which is often applied in one transverse direction on the faces of the crystal. A last contribution to the total field is E, connected to the light which propagates in the crystal and its description is given in Sec. 2.3. The set of five equations (2.1)-(2.5) is called the Kukhtarev model and was first given in [START_REF] Kukhtarev | Holographic storage in electrooptic crystals[END_REF].

Propagation of the light wave in the crystal

We have already introduced the relative permittivity tensor ε which plays a rôle in the description of the propagation of a light wave in the crystal via the wave equation:

∂ 2 t ( εE) -c 2 ∇ 2 E = 0.
In a non-centrosymmetric crystal the preponderant nonlinear effect is the Pockels effect which yields the following E-dependence for the permittivity tensor:

ε(E) = ε(0) -ε ( r • E) ε = n 2 -ε ( r • E) ε,
where r is the linear electro-optic tensor and n the mean refraction index. We now suppose that E is a space perturbation of a plane wave (paraxial approximation) of frequency ω, wave vector k and polarization e:

E(t, x) = A(x) exp(i(ωt -k • x))e.
Such a wave with polarization e only "sees" a part of tensor ε(E), or equivalently a variation δn of the refraction index n:

δn = - 1 2n [e ε re εe * ]E.
Now we can write an equation for the amplitude A which takes into account the dispersion relation c 2 |k| 2 = n 2 ω 2 and the slowly varying envelope approximation in the k direction. We denote by ∇ ⊥ the gradient in the perpendicular directions to k and

∇ 2 ⊥ -2ik • ∇ + 2|k| 2 δn n A(x)e = 0. (2.6)
Of course, we can consider the superposition of such waves to describe for example pump and probe experiments.

The system is now closed but it is impossible to solve Eqs. (2.1)-(2.6). We have to simplify them taking into account characteristic scales. Our description follows (or more precisely makes explicit the assumptions in [START_REF] Zozulya | Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field[END_REF]) and is purely formal. The rigorous justification is certainly difficult and should include the approximations made in Sec. 2.3.

Characteristic values

We first want to define a characteristic electron intensity n 0 by considering uniform solutions in space and time. Equations (2.1), (2.2) and (2.5) yield

ρ = e(N + D -N A -n e ) = 0 and 0 = (β + sI)(N D -N + D ) -γ r n e N + D .
With a characteristic intensity I 0 , neglecting β and assuming n e ≪ N A , we have

n 0 = sI 0 (N D -N A )/γ r N A .
There are three characteristic times: (1) the characteristic lifetime of an electron (in the dark) τ e = 1/γ r N A , (2) the characteristic evolution time of ionized donors τ d = 1/γ r n 0 (and a consequence of n 0 ≪ N A is τ e ≪ τ d ), [START_REF] Bona | The initial value problem for the Korteweg-de Vries equation[END_REF] the characteristic relaxation time of the electric field t 0 = ε 0 ε c /eµn 0 , where ε c is the characteristic value of ε along the c direction. It is obtained combining Eqs. (2.3) and (2.5) assuming there is only drift. If a timescale has to be kept, it is t 0 , but we do not detail this point since we neglect time-dependence in the final equations.

The Debye length L D is the characteristic value of the field space variation. It is determined together with the characteristic field E 0 . The Poisson equation (2.5) yields L D = ε 0 ε c E 0 /eN A . If drift and isotropic diffusion have the same order, E 0 = k B T /eL D and therefore

L D = k B T ε 0 ε c e 2 N A 1/2 , E 0 = k B T N A ε 0 ε c 1/2
, and

I 0 = k B T N A ε 0 ε c .

The Zozulya-Anderson model

Zozulya-Anderson model [START_REF] Zozulya | Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field[END_REF] is obtained using the above characteristic values and for a specific material (LiNbO 3 ) which imposes certain symmetries. The adiabatic assumption allows to get rid of the time-dependence and an asymptotic formal analysis which accounts for the very large donors density N D ends the derivation. Dimensionless equations are obtained using n 0 and N A for electron and ion densities respectively, I 0 for intensities, E 0 for fields and ε c for the permittivity tensor. Coefficient β is normalized as a dark intensity I d = β/sI 0 . We keep all the other notations but they now denote the normalized variables. The total intensity is I = I em + I d . We assume that the space charge field E sc derives from a potential: L D ∇ϕ = -E sc . In the adiabatic assumption matter equations reduce to

I 1 -N + D N A /N D 1 -N A /N D = n e N + D , L D ∇ • n e E tot + L D ∇n e + E ph I em 1 -N + D N A /N D 1 -N A /N D = 0, -L 2 D ∇ • ( ε∇ϕ) = N + D -1 - n 0 N A n e .
In LiNbO 3 , N A /N D ∼ 10 -3 and n 0 /N D ∼ 10 -6 and we neglect them. Finally, we make different assumptions on the fields: first the beam is not too thin, the photogalvanic and the external applied fields are not too large and therefore we may neglect -L 2 D ∇ • ( ε∇ϕ); second the propagation field amplitude is relatively small and we assimilate E tot and E sc . This implies n e = I and N + D = 1 and we have only one matter equation, namely

∇I • ∇ϕ + I∇ 2 ϕ -∇ 2 I -k D E ph c • ∇I = 0,
where k D = 1/L D . To obtain a "simpler" equation, in physics papers the variable U = ϕ -ln I is often used. This variable seems however to lack physical meaning.

The final matter equation is

∇U • ∇ϕ + ∇ 2 U -k D E ph c • ∇I = 0.
(2.7)

We now fix different space directions. Propagation is supposed to take place in the z-direction and k = ke z . The two transverse directions are therefore x and y. The e x direction is chosen as both c and e. If an external field is applied, it will be along e x as well. In the matter equation (2.7), the quantity c • ∇I simply reads ∂ x I. In LiNbO 3 , r = r xxx is responsible for the change of refractive index (it is r xxy in some other materials) and we approximate ε by n 2 in the expression for δn which becomes δn = 1 2 n 3 rE 0 L D ∂ x ϕ. Together with Eq. (2.6) the envelope equation now reads

∂ z + i 2k ∇ 2 ⊥ A(x) = -i k 2 n 2 rE 0 L D ∂ x ϕA(x).
The last step is to have dimensionless space variables. We set α = k 2 n 2 rE 0 which has the dimension of the inverse of a space variable. We denote

z ′ = |α|z, (x ′ , y ′ ) = k|α|(x, y), A ′ = A/ √ I 0 I d , ϕ ′ = k|α|ϕ/k D and U ′ = k|α|U/k D . The last approximations are now U ′ = ϕ ′ , k ≫ |α| and E ph ∼ E 0 ,
and omitting primes:

∂ z - i 2 ∇ 2 ⊥ A = -iA∂ x ϕ, ∇ 2 ⊥ ϕ + ∇ ⊥ ln(1 + |A| 2 ) • ∇ ⊥ ϕ = ∂ x ln(1 + |A| 2 ).
These equations are usually referred to as a model derived in [START_REF] Zozulya | Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field[END_REF] but only seeds of these equations are derived there usually including many other terms and especially time derivatives.

In the wide literature devoted to photorefractive media, many equations are written which resemble those above but with different choices of asymptotic approximations. In particular numerical results are very often obtained keeping the time in the matter equations (see [START_REF] Stepken | Interaction of incoherent two-dimensional photorefractive solitons[END_REF] or [START_REF] Wolfersberger | Self-focusing of a single laser pulse in a photorefractive medium[END_REF]).

Mathematical setting

If we look at a wider class of materials we may have different signs for the nonlinearity (in reference to the cubic nonlinear Schrödinger equation, the case a = 1 is classically called the focusing case, and a = -1 the defocusing case). Besides mathematicians are more accustomed to use t as the evolution variable. We will therefore consider the system

i∂ t A + ∆A = -aA∂ x ϕ, a = ±1, ∆ϕ + ∇ ln(1 + |A| 2 ) • ∇ϕ = ∂ x ln(1 + |A| 2 ), (2.8) 
where

∆ = ∂ 2 x + ∂ 2 y or ∆ = ∂ 2
x . These expressions with logarithms are widely used in the physics literature, maybe because they are the starting point of solitonic studies and logarithms appear naturally in the expression of solitary waves (see Sec. 3.2). This form is however cumbersome to handle for the mathematical analysis, and it is much more convenient to cast (2.8) as

i∂ t A + ∆A = -aA∂ x ϕ, div (1 + |A| 2 )∇ϕ = ∂ x (|A| 2 ), (2.9) 
which is closer to the original Kukhtarev equations.

We have seen that the main effects take place in the t-(propagation) and the x-directions (drift, anisotropic diffusion, external field, polarization). It is therefore natural to study the equations with no dependence in the y variable. In the one-dimensional case, we infer immediately from the last equation in System (2.9) that (1

+ |A| 2 )∂ x ϕ = |A| 2 -C(t)
where the constant C(t) is given by the boundary conditions. If no external field is applied C(t) ≡ 0. This is the case for bright solitary waves (see [START_REF] Mamaev | Break-up of two-dimensional bright spatial solitons due to transverse modulational instability[END_REF]). In the case of dark solitary waves C(t) = lim x→±∞ |A| 2 (see [START_REF] Mamaev | Propagation of dark stripe beams in nonlinear media: Snake instability and creation of optical vertices[END_REF]), which does not depend on t either. In both cases, System (2.9) reduces to the saturated NLS equation

i∂ t A + ∂ 2 x A = -a |A| 2 -|A ∞ | 2 1 + |A| 2 A.
(2.10)

In the sequel we will mainly consider the case when A ∞ = 0 and show that, in some sense, the dynamics of (2.9) is similar to that of (2.10) which we will recall in Sec. 3.

In the two-dimensional case (2.9) can be viewed as a saturated version of a Davey-Stewartson system. Namely, replacing 1 + |A| 2 by 1 in the L.H.S. of (2.9) yields i∂ t A + ∆A = -aA∂ x ϕ,

∆ϕ = ∂ x (|A| 2 ),
which is the Davey-Stewartson system of the elliptic-elliptic type (see [START_REF] Ghidaglia | On the initial value problem for the Davey-Stewartson systems[END_REF]).

The Saturated NLS Equation

We review here some mathematical facts, more or less known, on the saturated NLS equation (3.11) where A = A(x, t) and x ∈ R d . We have derived this equation for d = 1, but give here results for a general d. This equation is also derived in other contexts, for example the propagation of a laser beam in gas vapors [START_REF] Tikhonenko | Three-dimensional bright spatial soliton collision and fusion in a saturable nonlinear medium[END_REF].

   i∂ t A + ∆A = -a |A| 2 A 1 + |A| 2 , a = ±1, A(x, 0) = A 0 (x),

The Cauchy problem

The Cauchy problem (3.11) can be solved in L 2 and in the energy space

H 1 . Theorem 1 (i) Let A 0 ∈ L 2 (R d ). Then there exists a unique solution A ∈ C(R; L 2 (R d )) of (3.11) which satisfies furthermore R d |A(x, t)| 2 dx = R d |A 0 (x)| 2 dx, t ∈ R. (3.12) (ii) Let A 0 ∈ H 1 (R d ). Then the solution above satisfies A ∈ C(R; H 1 (R d )) and R d |∇A(x, t)| 2 dx + a ln(1 + |A(x, t)| 2 ) dx = R d |∇A 0 (x)| 2 dx + a ln(1 + |A 0 (x)| 2 ) dx, t ∈ R. (3.13)
Proof. The norm conservations (3.12) and (3.13) result from multiplying (3.11) by Ā and ∂ t Ā respectively and integrating the complex and real parts respectively. This formal proof is justified by the standard truncation process. Let S(t) be the group operator associated to the linear Schrödinger equation i∂ t A + ∆A = 0. Then the Duhamel formula for (3.11) reads The H 1 theory follows the same argument, noticing that

A(x, t) = S(t)A 0 (x) -a t 0 S(t -s) |A(x, s)| 2 1 + |A(x, s)| 2 A(x, s) ds. ( 3 
∇ |A| 2 1 + |A| 2 A = A 2 (1 + |A| 2 ) 2 ∇ Ā + |A| 2 (1 + |A| 2 ) 2 ∇A ≤ 1 2 |∇A|.
Remark. As a consequence of (3.12), (3.13) and ln(1 + |A| 2 ) ≤ |A| 2 , we obtain the uniform bound

R d |∇A(x, t)| 2 dx ≤ R d |A 0 (x)| 2 dx + R d |∇A 0 (x)| 2 dx, t ∈ R. (3.15)
Contrarily to the context of the usual nonlinear cubic Schrödinger equation, this bound does not depend on the sign of a and in particular saturation means that no blow-up is occurs.

Solitary waves -one-dimensional results

In the one-dimensional case, it is possible to compute first integral formulations of the solitary waves.

Bright solitary waves are sought for in the form A(x, t) = e iωt u(x) (see [START_REF] Mamaev | Break-up of two-dimensional bright spatial solitons due to transverse modulational instability[END_REF]), where A is a solution to (2.10) with A ∞ = 0. The function u is supposed to have a maximum at x = 0 (u(0) = u m > 0 and u ′ (0) = 0), therefore

[u ′ (x)] 2 = (ω -a)[u 2 (x) -u 2 m ] + a[ln(1 + u 2 ) -ln(1 + u 2 m )].
We furthermore want that for x → ∞, u(x) → 0 and u ′ (x) → 0. This yields a unique possible frequency for the solitary wave, namely

ω = a 1 - ln(1 + u 2 m ) u 2 m and [u ′ (x)] 2 = a - u 2 (x) u 2 m ln(1 + u 2 m ) + ln(1 + u 2 ) .
Since u m is supposed to be the maximum of u, this quantity is positive only if a = 1 (focusing case) and the bright soliton is solution to the first order equation:

u ′ (x) = -sign(x) ln(1 + u 2 ) - u 2 u 2 m ln(1 + u 2 m ) with ω = 1 - ln(1 + u 2 m ) u 2 m .
Dark solitary waves are sought for in the form A(x, t) = u(x) (see [START_REF] Mamaev | Propagation of dark stripe beams in nonlinear media: Snake instability and creation of optical vertices[END_REF]) where A is solution to (2.10). There is no time-dependence. We assume that lim x→±∞ u ′ (x) = 0 and consistently with

A ∞ = 0, lim x→+∞ u(x) = -lim x→-∞ u(x) = u ∞ . Then [u ′ (x)] 2 = a -(u 2 -u 2 ∞ ) + (1 + u 2 ∞ ) ln 1 + u 2 1 + u 2 ∞ .
At the origin u(0) = 0 and we want more generally that |u(x)| ≤ |u ∞ |. Therefore, dark solitary waves only exist if a = -1 (defocusing case). In this context u(x) is a monotonous function and is solution to the first order equation:

u ′ (x) = sign(u ∞ ) u 2 -u 2 ∞ -(1 + u 2 ∞ ) ln 1 + u 2 1 + u 2 ∞ .
For both bright and dark solitary waves, no explicit solution is known.

Solitary wavesa priori estimates and non existence

Consider now the solitary wave solutions of (3.11) in any dimension d, that is solutions of the type A(x, t) = e iωt U (x), where U ∈ H 1 (R d ) (we thus are only concerned with "bright" solitary waves). A solitary wave is a solution of the elliptic equation

-∆U + ωU = a |U | 2 U 1 + |U | 2 , U ∈ H 1 (R d ). ( 3 

.16)

A trivial solution is U ≡ 0. We seek other nontrivial solutions.

Lemma 2 Any H 1 (R d ) solitary wave satisfies

R d |∇U | 2 + ω -a |U | 2 1 + |U | 2 |U | 2 dx = 0 (3.17) (energy identity) (d-2) R d |∇U | 2 dx+dω R d |U | 2 dx-ad R d |U | 2 -ln(1 + |U | 2 ) dx = 0 (3.18) (Pohozaev identity).
Proof. As for Theorem 1, (3.17 (ii) a = 1 (focusing case) and ω ≥ 1.

(iii) a = ±1 if ω < 0 provided |U | 2 /(1 + |U | 2 ) = O(1/|x| 1+ε ), ε > 0 as |x| → +∞.
Proof. Identity (3.17) implies that no solitary wave may exist when a = -1 and ω ≥ 0 or a = 1 and ω ≥ 1. When d = 1, 2, Eq. (3.18) implies that no solitary wave exist when ω ≤ 0 and a = 1. Recall d = 2 is the physical case. The remaining cases (ω < 0, a = -1 or a = 1, d ≥ 3) follow from the classical result of Kato [START_REF] Kato | Growth properties of solutions of the reduced wave equation with a variable coefficient[END_REF] on the absence of embedded eigenvalues. Indeed, we can write (3.16) as

∆U + (-ω + V (x))U = 0, V (x) = a |U | 2 1 + |U | 2 , assuming furthermore that V (x) = O(1/|x| 1+ε ), ε > 0, as |x| → ∞. A proof for d = 3, 4 or d ≥ 5, ω ≤ -(d -2)/2
with no decaying assumption is given in Appendix.

Corollary 4 Solitary waves may exist only when a = 1 and 0 < ω < 1.

Corollary 4 is consistent with the one-dimensional "explicit" result. We first have a classical regularity and decay result. 

Proposition 5 Let a = 1 and 0 < ω < 1. Then any U ∈ H 1 (R d ) solution of (3.16) satisfies U ∈ H ∞ (R d ), (3.19) e δ|x| U ∈ L ∞ (R d ) for any δ < ω/2. (3.20) Proof. U ∈ H ∞ (R d )
U (x) = H ω ⋆ |U | 2 U 1 + |U | 2 ,
where

H ω = F -1 1 ω + |ξ| 2 . (3.23) As it is well known ( [1]), H ω (x) = ω (d-2)/2 G 1 (ω 1/2 x)
where

G 1 (z) =    C|z| (2-d)/2 K (d-2)/2 (|z|), d ≥ 3, K 0 (|z|), d = 2,
where K ν is the modified Bessel function of order ν. Furthermore (see [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF]), one has the asymptotic behavior:

       K ν (z) ∼ 1 2 Γ(ν) 1 2 |z| -ν , for ν > 0, as |z| → 0, K 0 (z) ∼ -ln(|z|), as |z| → 0, K ν (z) ∼ C|z| -1/2 e -|z| , as |z| → ∞. (3.24)
We infer from (3.23) that

e δ|x| |U (x)| ≤ R d e δ|x-x ′ | H ω (x -x ′ )e δ|x ′ | |U | 3 1 + |U | 2 (x ′ )dx ′ . (3.25)
Since by (3.24) e δ|x| H ω (x) ∈ L 2 (R d ) for 0 < δ < ω 1/2 , and by (3.21)

e δ|x| |U | 3 /(1+ |U | 2 ) ∈ L 2 (R d ) for δ ≤ ω/2 < ω 1/2 , we deduce from (3.25) that e δ|x| U ∈ L ∞ (R d ) for 0 < δ < ω/2.
Remark. Actually, the saturated cubic NLS equation should involve a small parameter ε > 0, namely, in the focusing case, we should consider instead of (3.11)

i∂ t A ε + ∆A ε = - |A ε | 2 A ε 1 + ε|A ε | 2 . (3.26)
Theorem 1 is of course still valid for a fixed ε > 0, but (3.13) and (3.15) should be replaced by

R d |∇A(x, t)| 2 dx + 1 ε 2 ln(1 + |A(x, t)| 2 dx = R d |∇A 0 (x)| 2 dx + 1 ε 2 ln(1 + |A 0 (x)| 2 dx, R d |∇A(x, t)| 2 dx ≤ 1 ε R d |A 0 (x)| 2 dx + R d |∇A 0 (x)| 2 dx.
For solitary waves A ε (x, t) = e iωt U (x), (3.26) reduces to the elliptic equation

-∆U + ωU = |U | 2 U 1 + ε|U | 2 . Setting V = ε 1/2 U , one obtains -∆V + ωV = 1 ε |V | 2 V 1 + |V | 2 .
The only possible range for the existence of nontrivial H 1 solitary waves is ω ∈]0, 1/ε[. Proposition 5 is still valid for ω in this range.

Solitary waves -existence results

We now turn to the existence of non-trivial H 2 solutions of

-∆U + ωU = |U | 2 U 1 + |U | 2
when 0 < ω < 1. We will look for real radial solutions U (x) = u(|x|) ≡ u(r) and thus consider the ODE problem Let us consider the Cauchy problem

   -u ′′ - d -1 r u ′ + ωu = u 3 1 + u 2 , u ∈ H 2 (]0, ∞[), u ′ (0) = 0. ( 3 
-u ′′ - d -1 r u ′ = g(u), r > 0, u(0) = ζ, u ′ (0) = 0.
(3.28)

Then there exists ζ ∈]ζ 0 , β[ such that (3.28) has a unique solution satisfying u(r) > 0 for r ∈]0, +∞[, u ′ (r) < 0 for r ∈]0, +∞[ and lim r→+∞ u(r) = 0. If in addition lim sup sց0 g(s)/s < 0, then there exists C > 0 and δ > 0 such that 0 < u(r) ≤ Ce -δr , for 0 ≤ r < +∞.

Theorem 7 If a = 1 and 0 < ω < 1, there exists a nontrivial positive solution of (3.27).

Proof. The case d = 1 has been addressed in Sec. 3.2. Consider now d ≥ 2.

We apply Theorem 6 with

g(u) = -ωu + u 3 1 + u 2 ,
which graph is displayed in Fig. 1.

Note that α = ω/(1 -ω) which yields (H1). Setting u = ω/(1 -ω) + ε, one easily checks that

g(u) u -α = 2ω(1 -ω) + O(ε), α slope = 1-ω ζ 0 u g(u)
Figure 1: Graph of function g and (H3) is satisfied. One computes G(u) = (1 -ω)u 2 -1 2 ln(1 + u 2 ), which obviously satisfies (H2) and (H4) with β = +∞. Last (H5) holds true (for l > 1). Remark. u satisfies the decay rate of Proposition 5.

The Zozulya-Anderson System 4.1 Estimate on the potential

We now restrict to the space-dimension d = 2 which is the context of the derivation. To mimic the proof for the Cauchy problem in the one-dimensional case, we would like to express ϕ in terms of A for say A ∈ L 2 (R 2 ). With such a data A, we indeed have a unique ϕ in some convenient space but no Lipschitz regularity for the mapping A → ϕ, which is required to perform some fixed point procedure. To ensure this we will have to assume A ∈ H 2 (R 2 ).

To derive the first estimates, we consider time as a parameter and do not express it. We therefore introduce the weighted homogeneous Sobolev space

H = {ϕ ∈ S ′ (R d ), (1 + |A| 2 ) 1/2 ∇ϕ ∈ L 2 (R d )}/R
together with its natural Hilbertian structure.

Lemma 8 (i) Let A ∈ L 2 (R 2 ). There exists a unique ϕ ∈ H solution of div((1 + |A| 2 )∇ϕ) = ∂ x (|A| 2 ) in D ′ (R 2 ) (4.29) such that R 2 (1 + 1 2 |A| 2 )|∇ϕ| 2 dx ≤ 1 2 R 2 |A| 2 dx. (4.30) (ii) If furthermore A ∈ H 2 (R 2 ), then ∇ϕ ∈ H 2 (R 2
) and there exists a polynomial P vanishing at 0 such that

∇ϕ H 2 (R 2 ) ≤ P ( A H 2 (R 2 ) ). (4.31) 
Proof. (i) We define a smoothing sequence (θ ε ) ε>0 with R 2 θ ε dx = 1 and

A ε = A ⋆ θ ε is such that A ε → A ∈ L 2 (R 2 ). In particular A ε L 2 (R 2 ) ≤ A L 2 (R 2 ) . (4.32) 
By Riesz theorem there exists a unique solution to div((1

+ |A ε | 2 )∇ϕ ε ) = ∂ x (|A ε | 2 ), (4.33) 
i.e.

-∆ϕ ε -div(|A ε | 2 ∇ϕ ε ) = ∂ x (|A ε | 2 ) (4.34)
after noticing that the R.H.S. of Eq. (4.33) defines a linear continuous form on H given by

∂ x (|A ε | 2 ), ψ = R 2 |A ε | 2 ∂ x ψdx.
Now we get from (4.33)

R 2 (1 + |A ε | 2 )|∇ϕ ε | 2 dx = - R 2 |A ε | 2 ∂ x ϕ ε dx ≤ 1 2 R 2 |A ε | 2 dx + 1 2 R 2 |A ε | 2 (∂ x ϕ ε ) 2 dx,
which yields (together with (4.32))

R 2 (1 + 1 2 |A ε | 2 )|∇ϕ ε | 2 dx ≤ 1 2 R 2 |A ε | 2 dx ≤ 1 2 R 2 |A| 2 dx. (4.35) 
Up to the extraction of a sub-sequence, we have ∇ϕ ε → ∇ϕ and

∂ x (|A ε | 2 ) → ∂ x (|A| 2 ) in D ′ (R 2 ). From Eq. (4.35), A ε ∇ϕ ε ⇀ B weakly in L 2 and for all ψ ∈ D, R 2 A ε ∇ϕ ε • ∇ψdx → R 2 A∇ϕ • ∇ψdx, therefore B = A∇ϕ. Since ||A ε | 2 ∇ϕ ε | = |A ε ||A ε ∇ϕ ε |, |A ε | 2 ∇ϕ ε → |A| 2 ∇ϕ in D ′
. We can pass to the limit in Eq. ( 4.34) and obtain

-∆ϕ -div(|A| 2 ∇ϕ) = ∂ x (|A| 2 ) in D ′ (R 2 ), i.e. div((1 + |A| 2 )∇ϕ) = ∂ x (|A| 2
) and deduce estimate (4.30) from (4.35). This yields the existence of ϕ ∈ H. The uniqueness is straightforward: two solutions ϕ 1 and ϕ 2 would satisfy

R 2 (1 + 1 2 |A| 2 )|∇(ϕ 1 -ϕ 2 )| 2 dx = 0, i.e. ∇(ϕ 1 -ϕ 2 ) = 0 a.e.
and hence be equal in H.

(ii) We first notice that |A| 2 ∆ϕ is meaningful in H -1 (R 2 ). Actually, for any ψ ∈ H 1 (R 2 ), one defines

|A| 2 ∆ϕ, ψ H -1 (R 2 ),H 1 (R 2 ) = ∆ϕ, |A| 2 ψ H -1 (R 2 ),H 1 (R 2 ) , which makes sense since |A| 2 ψ ∈ H 1 (R 2 ) for A ∈ H 2 (R 2 ), ψ ∈ H 1 (R 2
). Thus we can write (4.29) as

(1 + |A| 2 )∆ϕ = -∇|A| 2 • ∇ϕ + ∂ x (|A| 2 ),
and

∆ϕ = - ∇|A| 2 1 + |A| 2 • ∇ϕ + ∂ x (|A| 2 ) 1 + |A| 2 =: F.
We claim that F ∈ L r (R 2 ), for any r ∈ (1, 2), with

F L r (R 2 ) ≤ C A L 2 (R 2 ) A H 2 (R 2 ) .
First, |∇|A| 2 • ∇ϕ| ≤ 2|∇A||A∇ϕ| and by Hölder

∇|A| 2 • ∇ϕ L r (R 2 ) ≤ 2 ∇A L p (R 2 ) A∇ϕ L 2 (R 2 )
for any 1 < r < 2 and p = 2r/(2 -r)

∈ (2, ∞). Since A∇ϕ L 2 (R 2 ) ≤ A L 2 (R 2 )
and H 1 (R 2 ) ⊂ L q (R 2 ) for all q > 2, we obtain that

∇|A| 2 1 + |A| 2 • ∇ϕ L r (R 2 ) ≤ C A H 2 (R 2 ) A L 2 (R 2 ) , 1 < r < 2.
Similarly

∂ x |A| 2 1 + |A| 2 L r (R 2 ) ≤ 2 A∂ x A L r (R 2 ) ≤ 2 A L 2 (R 2 ) ∂ x A L p (R 2 ) ≤ C A H 2 (R 2 ) A L 2 (R 2 ) , 1 < r < 2.
By elliptic regularity, we infer thus that for any r, 1 < r < 2,

∇ϕ W 1,r (R 2 ) ≤ C A H 2 (R 2 ) A L 2 (R 2 ) .
By Sobolev embedding,

∇ϕ L q (R 2 ) ≤ C ∇ϕ W 1,r (R 2 ) ≤ C A H 2 (R 2 ) A L 2 (R 2 ) .
for 1 q = 1 r -1 2 , i.e. q = 2r/(2 -r) for all r, 1 < r < 2. Thus for any p > 2

∇|A| 2 1 + |A| 2 • ∇ϕ L p (R 2 ) ≤ ∇ϕ L 2p (R 2 ) ∇|A| 2 L 2p (R 2 ) ≤ C A H 2 (R 2 ) A L 2 (R 2 ) A 2 H 2 (R 2 ) = C A L 2 (R 2 ) A 3 H 2 (R 2 )
(we have used the fact that H 2 (R 2 ) is an algebra and the embedding H 1 (R 2 ) ⊂ L q (R 2 ) for all q > 2). Similarly, for any p > 2

∂ x (|A| 2 ) 1 + |A| 2 L p (R 2 ) ≤ 2 A L 2p (R 2 ) ∂ x A L 2p (R 2 ) ≤ C A H 1 (R 2 ) A H 2 (R 2 ) .
Finally for any p > 2

F L p (R 2 ) ≤ C A 2 H 2 (R 2 ) (1 + A L 2 (R 2 ) A H 2 (R 2 ) ).
and by elliptic regularity

∇ϕ W 1,p (R 2 ) ≤ C A 2 H 2 (R 2 ) (1 + A L 2 (R 2 ) A H 2 (R 2 ) ), ∀p > 2.
We now check that ∇ϕ • ∇|A| 2 /(1

+ |A| 2 ) ∈ H 1 (R 2
). This easily reduces to showing that ∇(∇ϕ

• ∇|A| 2 ) ∈ L 2 (R 2 ). For (i, j) ∈ {1, 2}, ∂ xi ∂ xj ϕ ∈ L p (R 2 ) since ∂ xi ∂ xj ϕ = ξ i ξ j |ξ| 2 ∆ϕ and ∆ϕ ∈ L p (R 2 ), p > 2. Thus ∂ xi ∂ xj ϕ∇|A| 2 ∈ L 2 (R) (∇|A| 2 ∈ H 1 (R 2 ) ⊂ L q (R 2 ), ∀q > 2).
On the other hand, taking p > 2 we see that ∇ϕ ∈ L ∞ (R 2 ) and thus

∇ϕ∂ xi ∂ xj |A| 2 ∈ L 2 (R 2 ).
It is also easy to check that ∂

x (|A| 2 )/(1 + |A| 2 ) ∈ H 1 (R 2 ). Finally, ∆ϕ = F ∈ H 1 (R 2 ), proving that ∇ϕ ∈ H 2 (R 2 ) with an estimate of the form ∇ϕ H 2 (R 2 ) ≤ P ( A H 2 (R 2 ) ),
where P is a polynomial vanishing at 0, which proves (4.31). Remark. All above estimates are therefore uniform in time, and if

A ∈ C([0, T ]; H 2 (R 2 ))
for some T > 0, one has

∇ϕ C([0,T ];H 2 (R 2 )) ≤ P ( A C([0,T ];H 2 (R 2 )) ).

Solitary waves -non existence results

We now look for solitary wave solutions of (2.9), that is solutions of the form (e iωt U (x), φ(x)) with x ∈ R d , ω ∈ R, U ∈ H 1 (R d ), and φ ∈ H. Thus (U, φ) should satisfy the system

-∆U + ωU = aU ∂ x φ, div((1 + |U | 2 )∇φ) = ∂ x (|U | 2 ). (4.36) 
The existence of nontrivial solutions of (4.36) is an open problem. Note that (4.36) does not seem to be the Euler-Lagrange equation associated to a variational problem. We have however: Proof. From (4.36) we have

R d |∇U | 2 dx + ω R d |U | 2 dx = a R d |U | 2 ∂ x φdx, R d (1 + |U | 2 )|∇φ| 2 dx = - R d |U | 2 ∂ x φdx, and 
R d |∇U | 2 dx + ω R d |U | 2 dx -a R d (1 + |U | 2 )|∇φ| 2 dx = 0, (4.37) 
which proves (i). Now independent of the sign of a, and from (4.30) and (4.37),

R d |∇U | 2 dx + ω R d |U | 2 dx ≤ R d |U | 2 dx. Thus R d |∇U | 2 dx + (ω -1) R d |U | 2 dx ≤ 0,
which proves (ii). Part (iii) results from [START_REF] Kato | Growth properties of solutions of the reduced wave equation with a variable coefficient[END_REF].

The Cauchy problem

We consider the system

       i∂ t A + ∆A = -aA∂ x ϕ, div (1 + |A| 2 )∇ϕ = ∂ x (|A| 2 ), A(•, 0) = A 0 . (4.38) Theorem 10 Let A 0 ∈ H 2 (R 2 ).
Then there exists T 0 > 0 and a unique solution (A, ∇ϕ) of (4.38) such that

A ∈ C([0, T 0 ]; H 2 (R 2 )) and ∇ϕ ∈ C([0, T 0 ]; H 2 (R 2 )). Moreover A(•, t) L 2 (R 2 ) = A 0 L 2 (R 2 ) , 0 ≤ t ≤ T 0 and R 2 (1 + 1 2 |A| 2 )|∇ϕ| 2 dx ≤ 1 2 R 2 |A 0 | 2 dx, 0 ≤ t ≤ T 0 . Proof. Uniqueness. Let (A, ∇ϕ) ∈ L ∞ (0, T ; H 2 (R 2 )) and (B, ∇ψ) ∈ L ∞ (0, T ; H 2 (R 2 )) two solutions of (4.38) with A(•, 0) = B(•, 0). Then from (4.38) 2 one gets ∆(ϕ -ψ) + div(|A| 2 ∇ϕ -|B| 2 ∇ψ) = ∂ x (|A| 2 ) -∂ x (|B| 2 ), yielding R 2 |∇(ϕ -ψ)| 2 dx + R 2 |A| 2 |∇(ϕ -ψ)| 2 dx = R 2 (|A| 2 -|B| 2 )∂ x (ϕ -ψ)dx - R 2 (|A| 2 -|B| 2 )∇ψ • ∇(ϕ -ψ)dx.
(4.39) Observing that |A| 2 -|B| 2 = A(A -B) + B(A -B), the R.H.S. of (4.39) is majorized by

1 4 R 2 |∂ x (ϕ -ψ)| 2 dx + ( A L ∞ (R 2 ) + B L ∞ (R 2 ) ) R 2 |A -B| 2 dx + 1 4 R 2 |∇(ϕ -ψ)| 2 dx + ( A L ∞ (R 2 ) + B L ∞ (R 2 ) ) ∇ψ L ∞ (R 2 ) R 2 |A -B| 2 dx
and by Sobolev embedding 

∇(ϕ -ψ) L 2 (R 2 ) ≤ C( A H 2 (R 2 ) , B H 2 (R 2 ) , ∇ψ H 2 (R 2 ) ) A -B L 2 (R 2 ) . ( 4 
d dt R 2 |A -B| 2 dx ≤ R 2 |A -B| 2 |∂ x ϕ|dx + R 2 |B||∂ x (ϕ -ψ)||A -B|dx
which together with (4.40) and the Cauchy-Schwarz lemma yields 1 2

d dt R 2 |A -B| 2 dx ≤ C( A H 2 (R 2 ) , B H 2 (R 2 ) , ∇ϕ H 2 (R 2 ) , ∇ψ H 2 (R 2 ) ) A -B L 2 (R 2 )
and A = B by Gronwall lemma.

H 2 a priori estimate. We derive a (formal) H 2 a priori estimate on the solution of (4.38). Since H 2 (R 2 ) is an algebra, we deduce from Lemma 8 that

A∂ x ϕ C([0,T ];H 2 (R 2 )) ≤ A C([0,T ];H 2 (R 2 )) P ( A C([0,T ];H 2 (R 2 )) ), (4.41) 
where P was introduced in (4.31). From the energy estimate 1 2

d dt A(•, t) 2 H 2 (R 2 ) ≤ C A∂ x ϕ(•, t) H 2 (R 2 ) A(•, t) H 2 (R 2 ) ,
we infer with (4.41) the local

H 2 bound A(•, t) H 2 (R 2 ) ≤ C A 0 H 2 (R 2 ) for 0 < t < T 0 , (4.42) 
T 0 < T sufficiently small.

Approximation of (4.38). The strategy is now to implement a compactness method using the (justified) a priori estimate (4.42). For ε > 0, we consider the system

i∂ t A ε + ∆A ε = -aA ε ∂ x ϕ ε , (4.43) div (1 + ε∆ 2 + |A ε | 2 )∇ϕ ε = ∂ x (|A ε | 2 ), (4.44) A ε (•, 0) = A 0 . ( 4 

.45)

Solving ∇ϕ ε in terms of A ε , we obtain from (4.44) that ∇ϕ ε satisfies ε

R 2 |∆∇ϕ ε | 2 dx + R 2 (1 + 1 2 |A ε | 2 )|∇ϕ ε | 2 dx ≤ 1 2 R 2 |A ε | 2 dx. ( 4 

.46)

Well-posedness of approximate system. We now check that the Cauchy problem (4.43)-(4.45) is globally well-posed in H 2 (R 2 ). Let first A ε , B ε ∈ H 2 (R 2 ) and ϕ ε , ψ ε the corresponding solutions of (4.44). Proceeding as in the uniqueness proof above, one gets Using (4.47) and the unitarity of S(t) in H s (R 2 ), we deduce that the R.H.S. of (4.48) defines a contraction in C([0, T ε ]; H 2 (R 2 )) for some T ε > 0.

ε R 2 |∇∆(ϕ ε -ψ ε )| 2 dx + R 2 |∇(ϕ ε -ψ ε )| 2 dx ≤ C( A ε H 2 (R 2 ) , B ε H 2 (R 2 ) , ∇ϕ ε H 2 (R 2 ) , ∇ψ ε H 2 (R 2 ) ) A ε -B ε L 2 (R 2 ) . ( 4 
This implies the local well-posedness of (4.43)-(4.45) in H 2 (R 2 ). Using the H 2 bound (4.47) on ∇ϕ ε , we infer from (4.43) an a priori bound in C([0, T ]; H 2 (R 2 )) for A ε and for all T > 0. This proves that the Cauchy problem (4.43)-(4.45) is globally well-posed, for any fixed ε > 0.

Limit ε → 0. Now we have the bounds (4.46) and

∇ϕ ε (•, t) L 2 (R 2 ) + √ ε ∆∇ϕ ε (•, t) L 2 (R 2 ) ≤ C, 0 ≤ t ≤ T, (4.49) 
where C and T do not depend on ε. Moreover, from (4.43) and (4.49) we have a bound on ∂ t A ε which is independent of ε:

∂ t A ε (•, t) L 2 (R 2 ) ≤ C, 0 ≤ t ≤ T.
It is now standard to pass to the limit as ε → 0 (see [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF]). By the Aubin-Lions compactness lemma, we obtain a subsequence (A ε , ∇ϕ ε ) such that A ε → A in L ∞ (0, T ; H 2 (R 2 )) weak-star and L 2 (0, T ; H 1 loc (R 2 )) strongly, ∇ϕ ε → ∇ϕ in L ∞ (0, T ; H 2 (R 2 )) weak-star and L 2 ([0, T ] × R 2 ) weakly. The limit (A, ∇ϕ) belongs to (L ∞ (0, T ; H 2 (R 2 ))) 2 and satisfies (4.38). In fact (4.38) 1 is satisfied in L 2 (R 2 ) and (4.38) 2 is satisfied in H 1 (R 2 ).

The fact that (A, ∇ϕ) ∈ (C(0, T ; H 2 (R 2 ))) 2 results from the Bona-Smith approximation (see [START_REF] Bona | The initial value problem for the Korteweg-de Vries equation[END_REF]).

Remark. We do not know whether the local solution obtained in Theorem 10 is global or not.

Conclusion

We have given a full description of how to derive from the Kukhtarev equations an asymptotic model for the propagation of light in a photorefractive medium. This derivation is only heuristic insofar as asymptotics are not justified, which would be out of reach now. Some properties of photorefractive media such as memory have also been neglected.

The 1D asymptotic model is a saturated nonlinear Schrödinger equation the Cauchy problem of which is studied (in any space dimension) in L 2 and H 1 . We also prove the existence of solitary waves in one and higher dimensions. An interesting and open issue would be to study the transverse stability of the 1D solitary waves in the framework of the asymptotic model.

For the 2D asymptotic model (the Zozulya-Anderson model) we also have studied the Cauchy problem and the non-existence of solitary waves. The question of imposing other boundary conditions, not vanishing in one space direction, can also be addressed to treat a wider range of experimental applications.

  N A . The density of donor sites which are indeed ionized is N + D and we of course have N + D ≤ N A ≪ N D . Local neutrality, i.e. no electrons in the conduction band, corresponds to the relation N + D = N A . The total charge is given by

. 14 )

 14 Since x → x/(1 + x) is Lipschitz, we easily infer that the R.H.S. of (3.14) defines a contraction on a suitable ball of C([0, T ]; L 2 (R d )) for some T > 0. The local well-posedness in L 2 (R d )) follows. Global well-posedness is derived from the conservation law (3.12).

Corollary 3

 3 ) results from multiplying(3.16) by Ū and integrating. To get (3.18), one multiplies (3.16) by x k ∂ x k Ūk , integrates the real part, and sums from 1 to d. This is justified by a standard truncation argument. No nontrivial solitary wave (solution of (3.16)) exists when (i) a = -1 (defocusing case), for ω ≥ 0.

2 ]

 2 .27) We recall a classical result of Berestycki et al.[Theorem 6 ( [2], p. 143) Let g be a locally Lipschitz continuous function on R + = [0, +∞[ such that g(0) = 0, satisfying the following hypotheses. (H1) α = inf{ζ > 0, g(ζ) ≥ 0} exists and α > 0. (H2) Let G(t) = t 0 g(s)ds. There exists ζ > 0 such that G(ζ) > 0. Let ζ 0 = inf{ζ > 0, G(ζ) ≥ 0}. In view of (H1) and (H2), ζ 0 exists and ζ 0 > α. (H3) lim sցα g(s)/(s -α) > 0 (H4) g(s) > 0 for s ∈]α, ζ 0 ]. Let β = inf{ζ > ζ 0 , G(ζ) ≥ 0}. In view of (H4), ζ 0 < β ≤ +∞. (H5) If β = +∞, then lim s→+∞ g(s)/s l = 0 for some l < (d + 2)/(d -2) (if d = 2, we may choose for l any finite real number).

Proposition 9

 9 (i) Let a = -1 (defocusing case). Then no nontrivial solution of (4.36) exists for ω ≥ 0. (ii) Let a = 1 (focusing case). No nontrivial solution of (4.36) exists for ω ≥ 1. (iii) Let a = ±1. No nontrivial solution of (4.36) exists if ω < 0 provided ∂ x φ = O(1/|x| 1+ε ), ε > 0 as |x| → +∞.

  .40) On the other hand, we obtain readily from (4.38) 1 that 1 2

  .47) Denoting ∂ x ϕ ε by F ε (A ε ) we write (4.43) on the Duhamel form with S(t) = exp(it∆),A ε (t) = S(t)A 0 -a t 0 S(t -s)A ε F ε (A ε )ds.(4.48)

  results trivially from a bootstrapping argument using |U | 2 /(1 + |U | 2 ) < 1. To prove (3.20), we first derive the estimate .19) there exists R > 0 such that |U | 2 /(1 + |U | 2 ) < ω/4 on R d \ B R . Thus we infer from (3.22) that R d e ω|x| |∇U | 2 + ω|U | 2 dx ≤

		R d	e ω|x| |∇U | 2 + |U | 2 dx < +∞.	(3.21)
	In fact, as in Cazenave[4, 5], we multiply (3.16) by e ω|x| Ū and integrate the real
	part (this formal argument is made rigorous by replacing e ω|x| by e ω|x|/(1+ε|x|) ,
	ε > 0, ε → 0) to get				
	R d	e ω|x| |∇U | 2 + ω|U | 2 dx ≤	R d	e ω|x| |U | 4 1 + |U | 2 dx + ω	R d	e ω|x| |U ||∇U |dx. (3.22)
	By (3BR ω + 2	e ω|x| |U | 4 1 + |U | 2 dx + R	ω 4 R d	e ω|x| |U | 2 dx

d e ω|x| |U | 2 dx + R d e ω|x| |∇U | 2 dx which implies (3.21). Now we write U as a convolution

A Non-Existence of Solitary Waves in Non-Physical Cases

The goal is here to complete the results of Corollary 3 for ω < 0 with no decaying assumption. We have already seen that Eq. (3.18) implies that no solitary wave may exist for d = 1, 2 and a = 1 (focusing case).

To go further, let us use both Eqs. (3.17) and (3.18) to obtain

We set

and we know that