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91405 Orsay, France

Jean-Claude.Saut@math.u-psud.fr

Abstract

The aim of this paper is first to review the derivation of a model de-
scribing the propagation of an optical wave in a photorefractive medium
and to present various mathematical results on this model: Cauchy prob-
lem, solitary waves.
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1 Introduction

A modification of the refraction index in LiNbO3 or LiTaO3 crystals has been
observed in the 1960s and first considered as a drawback. This photo-induced
variation of the index is called the photorefractive effect and occurs in any
electro-optical or photoconductive crystal. Applications have been found in the
1970s–1980s to real-time signal processing, phase conjugation, or amplification
of beams or images.

In this paper we are interested in deriving a not-too-simple but tractable
mathematical model for the propagation of light in such materials. Solitonic
propagation is one of our concern but we focus here on initial value problems.
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A very complete review of solitonic propagation in photorefractive media may
be found in [6]. Our derivation follows the same guidelines as theirs but point
out the different approximations made for future mathematical studies.

The outline of the paper is the following. In Sec. 2 we first derive the
Kukhtarev model for the material and then couple it to a wave propagation
model for light to obtain a complete set of equations. A 1D model is obtained
keeping only one of the two transverse space variables. This is a saturated
nonlinear Schrödinger equation, the mathematical theory of which is addressed
in Sec. 3 in arbitrary dimension. Section 4 is devoted to the study of the full 2D
model with emphasis on the Cauchy problem and the solitary wave solutions.

2 Derivation of the Model

2.1 The photorefractive effect

The propagation of an optical wave in insulating or semi-insulating electro-
optical crystals induces a charge transfer. The new distribution of charges in-
duces in turn an electric field which produces a variation of the refraction index.
The main characteristics of this effect are the following: (1) Sensibility to energy
(and not to the electric field), (2) Nonlocal effect (charge distributions and the
electric field are not located at the same position), (3) Inertia (charges need
a certain time to move), (4) Memory and reversibility (in the dark the space
charge, and therefore the index variation, is persistent but an uniform light
redistributes uniformly all charges — this yields applications to holography).

The sensibility to energy reminds us of Kerr media yielding the classical cu-
bic nonlinear Schrödinger (NLS) equation. The nonlocal effects will of course
complicate the mathematical analysis compared to NLS equations, but the gen-
eral ideas will be the same. In our final model, inertial effects will be neglected
since time is removed from the material equations. Memory and reversibility
effects involve ion displacement in materials like Bi2TeO5, which we will not
take into account in the present study.

2.2 The Kukhtarev model

The physical modeling of the photorefractive effect assumes that charges are
trapped in impurities or defaults of the crystal mesh. We chose here to derive
the model only in the case when charges are electrons. Some materials like
semi-conductors necessitate to model both electrons and holes. Therefore we
restrict our study to insulating media.

2.2.1 Charge equation

Electrons come from donor sites with density ND. This density is supposed to
be much greater than that of the acceptor sites (impurities) which we denote by
NA. The density of donor sites which are indeed ionized is N+

D and we of course
have N+

D ≤ NA ≪ ND. Local neutrality, i.e. no electrons in the conduction
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band, corresponds to the relation N+
D = NA. The total charge is given by

ρ = e(N+
D −NA − ne), (2.1)

where e is the electron charge and ne the electron density.

2.2.2 Evolution of ionized donor sites

Photoionization and recombination affect the density of ionized donor sites.
Photoionization is proportional to the density of not ionized donor sites (ND −
N+

D ). In the dark it is proportional to a thermal excitation rate β but is also
sensitive to light intensity Iem with a photoexcitation coefficient s. Recombi-
nation is proportional to the density of electrons and occurs over a time scale
τ = 1/(γrN

+
D ) which does not depend on ne if the excitation rate is low, there-

fore the total evolution of ionized donor sites is

∂tN
+
D = (β + sIem)(ND −N+

D ) − γrneN
+
D . (2.2)

2.2.3 Charge transport

Now the main point is to describe the three phenomena which contribute to
the charge transport or current density. The first phenomenon is isotropic and
is due to thermal diffusion. It is proportional to the gradient of the electron
density. The electron mobility is denoted by µ, T is the temperature and kB

the Boltzmann constant. The second phenomenon is drift and is collinear to
the electric field Etot. Finallly, the photovoltaic effect is collinear to the optical
axis c and proportional to the non-ionized donor density and the field intensity
with a photovoltaic coefficient βph. The total current density is therefore

J = eµneEtot + µkBT∇ne + βph(ND −N+
D )cIem. (2.3)

2.2.4 Closure of the model

The closure of the model is first based on charge conservation and the Poisson
equation:

∂tρ+ ∇ · J = 0, (2.4)

∇ · (ε0ε̂Esc) = ρ. (2.5)

The crystal is anisotropic and this is accounted for in the relative permittivity ε̂
which is a tensor. A careful analysis of the different electric fields has to be
done. In Poisson equation (2.5), Esc is the space charge field which is induced
by the charge density. The total field Etot only occurs in the equations through
its gradient (Eqs. (2.4) and (2.3)). Two fields are constant and disappear in
the final equations: the photovoltaic field Eph = βphγrNAc/eµs = Ephc, and
an external field Eext which is often applied in one transverse direction on the
faces of the crystal. A last contribution to the total field is E, connected to the
light which propagates in the crystal and its description is given in Sec. 2.3.

The set of five equations (2.1)–(2.5) is called the Kukhtarev model and was
first given in [9].
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2.3 Propagation of the light wave in the crystal

We have already introduced the relative permittivity tensor ε̂ which plays a rôle
in the description of the propagation of a light wave in the crystal via the wave
equation:

∂2
t (ε̂E) − c2∇2E = 0.

In a non-centrosymmetric crystal the preponderant nonlinear effect is the Pock-
els effect which yields the following E-dependence for the permittivity tensor:

ε̂(E) = ε̂(0) − ε̂(̂r̂ · E)ε̂ = n2 − ε̂(̂r̂ · E)ε̂,

where r̂ is the linear electro-optic tensor and n the mean refraction index. We
now suppose that E is a space perturbation of a plane wave (paraxial approxi-
mation) of frequency ω, wave vector k and polarization e:

E(t,x) = A(x) exp(i(ωt− k · x))e.

Such a wave with polarization e only ”sees” a part of tensor ε̂(E), or equivalently
a variation δn of the refraction index n:

δn = − 1

2n
[eε̂ ̂̂re ε̂e∗]E.

Now we can write an equation for the amplitude A which takes into account the
dispersion relation c2|k|2 = n2ω2 and the slowly varying envelope approximation
in the k direction. We denote by ∇⊥ the gradient in the perpendicular directions
to k and [

∇2
⊥ − 2ik · ∇ + 2|k|2 δn

n

]
A(x)e = 0. (2.6)

Of course, we can consider the superposition of such waves to describe for ex-
ample pump and probe experiments.

The system is now closed but it is impossible to solve Eqs. (2.1)–(2.6). We
have to simplify them taking into account characteristic scales. Our description
follows (or more precisely makes explicit the assumptions in [16]) and is purely
formal. The rigorous justification is certainly difficult and should include the
approximations made in Sec. 2.3.

2.4 Characteristic values

We first want to define a characteristic electron intensity n0 by considering
uniform solutions in space and time. Equations (2.1), (2.2) and (2.5) yield

ρ = e(N+
D −NA − ne) = 0 and 0 = (β + sI)(ND −N+

D ) − γrneN
+
D .

With a characteristic intensity I0, neglecting β and assuming ne ≪ NA, we have
n0 = sI0(ND −NA)/γrNA.

There are three characteristic times: (1) the characteristic lifetime of an
electron (in the dark) τe = 1/γrNA, (2) the characteristic evolution time of
ionized donors τd = 1/γrn0 (and a consequence of n0 ≪ NA is τe ≪ τd), (3)
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the characteristic relaxation time of the electric field t0 = ε0εc/eµn0, where εc
is the characteristic value of ε̂ along the c direction. It is obtained combining
Eqs. (2.3) and (2.5) assuming there is only drift. If a timescale has to be kept,
it is t0, but we do not detail this point since we neglect time-dependence in the
final equations.

The Debye length LD is the characteristic value of the field space variation.
It is determined together with the characteristic field E0. The Poisson equation
(2.5) yields LD = ε0εcE0/eNA. If drift and isotropic diffusion have the same
order, E0 = kBT/eLD and therefore

LD =

(
kBTε0εc
e2NA

)1/2

, E0 =

(
kBTNA

ε0εc

)1/2

, and I0 =
kBTNA

ε0εc
.

2.5 The Zozulya–Anderson model

Zozulya–Anderson model[16] is obtained using the above characteristic values
and for a specific material (LiNbO3) which imposes certain symmetries. The
adiabatic assumption allows to get rid of the time-dependence and an asymptotic
formal analysis which accounts for the very large donors density ND ends the
derivation.

Dimensionless equations are obtained using n0 and NA for electron and ion
densities respectively, I0 for intensities, E0 for fields and εc for the permittivity
tensor. Coefficient β is normalized as a dark intensity Id = β/sI0. We keep all
the other notations but they now denote the normalized variables. The total
intensity is I = Iem + Id. We assume that the space charge field Esc derives
from a potential: LD∇ϕ = −Esc. In the adiabatic assumption matter equations
reduce to

I
1 −N+

DNA/ND

1 −NA/ND
= neN

+
D ,

LD∇ ·
{
neEtot + LD∇ne + EphIem

1 −N+
DNA/ND

1 −NA/ND

}
= 0,

−L2
D∇ · (ε̂∇ϕ) = N+

D − 1 − n0

NA
ne.

In LiNbO3, NA/ND ∼ 10−3 and n0/ND ∼ 10−6 and we neglect them. Finally,
we make different assumptions on the fields: first the beam is not too thin, the
photogalvanic and the external applied fields are not too large and therefore we
may neglect −L2

D∇· (ε̂∇ϕ); second the propagation field amplitude is relatively
small and we assimilate Etot and Esc. This implies ne = I and N+

D = 1 and we
have only one matter equation, namely

∇I · ∇ϕ+ I∇2ϕ−∇2I − kDEphc · ∇I = 0,

where kD = 1/LD. To obtain a ”simpler” equation, in physics papers the
variable U = ϕ− ln I is often used. This variable seems however to lack physical
meaning.
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The final matter equation is

∇U · ∇ϕ+ ∇2U − kDEphc · ∇I = 0. (2.7)

We now fix different space directions. Propagation is supposed to take place
in the z-direction and k = kez. The two transverse directions are therefore
x and y. The ex direction is chosen as both c and e. If an external field is
applied, it will be along ex as well. In the matter equation (2.7), the quantity
c · ∇I simply reads ∂xI. In LiNbO3, r = rxxx is responsible for the change of
refractive index (it is rxxy in some other materials) and we approximate ε̂ by
n2 in the expression for δn which becomes δn = 1

2n
3rE0LD∂xϕ. Together with

Eq. (2.6) the envelope equation now reads

[
∂z +

i

2k
∇2

⊥

]
A(x) = −ik

2
n2rE0LD∂xϕA(x).

The last step is to have dimensionless space variables. We set α = k
2n

2rE0

which has the dimension of the inverse of a space variable. We denote z′ = |α|z,
(x′, y′) =

√
k|α|(x, y), A′ = A/

√
I0Id, ϕ′ =

√
k|α|ϕ/kD and U ′ =

√
k|α|U/kD.

The last approximations are now U ′ = ϕ′, k ≫ |α| and Eph ∼ E0, and omitting
primes:

[
∂z − i

2
∇2

⊥

]
A = −iA∂xϕ,

∇2
⊥ϕ+ ∇⊥ ln(1 + |A|2) · ∇⊥ϕ = ∂x ln(1 + |A|2).

These equations are usually referred to as a model derived in [16] but only
seeds of these equations are derived there usually including many other terms
and especially time derivatives.

In the wide literature devoted to photorefractive media, many equations are
written which resemble those above but with different choices of asymptotic
approximations. In particular numerical results are very often obtained keeping
the time in the matter equations (see [13] or [15]).

2.6 Mathematical setting

If we look at a wider class of materials we may have different signs for the
nonlinearity (in reference to the cubic nonlinear Schrödinger equation, the case
a = 1 is classically called the focusing case, and a = −1 the defocusing case).
Besides mathematicians are more accustomed to use t as the evolution variable.
We will therefore consider the system

{
i∂tA+ ∆A = −aA∂xϕ, a = ±1,
∆ϕ+ ∇ ln(1 + |A|2) · ∇ϕ = ∂x ln(1 + |A|2), (2.8)

where ∆ = ∂2
x + ∂2

y or ∆ = ∂2
x.

These expressions with logarithms are widely used in the physics literature,
maybe because they are the starting point of solitonic studies and logarithms
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appear naturally in the expression of solitary waves (see Sec. 3.2). This form
is however cumbersome to handle for the mathematical analysis, and it is much
more convenient to cast (2.8) as

{
i∂tA+ ∆A = −aA∂xϕ,

div
(
(1 + |A|2)∇ϕ

)
= ∂x(|A|2),

(2.9)

which is closer to the original Kukhtarev equations.
We have seen that the main effects take place in the t- (propagation) and

the x-directions (drift, anisotropic diffusion, external field, polarization). It is
therefore natural to study the equations with no dependence in the y variable.
In the one-dimensional case, we infer immediately from the last equation in
System (2.9) that (1 + |A|2)∂xϕ = |A|2 −C(t) where the constant C(t) is given
by the boundary conditions. If no external field is applied C(t) ≡ 0. This is
the case for bright solitary waves (see [11]). In the case of dark solitary waves
C(t) = limx→±∞ |A|2 (see [12]), which does not depend on t either. In both
cases, System (2.9) reduces to the saturated NLS equation

i∂tA+ ∂2
xA = −a |A|

2 − |A∞|2
1 + |A|2 A. (2.10)

In the sequel we will mainly consider the case when A∞ = 0 and show that,
in some sense, the dynamics of (2.9) is similar to that of (2.10) which we will
recall in Sec. 3.

In the two-dimensional case (2.9) can be viewed as a saturated version of
a Davey–Stewartson system. Namely, replacing 1 + |A|2 by 1 in the L.H.S. of
(2.9) yields {

i∂tA+ ∆A = −aA∂xϕ,

∆ϕ = ∂x(|A|2),
which is the Davey–Stewartson system of the elliptic–elliptic type (see [7]).

3 The Saturated NLS Equation

We review here some mathematical facts, more or less known, on the saturated
NLS equation





i∂tA+ ∆A = −a |A|2A
1 + |A|2 , a = ±1,

A(x, 0) = A0(x),
(3.11)

where A = A(x, t) and x ∈ Rd. We have derived this equation for d = 1, but
give here results for a general d. This equation is also derived in other contexts,
for example the propagation of a laser beam in gas vapors [14].

3.1 The Cauchy problem

The Cauchy problem (3.11) can be solved in L2 and in the energy space H1.
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Theorem 1 (i) Let A0 ∈ L2(Rd). Then there exists a unique solution A ∈
C(R;L2(Rd)) of (3.11) which satisfies furthermore

∫

Rd

|A(x, t)|2dx =

∫

Rd

|A0(x)|2dx, t ∈ R. (3.12)

(ii) Let A0 ∈ H1(Rd). Then the solution above satisfies A ∈ C(R;H1(Rd)) and
∫

Rd

[
|∇A(x, t)|2dx + a ln(1 + |A(x, t)|2)

]
dx

=

∫

Rd

[
|∇A0(x)|2dx + a ln(1 + |A0(x)|2)

]
dx, t ∈ R.(3.13)

Proof. The norm conservations (3.12) and (3.13) result from multiplying (3.11)
by Ā and ∂tĀ respectively and integrating the complex and real parts respec-
tively. This formal proof is justified by the standard truncation process.

Let S(t) be the group operator associated to the linear Schrödinger equation
i∂tA+ ∆A = 0. Then the Duhamel formula for (3.11) reads

A(x, t) = S(t)A0(x) − a

∫ t

0

S(t− s)
|A(x, s)|2

1 + |A(x, s)|2A(x, s) ds. (3.14)

Since x 7→ x/(1+x) is Lipschitz, we easily infer that the R.H.S. of (3.14) defines
a contraction on a suitable ball of C([0, T ];L2(Rd)) for some T > 0. The local
well-posedness in L2(Rd)) follows. Global well-posedness is derived from the
conservation law (3.12).

The H1 theory follows the same argument, noticing that
∣∣∣∣∇

( |A|2
1 + |A|2A

)∣∣∣∣ =

∣∣∣∣
A2

(1 + |A|2)2∇Ā+
|A|2

(1 + |A|2)2∇A
∣∣∣∣ ≤

1

2
|∇A|.

�

Remark. As a consequence of (3.12), (3.13) and ln(1 + |A|2) ≤ |A|2, we obtain
the uniform bound

∫

Rd

|∇A(x, t)|2dx ≤
∫

Rd

|A0(x)|2dx +

∫

Rd

|∇A0(x)|2dx, t ∈ R. (3.15)

Contrarily to the context of the usual nonlinear cubic Schrödinger equation, this
bound does not depend on the sign of a and in particular saturation means that
no blow-up is occurs.

3.2 Solitary waves — one-dimensional results

In the one-dimensional case, it is possible to compute first integral formulations
of the solitary waves.

Bright solitary waves are sought for in the form A(x, t) = eiωtu(x) (see [11]),
where A is a solution to (2.10) with A∞ = 0. The function u is supposed to
have a maximum at x = 0 (u(0) = um > 0 and u′(0) = 0), therefore

[u′(x)]2 = (ω − a)[u2(x) − u2
m] + a[ln(1 + u2) − ln(1 + u2

m)].
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We furthermore want that for x → ∞, u(x) → 0 and u′(x) → 0. This yields a
unique possible frequency for the solitary wave, namely

ω = a

(
1 − ln(1 + u2

m)

u2
m

)

and

[u′(x)]2 = a

(
−u

2(x)

u2
m

ln(1 + u2
m) + ln(1 + u2)

)
.

Since um is supposed to be the maximum of u, this quantity is positive only
if a = 1 (focusing case) and the bright soliton is solution to the first order
equation:

u′(x) = −sign(x)

√
ln(1 + u2) − u2

u2
m

ln(1 + u2
m) with ω = 1 − ln(1 + u2

m)

u2
m

.

Dark solitary waves are sought for in the form A(x, t) = u(x) (see [12])
where A is solution to (2.10). There is no time-dependence. We assume that
limx→±∞ u′(x) = 0 and consistently with A∞ 6= 0,

lim
x→+∞

u(x) = − lim
x→−∞

u(x) = u∞.

Then

[u′(x)]2 = a

(
−(u2 − u2

∞) + (1 + u2
∞) ln

(
1 + u2

1 + u2
∞

))
.

At the origin u(0) = 0 and we want more generally that |u(x)| ≤ |u∞|. There-
fore, dark solitary waves only exist if a = −1 (defocusing case). In this context
u(x) is a monotonous function and is solution to the first order equation:

u′(x) = sign(u∞)

√
u2 − u2

∞ − (1 + u2
∞) ln

(
1 + u2

1 + u2
∞

)
.

For both bright and dark solitary waves, no explicit solution is known.

3.3 Solitary waves — a priori estimates and non existence

Consider now the solitary wave solutions of (3.11) in any dimension d, that is
solutions of the type A(x, t) = eiωtU(x), where U ∈ H1(Rd) (we thus are only
concerned with ”bright” solitary waves). A solitary wave is a solution of the
elliptic equation

−∆U + ωU = a
|U |2U

1 + |U |2 , U ∈ H1(Rd). (3.16)

A trivial solution is U ≡ 0. We seek other nontrivial solutions.

9



Lemma 2 Any H1(Rd) solitary wave satisfies

∫

Rd

[
|∇U |2 +

(
ω − a

|U |2
1 + |U |2

)
|U |2

]
dx = 0 (3.17)

(energy identity)

(d−2)

∫

Rd

|∇U |2dx+dω

∫

Rd

|U |2dx−ad
∫

Rd

[
|U |2 − ln(1 + |U |2)

]
dx = 0 (3.18)

(Pohozaev identity).

Proof. As for Theorem 1, (3.17) results from multiplying (3.16) by Ū and inte-
grating. To get (3.18), one multiplies (3.16) by xk∂xk

Ūk, integrates the real part,
and sums from 1 to d. This is justified by a standard truncation argument. �

Corollary 3 No nontrivial solitary wave (solution of (3.16)) exists when

(i) a = −1 (defocusing case), for ω ≥ 0.

(ii) a = 1 (focusing case) and ω ≥ 1.

(iii) a = ±1 if ω < 0 provided |U |2/(1 + |U |2) = O(1/|x|1+ε), ε > 0 as |x| →
+∞.

Proof. Identity (3.17) implies that no solitary wave may exist when a = −1
and ω ≥ 0 or a = 1 and ω ≥ 1. When d = 1, 2, Eq. (3.18) implies that no
solitary wave exist when ω ≤ 0 and a = 1. Recall d = 2 is the physical case.
The remaining cases (ω < 0, a = −1 or a = 1, d ≥ 3) follow from the classical
result of Kato[8] on the absence of embedded eigenvalues. Indeed, we can write
(3.16) as

∆U + (−ω + V (x))U = 0, V (x) = a
|U |2

1 + |U |2 ,

assuming furthermore that V (x) = O(1/|x|1+ε), ε > 0, as |x| → ∞. A proof
for d = 3, 4 or d ≥ 5, ω ≤ −(d − 2)/2 with no decaying assumption is given in
Appendix. �

Corollary 4 Solitary waves may exist only when a = 1 and 0 < ω < 1.

Corollary 4 is consistent with the one-dimensional ”explicit” result. We first
have a classical regularity and decay result.

Proposition 5 Let a = 1 and 0 < ω < 1. Then any U ∈ H1(Rd) solution of
(3.16) satisfies

U ∈ H∞(Rd), (3.19)

eδ|x|U ∈ L∞(Rd) for any δ < ω/2. (3.20)
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Proof. U ∈ H∞(Rd) results trivially from a bootstrapping argument using
|U |2/(1 + |U |2) < 1. To prove (3.20), we first derive the estimate

∫

Rd

eω|x|
[
|∇U |2 + |U |2

]
dx < +∞. (3.21)

In fact, as in Cazenave[4, 5], we multiply (3.16) by eω|x|Ū and integrate the real
part (this formal argument is made rigorous by replacing eω|x| by eω|x|/(1+ε|x|),
ε > 0, ε→ 0) to get

∫

Rd

eω|x|
[
|∇U |2 + ω|U |2

]
dx ≤

∫

Rd

eω|x| |U |4
1 + |U |2 dx + ω

∫

Rd

eω|x||U ||∇U |dx.
(3.22)

By (3.19) there exists R > 0 such that |U |2/(1 + |U |2) < ω/4 on Rd \BR. Thus
we infer from (3.22) that

∫

Rd

eω|x|
[
|∇U |2 + ω|U |2

]
dx ≤

∫

BR

eω|x| |U |4
1 + |U |2 dx +

ω

4

∫

Rd

eω|x||U |2dx

+
ω

2

(∫

Rd

eω|x||U |2dx +

∫

Rd

eω|x||∇U |2dx
)

which implies (3.21).
Now we write U as a convolution

U(x) = Hω ⋆
|U |2U

1 + |U |2 , where Hω = F−1

(
1

ω + |ξ|2
)
. (3.23)

As it is well known ( [1]), Hω(x) = ω(d−2)/2G1(ω
1/2x) where

G1(z) =




C|z|(2−d)/2K(d−2)/2(|z|), d ≥ 3,

K0(|z|), d = 2,

where Kν is the modified Bessel function of order ν. Furthermore (see [1]), one
has the asymptotic behavior:





Kν(z) ∼ 1
2Γ(ν)

(
1
2 |z|

)−ν
, for ν > 0, as |z| → 0,

K0(z) ∼ − ln(|z|), as |z| → 0,

Kν(z) ∼ C|z|−1/2e−|z|, as |z| → ∞.

(3.24)

We infer from (3.23) that

eδ|x||U(x)| ≤
∫

Rd

eδ|x−x
′|Hω(x − x′)eδ|x′| |U |3

1 + |U |2 (x′)dx′. (3.25)

Since by (3.24) eδ|x|Hω(x) ∈ L2(Rd) for 0 < δ < ω1/2, and by (3.21) eδ|x||U |3/(1+
|U |2) ∈ L2(Rd) for δ ≤ ω/2 < ω1/2, we deduce from (3.25) that eδ|x|U ∈ L∞(Rd)
for 0 < δ < ω/2. �
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Remark. Actually, the saturated cubic NLS equation should involve a small
parameter ε > 0, namely, in the focusing case, we should consider instead of
(3.11)

i∂tA
ε + ∆Aε = − |Aε|2Aε

1 + ε|Aε|2 . (3.26)

Theorem 1 is of course still valid for a fixed ε > 0, but (3.13) and (3.15) should
be replaced by

∫

Rd

[
|∇A(x, t)|2dx +

1

ε2
ln(1 + |A(x, t)|2

]
dx

=

∫

Rd

[
|∇A0(x)|2dx +

1

ε2
ln(1 + |A0(x)|2

]
dx,

∫

Rd

|∇A(x, t)|2dx ≤ 1

ε

∫

Rd

|A0(x)|2dx +

∫

Rd

|∇A0(x)|2dx.

For solitary waves Aε(x, t) = eiωtU(x), (3.26) reduces to the elliptic equation

−∆U + ωU =
|U |2U

1 + ε|U |2 .

Setting V = ε1/2U , one obtains

−∆V + ωV =
1

ε

|V |2V
1 + |V |2 .

The only possible range for the existence of nontrivial H1 solitary waves is
ω ∈]0, 1/ε[. Proposition 5 is still valid for ω in this range.

3.4 Solitary waves — existence results

We now turn to the existence of non-trivial H2 solutions of

−∆U + ωU =
|U |2U

1 + |U |2

when 0 < ω < 1. We will look for real radial solutions U(x) = u(|x|) ≡ u(r)
and thus consider the ODE problem





−u′′ − d− 1

r
u′ + ωu =

u3

1 + u2
,

u ∈ H2(]0,∞[), u′(0) = 0.
(3.27)

We recall a classical result of Berestycki et al.[2]

Theorem 6 ( [2], p. 143) Let g be a locally Lipschitz continuous function on
R+ = [0,+∞[ such that g(0) = 0, satisfying the following hypotheses.

(H1) α = inf{ζ > 0, g(ζ) ≥ 0} exists and α > 0.

12



(H2) Let G(t) =
∫ t

0
g(s)ds. There exists ζ > 0 such that G(ζ) > 0.

Let ζ0 = inf{ζ > 0, G(ζ) ≥ 0}. In view of (H1) and (H2), ζ0 exists and
ζ0 > α.

(H3) limsցα g(s)/(s− α) > 0

(H4) g(s) > 0 for s ∈]α, ζ0].
Let β = inf{ζ > ζ0, G(ζ) ≥ 0}. In view of (H4), ζ0 < β ≤ +∞.

(H5) If β = +∞, then lims→+∞ g(s)/sl = 0 for some l < (d + 2)/(d − 2) (if
d = 2, we may choose for l any finite real number).

Let us consider the Cauchy problem

{
−u′′ − d− 1

r
u′ = g(u), r > 0,

u(0) = ζ, u′(0) = 0.
(3.28)

Then there exists ζ ∈]ζ0, β[ such that (3.28) has a unique solution satisfying
u(r) > 0 for r ∈]0,+∞[, u′(r) < 0 for r ∈]0,+∞[ and limr→+∞ u(r) = 0. If
in addition lim supsց0 g(s)/s < 0, then there exists C > 0 and δ > 0 such that

0 < u(r) ≤ Ce−δr, for 0 ≤ r < +∞.

Theorem 7 If a = 1 and 0 < ω < 1, there exists a nontrivial positive solution
of (3.27).

Proof. The case d = 1 has been addressed in Sec. 3.2. Consider now d ≥ 2.
We apply Theorem 6 with

g(u) = −ωu+
u3

1 + u2
,

which graph is displayed in Fig. 1.
Note that α =

√
ω/(1 − ω) which yields (H1). Setting u =

√
ω/(1 − ω)+ ε,

one easily checks that

g(u)

u− α
= 2ω(1 − ω) +O(ε),

α

slope = 1−ω

ζ
0 u

g(u)

Figure 1: Graph of function g
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and (H3) is satisfied. One computes G(u) = (1 − ω)u2 − 1
2 ln(1 + u2), which

obviously satisfies (H2) and (H4) with β = +∞. Last (H5) holds true (for
l > 1). �

Remark. u satisfies the decay rate of Proposition 5.

4 The Zozulya–Anderson System

4.1 Estimate on the potential

We now restrict to the space-dimension d = 2 which is the context of the
derivation. To mimic the proof for the Cauchy problem in the one-dimensional
case, we would like to express ϕ in terms of A for say A ∈ L2(R2). With such a
data A, we indeed have a unique ϕ in some convenient space but no Lipschitz
regularity for the mapping A 7→ ϕ, which is required to perform some fixed
point procedure. To ensure this we will have to assume A ∈ H2(R2).

To derive the first estimates, we consider time as a parameter and do not
express it. We therefore introduce the weighted homogeneous Sobolev space

H = {ϕ ∈ S′(Rd), (1 + |A|2)1/2∇ϕ ∈ L2(Rd)}/R

together with its natural Hilbertian structure.

Lemma 8 (i) Let A ∈ L2(R2). There exists a unique ϕ ∈ H solution of

div((1 + |A|2)∇ϕ) = ∂x(|A|2) in D′(R2) (4.29)

such that ∫

R2

(1 +
1

2
|A|2)|∇ϕ|2dx ≤ 1

2

∫

R2

|A|2dx. (4.30)

(ii) If furthermore A ∈ H2(R2), then ∇ϕ ∈ H2(R2) and there exists a polyno-
mial P vanishing at 0 such that

‖∇ϕ‖H2(R2) ≤ P (‖A‖H2(R2)). (4.31)

Proof. (i) We define a smoothing sequence (θε)ε>0 with
∫

R2 θεdx = 1 and
Aε = A ⋆ θε is such that Aε → A ∈ L2(R2). In particular

‖Aε‖L2(R2) ≤ ‖A‖L2(R2). (4.32)

By Riesz theorem there exists a unique solution to

div((1 + |Aε|2)∇ϕε) = ∂x(|Aε|2), (4.33)

i.e.
−∆ϕε − div(|Aε|2∇ϕε) = ∂x(|Aε|2) (4.34)

after noticing that the R.H.S. of Eq. (4.33) defines a linear continuous form on
H given by

〈∂x(|Aε|2), ψ〉 =

∫

R2

|Aε|2∂xψdx.
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Now we get from (4.33)

∫

R2

(1 + |Aε|2)|∇ϕε|2dx = −
∫

R2

|Aε|2∂xϕεdx

≤ 1

2

∫

R2

|Aε|2dx +
1

2

∫

R2

|Aε|2(∂xϕε)
2dx,

which yields (together with (4.32))

∫

R2

(1 +
1

2
|Aε|2)|∇ϕε|2dx ≤ 1

2

∫

R2

|Aε|2dx ≤ 1

2

∫

R2

|A|2dx. (4.35)

Up to the extraction of a sub-sequence, we have ∇ϕε → ∇ϕ and ∂x(|Aε|2) →
∂x(|A|2) in D′(R2). From Eq. (4.35), Aε∇ϕε ⇀ B weakly in L2 and for all
ψ ∈ D, ∫

R2

Aε∇ϕε · ∇ψdx →
∫

R2

A∇ϕ · ∇ψdx,

therefore B = A∇ϕ. Since ||Aε|2∇ϕε| = |Aε||Aε∇ϕε|, |Aε|2∇ϕε → |A|2∇ϕ in
D′. We can pass to the limit in Eq. (4.34) and obtain

−∆ϕ− div(|A|2∇ϕ) = ∂x(|A|2) in D′(R2),

i.e. div((1 + |A|2)∇ϕ) = ∂x(|A|2) and deduce estimate (4.30) from (4.35). This
yields the existence of ϕ ∈ H . The uniqueness is straightforward: two solutions
ϕ1 and ϕ2 would satisfy

∫

R2

(1 +
1

2
|A|2)|∇(ϕ1 − ϕ2)|2dx = 0, i.e. ∇(ϕ1 − ϕ2) = 0 a.e.

and hence be equal in H .

(ii) We first notice that |A|2∆ϕ is meaningful in H−1(R2). Actually, for any
ψ ∈ H1(R2), one defines

〈|A|2∆ϕ, ψ〉H−1(R2),H1(R2) = 〈∆ϕ, |A|2ψ〉H−1(R2),H1(R2),

which makes sense since |A|2ψ ∈ H1(R2) for A ∈ H2(R2), ψ ∈ H1(R2). Thus
we can write (4.29) as

(1 + |A|2)∆ϕ = −∇|A|2 · ∇ϕ+ ∂x(|A|2),

and

∆ϕ = − ∇|A|2
1 + |A|2 · ∇ϕ+

∂x(|A|2)
1 + |A|2 =: F.

We claim that F ∈ Lr(R2), for any r ∈ (1, 2), with

‖F‖Lr(R2) ≤ C‖A‖L2(R2)‖A‖H2(R2).

First, |∇|A|2 · ∇ϕ| ≤ 2|∇A||A∇ϕ| and by Hölder

‖∇|A|2 · ∇ϕ‖Lr(R2) ≤ 2‖∇A‖Lp(R2)‖A∇ϕ‖L2(R2)
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for any 1 < r < 2 and p = 2r/(2− r) ∈ (2,∞). Since ‖A∇ϕ‖L2(R2) ≤ ‖A‖L2(R2)

and H1(R2) ⊂ Lq(R2) for all q > 2, we obtain that

∥∥∥∥
∇|A|2

1 + |A|2 · ∇ϕ
∥∥∥∥

Lr(R2)

≤ C‖A‖H2(R2)‖A‖L2(R2), 1 < r < 2.

Similarly

∥∥∥∥
∂x|A|2

1 + |A|2
∥∥∥∥

Lr(R2)

≤ 2‖A∂xA‖Lr(R2) ≤ 2‖A‖L2(R2)‖∂xA‖Lp(R2)

≤ C‖A‖H2(R2)‖A‖L2(R2), 1 < r < 2.

By elliptic regularity, we infer thus that for any r, 1 < r < 2,

‖∇ϕ‖W 1,r(R2) ≤ C‖A‖H2(R2)‖A‖L2(R2).

By Sobolev embedding,

‖∇ϕ‖Lq(R2) ≤ C‖∇ϕ‖W 1,r(R2) ≤ C‖A‖H2(R2)‖A‖L2(R2).

for 1
q = 1

r − 1
2 , i.e. q = 2r/(2 − r) for all r, 1 < r < 2. Thus for any p > 2

∥∥∥∥
∇|A|2

1 + |A|2 · ∇ϕ
∥∥∥∥

Lp(R2)

≤ ‖∇ϕ‖L2p(R2)‖∇|A|2‖L2p(R2)

≤ C‖A‖H2(R2)‖A‖L2(R2)‖A‖2
H2(R2)

= C‖A‖L2(R2)‖A‖3
H2(R2)

(we have used the fact that H2(R2) is an algebra and the embedding H1(R2) ⊂
Lq(R2) for all q > 2).

Similarly, for any p > 2

∥∥∥∥
∂x(|A|2)
1 + |A|2

∥∥∥∥
Lp(R2)

≤ 2‖A‖L2p(R2)‖∂xA‖L2p(R2) ≤ C‖A‖H1(R2)‖A‖H2(R2).

Finally for any p > 2

‖F‖Lp(R2) ≤ C‖A‖2
H2(R2)(1 + ‖A‖L2(R2)‖A‖H2(R2)).

and by elliptic regularity

‖∇ϕ‖W 1,p(R2) ≤ C‖A‖2
H2(R2)(1 + ‖A‖L2(R2)‖A‖H2(R2)), ∀p > 2.

We now check that ∇ϕ · ∇|A|2/(1 + |A|2) ∈ H1(R2). This easily reduces to
showing that ∇(∇ϕ · ∇|A|2) ∈ L2(R2). For (i, j) ∈ {1, 2}, ∂xi

∂xj
ϕ ∈ Lp(R2)

since
̂∂xi
∂xj

ϕ =
ξiξj
|ξ|2 ∆̂ϕ and ∆ϕ ∈ Lp(R2), p > 2.

16



Thus ∂xi
∂xj

ϕ∇|A|2 ∈ L2(R) (∇|A|2 ∈ H1(R2) ⊂ Lq(R2), ∀q > 2).
On the other hand, taking p > 2 we see that ∇ϕ ∈ L∞(R2) and thus

∇ϕ∂xi
∂xj

|A|2 ∈ L2(R2).
It is also easy to check that ∂x(|A|2)/(1 + |A|2) ∈ H1(R2).

Finally, ∆ϕ = F ∈ H1(R2), proving that ∇ϕ ∈ H2(R2) with an estimate of the
form

‖∇ϕ‖H2(R2) ≤ P (‖A‖H2(R2)),

where P is a polynomial vanishing at 0, which proves (4.31). �

Remark. All above estimates are therefore uniform in time, and ifA ∈ C([0, T ];H2(R2))
for some T > 0, one has

‖∇ϕ‖C([0,T ];H2(R2)) ≤ P (‖A‖C([0,T ];H2(R2))).

4.2 Solitary waves — non existence results

We now look for solitary wave solutions of (2.9), that is solutions of the form
(eiωtU(x), φ(x)) with x ∈ Rd, ω ∈ R, U ∈ H1(Rd), and φ ∈ H . Thus (U, φ)
should satisfy the system

{
−∆U + ωU = aU∂xφ,

div((1 + |U |2)∇φ) = ∂x(|U |2).
(4.36)

The existence of nontrivial solutions of (4.36) is an open problem. Note that
(4.36) does not seem to be the Euler–Lagrange equation associated to a varia-
tional problem. We have however:

Proposition 9 (i) Let a = −1 (defocusing case). Then no nontrivial solution
of (4.36) exists for ω ≥ 0.
(ii) Let a = 1 (focusing case). No nontrivial solution of (4.36) exists for ω ≥ 1.
(iii) Let a = ±1. No nontrivial solution of (4.36) exists if ω < 0 provided
∂xφ = O(1/|x|1+ε), ε > 0 as |x| → +∞.

Proof. From (4.36) we have
∫

Rd

|∇U |2dx + ω

∫

Rd

|U |2dx = a

∫

Rd

|U |2∂xφdx,

∫

Rd

(1 + |U |2)|∇φ|2dx = −
∫

Rd

|U |2∂xφdx,

and ∫

Rd

|∇U |2dx + ω

∫

Rd

|U |2dx − a

∫

Rd

(1 + |U |2)|∇φ|2dx = 0, (4.37)

which proves (i). Now independent of the sign of a, and from (4.30) and (4.37),
∫

Rd

|∇U |2dx + ω

∫

Rd

|U |2dx ≤
∫

Rd

|U |2dx.

Thus ∫

Rd

|∇U |2dx + (ω − 1)

∫

Rd

|U |2dx ≤ 0,

which proves (ii). Part (iii) results from [8]. �
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4.3 The Cauchy problem

We consider the system





i∂tA+ ∆A = −aA∂xϕ,

div
(
(1 + |A|2)∇ϕ

)
= ∂x(|A|2),

A(·, 0) = A0.

(4.38)

Theorem 10 Let A0 ∈ H2(R2).
Then there exists T0 > 0 and a unique solution (A,∇ϕ) of (4.38) such that
A ∈ C([0, T0];H

2(R2)) and ∇ϕ ∈ C([0, T0];H
2(R2)). Moreover

‖A(·, t)‖L2(R2) = ‖A0‖L2(R2), 0 ≤ t ≤ T0

and ∫

R2

(1 +
1

2
|A|2)|∇ϕ|2dx ≤ 1

2

∫

R2

|A0|2dx, 0 ≤ t ≤ T0.

Proof. Uniqueness. Let (A,∇ϕ) ∈ L∞(0, T ;H2(R2)) and (B,∇ψ) ∈ L∞(0, T ;H2(R2))
two solutions of (4.38) with A(·, 0) = B(·, 0). Then from (4.38)2 one gets

∆(ϕ− ψ) + div(|A|2∇ϕ− |B|2∇ψ) = ∂x(|A|2) − ∂x(|B|2),

yielding

∫

R2

|∇(ϕ− ψ)|2dx +

∫

R2

|A|2|∇(ϕ − ψ)|2dx

=

∫

R2

(|A|2 − |B|2)∂x(ϕ− ψ)dx −
∫

R2

(|A|2 − |B|2)∇ψ · ∇(ϕ− ψ)dx.

(4.39)
Observing that |A|2 − |B|2 = A(A − B̄) + B̄(A − B), the R.H.S. of (4.39) is
majorized by

1

4

∫

R2

|∂x(ϕ− ψ)|2dx + (‖A‖L∞(R2) + ‖B‖L∞(R2))

∫

R2

|A−B|2dx

+
1

4

∫

R2

|∇(ϕ − ψ)|2dx

+ (‖A‖L∞(R2) + ‖B‖L∞(R2))‖∇ψ‖L∞(R2)

∫

R2

|A−B|2dx

and by Sobolev embedding

‖∇(ϕ− ψ)‖L2(R2) ≤ C(‖A‖H2(R2), ‖B‖H2(R2), ‖∇ψ‖H2(R2))‖A−B‖L2(R2).
(4.40)

On the other hand, we obtain readily from (4.38)1 that

1

2

d

dt

∫

R2

|A−B|2dx ≤
∫

R2

|A−B|2|∂xϕ|dx +

∫

R2

|B||∂x(ϕ− ψ)||A−B|dx
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which together with (4.40) and the Cauchy-Schwarz lemma yields

1

2

d

dt

∫

R2

|A−B|2dx

≤ C(‖A‖H2(R2), ‖B‖H2(R2), ‖∇ϕ‖H2(R2), ‖∇ψ‖H2(R2))‖A−B‖L2(R2)

and A = B by Gronwall lemma.

H2 a priori estimate. We derive a (formal) H2 a priori estimate on the solution
of (4.38). Since H2(R2) is an algebra, we deduce from Lemma 8 that

‖A∂xϕ‖C([0,T ];H2(R2)) ≤ ‖A‖C([0,T ];H2(R2))P (‖A‖C([0,T ];H2(R2))), (4.41)

where P was introduced in (4.31). From the energy estimate

1

2

d

dt
‖A(·, t)‖2

H2(R2) ≤ C‖A∂xϕ(·, t)‖H2(R2)‖A(·, t)‖H2(R2),

we infer with (4.41) the local H2 bound

‖A(·, t)‖H2(R2) ≤ C
(
‖A0‖H2(R2)

)
for 0 < t < T0, (4.42)

T0 < T sufficiently small.

Approximation of (4.38). The strategy is now to implement a compactness
method using the (justified) a priori estimate (4.42). For ε > 0, we consider
the system

i∂tA
ε + ∆Aε = −aAε∂xϕ

ε, (4.43)

div
(
(1 + ε∆2 + |Aε|2)∇ϕε

)
= ∂x(|Aε|2), (4.44)

Aε(·, 0) = A0. (4.45)

Solving ∇ϕε in terms of Aε, we obtain from (4.44) that ∇ϕε satisfies

ε

∫

R2

|∆∇ϕε|2dx +

∫

R2

(1 +
1

2
|Aε|2)|∇ϕε|2dx ≤ 1

2

∫

R2

|Aε|2dx. (4.46)

Well-posedness of approximate system. We now check that the Cauchy problem
(4.43)–(4.45) is globally well-posed in H2(R2). Let first Aε, Bε ∈ H2(R2) and
ϕε, ψε the corresponding solutions of (4.44). Proceeding as in the uniqueness
proof above, one gets

ε

∫

R2

|∇∆(ϕε − ψε)|2dx +

∫

R2

|∇(ϕε − ψε)|2dx

≤ C(‖Aε‖H2(R2), ‖Bε‖H2(R2), ‖∇ϕε‖H2(R2), ‖∇ψε‖H2(R2))‖Aε −Bε‖L2(R2).
(4.47)

Denoting ∂xϕ
ε by F ε(Aε) we write (4.43) on the Duhamel form with S(t) =

exp(it∆),

Aε(t) = S(t)A0 − a

∫ t

0

S(t− s)AεF ε(Aε)ds. (4.48)
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Using (4.47) and the unitarity of S(t) in Hs(R2), we deduce that the R.H.S. of
(4.48) defines a contraction in C([0, Tε];H

2(R2)) for some Tε > 0.

This implies the local well-posedness of (4.43)–(4.45) in H2(R2). Using the
H2 bound (4.47) on ∇ϕε, we infer from (4.43) an a priori bound in C([0, T ];H2(R2))
for Aε and for all T > 0. This proves that the Cauchy problem (4.43)–(4.45) is
globally well-posed, for any fixed ε > 0.

Limit ε→ 0. Now we have the bounds (4.46) and

‖∇ϕε(·, t)‖L2(R2) +
√
ε‖∆∇ϕε(·, t)‖L2(R2) ≤ C, 0 ≤ t ≤ T, (4.49)

where C and T do not depend on ε. Moreover, from (4.43) and (4.49) we have
a bound on ∂tA

ε which is independent of ε:

‖∂tA
ε(·, t)‖L2(R2) ≤ C, 0 ≤ t ≤ T.

It is now standard to pass to the limit as ε→ 0 (see [10]). By the Aubin–Lions
compactness lemma, we obtain a subsequence (Aε,∇ϕε) such that Aε → A
in L∞(0, T ;H2(R2)) weak-star and L2(0, T ;H1

loc(R
2)) strongly, ∇ϕε → ∇ϕ in

L∞(0, T ;H2(R2)) weak-star and L2([0, T ] × R2) weakly. The limit (A,∇ϕ)
belongs to (L∞(0, T ;H2(R2)))2 and satisfies (4.38). In fact (4.38)1 is satisfied
in L2(R2) and (4.38)2 is satisfied in H1(R2).

The fact that (A,∇ϕ) ∈ (C(0, T ;H2(R2)))2 results from the Bona–Smith
approximation (see [3]). �

Remark. We do not know whether the local solution obtained in Theorem 10
is global or not.

5 Conclusion

We have given a full description of how to derive from the Kukhtarev equations
an asymptotic model for the propagation of light in a photorefractive medium.
This derivation is only heuristic insofar as asymptotics are not justified, which
would be out of reach now. Some properties of photorefractive media such as
memory have also been neglected.

The 1D asymptotic model is a saturated nonlinear Schrödinger equation the
Cauchy problem of which is studied (in any space dimension) in L2 and H1.
We also prove the existence of solitary waves in one and higher dimensions. An
interesting and open issue would be to study the transverse stability of the 1D
solitary waves in the framework of the asymptotic model.

For the 2D asymptotic model (the Zozulya–Anderson model) we also have
studied the Cauchy problem and the non-existence of solitary waves. The ques-
tion of imposing other boundary conditions, not vanishing in one space direction,
can also be addressed to treat a wider range of experimental applications.

20



A Non-Existence of Solitary Waves in Non-Physical

Cases

The goal is here to complete the results of Corollary 3 for ω < 0 with no decaying
assumption. We have already seen that Eq. (3.18) implies that no solitary wave
may exist for d = 1, 2 and a = 1 (focusing case).

To go further, let us use both Eqs. (3.17) and (3.18) to obtain

∫

Rd

(
2ω +

(d− 2)a|U |2
1 + |U |2

)
|U |2dx − ad

∫

Rd

[
|U |2 − ln(1 + |U |2)

]
dx = 0.

We set

F (X) =

(
2ω +

(d− 2)aX

1 +X

)
X − ad(X − ln(1 +X)),

and we know that
∫

Rd F (|U |2)dx = 0. Now F (0) = 0 and

F ′(X) =
2X2(ω − a) +X(4ω − (4 − d)a) + 2ω

(1 +X)2
< 0,

if ω < 0, a = 1 and d = 3, 4. Therefore F (|U |2) = 0 a.e. By a bootstrapping
argument, we notice that any H1 solution to Eq. (3.16) is indeed in Hk for all
k and therefore continuous. Hence F (|U |2) = 0 on Rd. Since F ′(X) < 0 the
only possible value for U is U = 0 on Rd.

We can refine this result, finding other parameter ranges for which 2X2(ω−
a)+X(4ω−(4−d)a)+2ω < 0. If d ≥ 5 and a = 1, this holds for ω ≤ −(d−4)/4.
Moreover,

2X2(ω − a) +X(4ω − (4 − d)a) + 2ω

= 2

[
(ω − a)(X − 1)2 +X(4ω − 4a+

d

2
a) + ω + a

]
.

No solitary wave can exist for a = −1 and ω ≤ −1. Hence we complete Corollary
3 with

Corollary 11 No non-trivial solitary wave (solution of (3.16)) of the saturated
NLS equation exists when

(i) a = −1 (defocusing case), for ω ≤ −1.

(ii) a = 1 (focusing case), for ω ≤ 0, if d = 3, 4 and ω ≤ −(d− 4)/4 if d ≥ 5.
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