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Abstract-- In a way similar to the string-to-string correction problem we address time 

series similarity in the light of a time-series-to-time-series-correction problem for which the 

similarity between two time series is measured as the minimum cost sequence of "edit 

operations" needed to transform one time series into another. To define the “edit 

operations” we use the paradigm of a graphical editing process and end up with a dynamic 

programming algorithm that we call Time Warp Edit Distance (TWED).  TWED is slightly 

different in form from Dynamic Time Warping, Longest Common Subsequence or Edit 

Distance with Real Penalty algorithms. In particular, it highlights a parameter which 

drives a kind of stiffness of the elastic measure along the time axis. We show that the 

similarity provided by TWED is a metric potentially useful in time series retrieval 

applications since it could benefit from the triangular inequality property to speed up the 

retrieval process while tuning the parameters of the elastic measure. In that context, a 

lower bound is derived to relate the matching of time series into down sampled 

representation spaces to the matching into the original space. Empiric quality of the TWED 

distance is evaluated on a simple classification task. Compared to Edit Distance, Dynamic 

Time Warping, Longest Common Subsequnce and Edit Distance with Real Penalty, TWED 

has proven to be quite effective on the considered experimental task. 

 

Index Terms-- Pattern Recognition, Time Series, Algorithms, Similarity Measures.  

 

I. INTRODUCTION 

 

 

ore and more computer applications are faced with the problem of searching for time series 

within large datasets which are close to a given query element under some similarity criteria.    

Among numerous examples, we find financial and stock data analysis [31], moving objects 
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identification [4], astronomy [23], medicine [17], meteorology, data mining [1] etc.   

 

All these applications embed time series in a representation space and exploit some similarity 

measure defined for this space. Given a specific dataset and task, similarity measures are not 

equivalent. They basically fall basically into three categories: 

• Non elastic metrics such as Lp-norms that do not support time shifting such as Euclidian 

Distance (ED) and Correlation, 

• Elastic similarity measures that tolerate time shifting but are not metrics such as Dynamic 

Time Warping (DTW) [28], [27] or Longest Common Subsequence (LCSS) [6], [29]. 

• Elastic metrics that tolerate time shifting such as Edit distance with Real Penalty (ERP) 

[5]. 

When considering time series information retrieval, working in a metric space can be appealing 

since a lot of data structures (essentially tree based structures) and algorithms (partitioning, 

pivoting, etc.) have been optimized and made available for indexing and retrieving objects 

efficiently in metric spaces:  see [3] for a review. All these structures and algorithms take 

advantage of the triangle inequality which allows for efficient pruning of a large number of time 

series which are too far from the query. For some non-metric measures all these data structures 

can still be used if a lower bounding approximation which is a metric is available. Such a lower 

bound exists for both LCSS and DTW as detailed in [29]. 

 

In this paper we address the case of elastic metrics, namely elastic similarity measures that 

jointly exploit time shifting and possess all the properties of a distance, in particular the triangle 

inequality. Our contribution is basically four folded: 
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• The first contribution of this paper is the proposal of a new elastic metric which we call 

TWED (“Time Warp Edit Distances”). This contribution has to be placed in the 

perspective of former works that seek to combine Lp-norms with the edit distance, in 

particular in the light of the ERP distance [5] that can support local time shifting while 

being a metric. Other elastic similarity measures that belong to the Dynamic Time 

Warping category are not metrics since they do not satisfy the triangle inequality. Part II 

of the paper motivates the need for triangle inequality to process time series in a data 

compression context based on a down sampling perspective. 

• The second contribution is related to the introduction of a parameter we call stiffness 

which drives the elasticity of TWED, placing this kind of distance in between the 

Euclidian distance (somehow a distance with ‘infinite stiffness’) and DTW (somehow a 

similarity measure with no ‘stiffness’ at all). One of the differences between TWED and 

former similarity measures is the use of time stamp differences between compared 

samples as part of the local matching costs. The motivation for such a characteristic is 

also given in part II of the paper. 

• The third contribution proposes a lower bound for the TWED measure which allows 

relating the evaluation of the matching of two time series into down sampled 

representation spaces to the evaluation of their matching into their original representation 

spaces. 

• The fourth contribution of the paper is an empiric evaluation of the quality of TWED 

based on a simple classification experiment that provides some highlights on the 

effectiveness of TWED compared to the Euclidian Distance (ED), DTW, LCSS and ERP. 

The influence of the stiffness parameter on classification error rates is also analyzed. 
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The paper is organized as follows. Section II addresses the motivation aspects. Section III 

presents shortly the main relevant founding works about elastic distances for time series 

matching. Section IV details the definition and implementation of the Time Warp Edit Distance 

with stiffness adjustment that is proposed in this paper. Section V details a lower bounding 

procedure we suggest to speed up range queries processing. Section VI reports a classification 

experiments that shows the empirical effectiveness of TWED comparatively to the Euclidian 

distance and other classical elastic measures. Section VII concludes the paper and proposes some 

perspectives. 

 

II. MOTIVATION FOR A SIMILARITY MEASURE THAT VERIFIES THE TRIANGLE INEQUALITY AND 

TAKES INTO ACCOUNT TIME STAMP DIFFERENCES 

 

The motivation for using time stamps is related to the way we want to model the elasticity of 

the measure. Coping with index differences between two match samples has been successfully 

used to improve elastic measures such as Dynamic time Warping or Longest Common 

Subsequence measures. The idea is to limit the elasticity of the measure by using a threshold: if 

the index difference between two samples is lower than the value of the threshold, then the 

matching is allowed, otherwise it is forbidden. This binary decision might in some cases limit the 

effectiveness of the measure. Keeping in mind the mechanical analogy of a spring, instead of a 

threshold we suggest using the range of the sample index difference to linearly penalize the 

matching of samples for which the index values are too far and to favour the matching of samples 

for which the index values are close. In the case where time series are sampled using non uniform 
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or varying sampling rates one can benefit from time stamps instead of sample indices since this 

approach helps avoid resampling the data. 

 

The second motivation for defining a measure that exploits time stamps while verifying the 

triangle inequality is two folds: first it provides an effective solution to compare approximated 

representations of time series not necessarily using uniform down-sampling methods; second, it 

establishes a useful relationship between the matching performed in the down sampled space and 

the matching performed in the original space. 

Approximation of multi dimensional discrete curves has been widely studied essentially to 

speed up data processing required by resource demanding applications. Among other approaches, 

polygonal approximation of discrete curves has been quite popular recently. The problem can be 

informally stated as follows: given a digitized curve X of N ≥ 2 ordered samples, find K (in 

general K<<N) dominant samples among them that define a sequence of connected segments 

which most closely approximate the original curve. This problem is known as the min-ε problem. 

Numerous algorithms have been proposed for more than thirty years to solve efficiently this 

optimisation problem. Most of them belong either to graph-theoretic, dynamic programming or 

to heuristic approaches. See for instance [10] [24] [14] [21] among others for details.  

Such approaches can be used to adaptively down sample time series. For instance, in [21] 

polygonal curves approximations have been used to down sample optimally gesture signals and 

in [21] an elastic matching procedure has been proposed to compare two time series with a linear 

time complexity. For these approaches, a down sampled time series is a reduced sequence of 

tuples (sample, time stamps) that corresponds to the end extremities of the polygonal segments. 

The sampling rate for such down sampled time series is not uniform in general.  
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Down sampling time series can be used to drastically reduce the dimension of the space in 

which we could potentially process the time series. Nevertheless one difficulty emerges: how can 

down sampled time series using non uniform (e.g. varying) sampling frequencies be compared? 

Not taking into account the occurring time of the samples could introduce discrepancies between 

the original space and the down sampled space. For instance, phase or frequency information is 

potentially lost or at least damaged as well as the slope of spikes.  

In this context, the triangle inequality is also of great importance since it maintains distance 

relations between the original space and the down sampled space. Let X and Y be two time series 

in the original space and X
~

and Y
~

 their down sampled counter parts. Let δ  be a measure for 

which the triangle inequality holds. Then the following inequalities hold: 

)
~
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This lower bound which can be used to significantly speed up the time series information 

retrieval process since a pruning strategy can be proposed in the down sampled space. We will 

get back to this issue in section V. 
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III. ELASTIC SIMILARITY IN THE LIGHT OF THE SYMBOLIC EDIT DISTANCE  

 

In this section we present succinctly the main elastic measures developed in the literature, from 

founding work to more recent studies. 

The Levenshtein Distance (LD) proposed in 1966 [16], also known as the edit distance, is the 

smallest number of insertions, deletions, and substitutions required to change one string into 

another. For more than thirty years, the ideas behind LD have been largely reused and extended 

by various research communities. The main contributions are rapidly reviewed below. In 1974 

Wagner and Fisher [30] developed a computationally efficient algorithm to calculate LD in 

O(n.m) using dynamic programming [2]. Meanwhile Dynamic Time Warping, which shares 

many similarities with LD despite the fact that it is not a metric, was proposed in 1970 [28] and 

1971 [27] to align speech utterances, namely time series, with time shift tolerances. The Longest 

Common Subsequence (LCSS) similarity measure initially defined for string matching [9]  has 

also been adapted for time series matching [6][29]. Recently, a lot of fruitful research dealing 

with DTW and LCSS has been carried out to propose efficient computation and pruning 

strategies that are required to process massive data [29][11][32]. Some work has also been 

conducted to provide the ‘triangle inequality’ to DTW: the Edit Distance with Real Penalty 

(ERP) [5] has been proposed as an edit distance based metric for time series matching with time 

shift tolerance. The edit distance principle has been also proposed to develop match 1D-point-

patterns (ascending lists of real values) [18][19]. The measure proposed to match 1D-Point 

Patterns (PPM) is shown to be a metric that can be extended to the multidimensional case, at the 

price of a non polynomial complexity. Shortly, hereinafter, we present shortly hereinafter DTW, 

ERP and LCSS in the light of the edit distance and develop the TWED metrics as an alternative 
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to ERP. 

A. Definitions 

Let U be the set of finite time series: { } { }Ω∪∈= +NpAU p /1 , where Ω is the empty time 

series (with null length), pA1 is a time series with discrete time index varying between 1 and p. 

Let A be a finite discrete time series. Let ia'  be the i
th

 sample of time series A. We will 

consider that TSa i ×∈'  where dRS ⊂  with 1≥d  embeds the multidimensional space variables 

and RT ⊂  embeds the time stamp variable, so that we can write ),('
iaii taa = where 

TtSa
iai ∈∈   and  , with the condition that 

ji aa tt > whenever i>j (time stamp are strictly 

increasing in the sequence of samples). 

j

iA  with ji ≤  is the sub time series consisting of the i
th

 through the j
th

 samples (inclusive) of 

A. So jii

j

i aaaA '...'' 1+= . |A| denotes the length (the number of samples) of A. Λ  denotes the null 

sample. j

iA  with ji >  is the null time series noted Ω . 

An edit operation is a pair (a’, b’) ≠ ( Λ , Λ ) of time series samples, written a’→ b.’ Time series 

B results from the application of the edit operation a→ b into time series A, written A⇒ B via 

a’→ b’, if A = σ a’τ and B = σ b’τ for some time series σ and τ. We call a’→ b’ a match 

operation if Λ≠'a  and Λ≠'b , a delete operation if b’ = Λ , an insert operation if a’ = Λ .  

 

Similarly to the edit distance defined for string [9] , we define ),( BAδ  the similarity between 

any two time series A and B of finite length, respectively p and q as: 
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Where 1,1 ≥≥ qp  and Γ  is an arbitrary cost function which assigns to each edit operation 

'' ba →  a nonnegative real number )''( ba →Γ . 

The recursion is initialized by setting: 
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Dynamic Time Warping (DTW) and Edit Distance with Real penalties (ERP), 1D Point Pattern 

matching (PPM) and Longest Common Subsequence (LCSS) are special cases of the previous 

definitions: 

 

B. The DTW special case 

The DTW similarity measure [28][27] DTWδ is defined according to the previous notations as: 

)3(
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where x-yLpyxd LP  vector of norm   theis ),(  in R
d
, 

and so for DTW, ),()''()'()'( qpLPqpqpqp badbaba =→Γ=→ΛΓ=Λ→Γ  
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We notice that the time stamp values are not used so that the costs of each edit operation 

involve vectors a and b in S instead of vectors a’ and b’ in TS × . One of the main restrictions of 

DTWδ  is that it does not comply with the triangle inequality as shown by the following example: 
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(*) 1D time series with no stamp value given 

 

 

C. The ERP special case  
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and g a constant in S. 

 

where x-yLpyxd LP  vector of norm   theis ),(  in S. Note that the time stamp coordinate is not 

taken into account such that 
ERPδ  is a distance on S but not on TS × . 

We notice here again that the time stamp values are not used such that the costs of each edit 

operation involve vectors a and b in R
d
 instead of vectors a’ and b’ in R

d+1
. 

According to the authors of ERP [5], the constant g should be set to 0 for some intuitive 
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geometric interpretation and in order to preserve the mean value of the transformed time series 

when adding gap samples. 

 

D. The LCSS special case  

The Longest Common Subsequence (LCSS) similarity measure has been first defined for string 

matching purposes [9] and then extended for times series [6][29]. LCSS is recursively defined in 

[29] as follows: 

{ }
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For LCSS the match reward is 1, while no reward is offered for insert or delete operations. 

The LCSS measure is transposed into a normalized dissimilarity measure δε ,D  which is close in 

its formal structure to the ERP measure:   
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E. The 1D PPM special case 

For Point-Pattern matching problems [18], qp BA 11  and are 1D ascending lists of real values. 
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The author [18] shows that 
PPMδ is a metric that calculates the minimum amount of space needed 

to delete or insert between pairs of points to convert one point-pattern into another. One can 

notice that if we consider successive increments instead of the initial values, PPMδ  coincides with 

the ERPδ  applied to the lists of positive increments. 

 

IV. THE TWED DISTANCE 

 

We propose an alternative to the definition of the edit operations for time series alignment 

leading to the definition of the new similarity measure TWED. To understand the semantic 

associated to the edit operations for TWED, we reconsider the editing analogy with strings and 

suggest some differences. The edit distance between two strings is defined as the minimal 

transformation cost allowing for the transformation of the first string into the second one. For 

string edition, a transformation is a finite sequence of edit operations whose associated cost is the 

sum over the sequence of edit operations of the elementary costs Γ  associated to each edit 

operation. 

For time series we are seeking a sequence of edit operations allowing for the transformation of 

two time series simultaneously in order to make them superimposed with a minimal cost. If we 

use a graphical editor paradigm, we can imagine a 2D representation of time series for which the 

horizontal axis represents the time scale or the time stamp coordinate and the vertical axis 

represents a spatial coordinate scale displaying the projection of the d-1 spatial coordinates of the 

samples onto a 1D scale. The graphical editor we imagine allows for the editing of two time 

series A and B using three elementary edit operations depicted in Fig. 1a, 1.b and 1.c.  
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Fig 1: The edit operations in the graphical editor paradigm. 
 

 

Instead of the classical delete, insert and match operations, we introduce delete-A, delete-B and 

match operations as follows: 

 

i) The delete-A (delete inside the first time series) operation (Fig. 1.b) consists in clicking on 

the dot representing the sample in A to delete (a’i) and dragging and dropping this dot onto the 

previous sample dot (a’i-1). We suggest that the editing effort or cost associated with this delete 

operation be proportional to the length of vector (a’i – a’i-1) to which we add a constant 

penalty 0≥λ . 

 

 

B 
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ii) The delete-B (delete inside the second time series) operation (Fig. 1.c) consists in clicking  

on the dot representing the sample in B to delete (b’i) and dragging and dropping this dot onto the 

previous sample dot (b’i-1). Here again we suggest that the editing effort or cost associated with 

this delete operation be proportional to the length of vector (b’i – b’i-1) to which we add a 

constant penalty 0≥λ . 

 

Due to sampling rate variations or process variability one can face the situation where in time 

series data, one event could be registered many times or only few times when recording different 

utterances; this would justify the deletion cost to be proportional to the distance to the previous 

sample. Nevertheless ‘outlier’ samples (e.g. spurious data points) deletion cannot be covered by 

this argument. According to TWED, the deletion cost for such sample depends on the previous 

sample in the time series, and we do not have satisfactory argument to justify it. The other elastic 

measures (DTW, ERP, LCSS) do not offer better justification for the deletion cost of ‘outliers’. 

 

iii) The match operation (Fig. 1.a) consists in clicking on the dot representing the sample (a’i) 

to match and then dragging and dropping this dot onto the graphic position corresponding to the 

matching sample (b’j). We can suggest that the editing effort or cost associated with the match 

operation be proportional to the length of vector (b’j – a’i). 

This provides the basis for the TWED distance we propose: 
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The recursion is initialized setting:        

.conventionby  0''with 
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It is interesting to note that the penalties for delete-A or delete-B operations are similar to those 

proposed in the PPMδ  measure if we do not consider the time stamps coordinate and address the 

matching of 1D monotone increasing time series.  

 

Furthermore, using the graphical editor paradigm, we define the time series matching game as 

follows: two time series, A and B, are displayed on the graphic. The goal consists in editing A and 

B in order to completely superimpose the two curves. 

The editing process is performed left to right: if i is an index on the samples of A and j on the 

samples of B, then the process is initialized setting i=j=1. A match operation will increment i 

and j simultaneously: .1,1 +←+← jjii  A delete-A operation will increment i only: .1+← ii  

A delete-B operation will increment j only: .1+← jj   

According to the above mentioned constraint, once a sample a’i in A has been processed using 

either a match or a delete-A operation, it is impossible to edit it again and so it is for former 

samples a’r, r in {1,..,i-1}. Similarly, once sample b’j in B has been used either in a match or in an 

delete-B operation it is impossible to use former samples b’r, r in {1..j} for future match or 

insertion operations. Therefore, according to this game, the editing process provides a sequence 

of edit operations as well as ordered pairs of indices (i,j) where i is an index in A and j an index 

in B. In other words, the process provides an ordered sequence of triplets (opk, ik, jk) where opk is 
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the k
th

 edit operation selected, and ik and jk are the values of the index in A and B respectively 

when the edit operation is performed. A partial order can be defined on the triplets as follows: 

 

.jor  ieither  and j and i iff ),,(),,( 2k12k12k12k1222111 kkkkkkkkkk jijijiopjiop ≠≠≤≤<
 

 

Since for each step of the editing game, one of the indices is increased by one while the other is 

either incremented by one or remains unchanged, all the triplets in the output editing sequence 

are ordered in increasing order. 

Supposing that the game editing process has provided a sequence of edit operations up to ik and 

jk index values, if the sub sequences 1

1
−kiA  ( 1

1
−kiA refers to the sequence obtained from A after the 

first k-1 edit operations) and 1

1
−kjB are not superimposed, then, as there exists no possibility to 

process former samples to superimpose them the game process cannot be successful.   

It is easy to show that  
TWEDδ  as defined in eq. (4) provides a successful sequence of editing 

operations at a minimal global cost for all pairs of time series in U2. 

 

Theorem 1: TWEDδ  is a distance on the set of finite discrete time series U: 

 P1:   0),( ≥BATWEDδ  for any finite discrete time series A and B, 

 P2: BABATWED ==  iff 0),(δ for any finite discrete time series A and B, 

 P3: ),(),( ABBA TWEDTWED δδ = for any finite discrete time series A and B, 

 P4: ),(),(),( BCCABA TWEDTWEDTWED δδδ +≤ for any finite discrete time series A, B and C. 

 

A sketch of the proofs for this theorem is given in APPENDIX I. 
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A. Providing ’stiffness’ into TWED 

 

Going back to the graphical editor game we have envisaged that the penalty or cost associated 

with each edit operation should be proportional to the mouse pointer displacement involved 

during the edition. If we separate the spatial displacement in S from the temporal displacement in 

T then we have to consider a spatial penalty that could be handled by a distance measured in S 

and a temporal penalty more or less proportional to some distance measured in T. By doing this, 

we could parameterize a distance in between the Euclidian Distance, which is characterized with 

a kind of ‘infinite stiffness’, and DTW which is characterized by a ‘null stifness. In practice, we 

can choose ),(.),()','( baLpLP ttdbadbad γ+= whereγ is a non negative constant which 

characterizes the stiffness of TWED elastic measures. Notice that 0>γ  is required for TWED to 

be a distance. If 0=γ then TWED will be a distance on S but not on TS × . 

 

The final formulation of TWED is as follows: 
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The iterative implementation of TWED is depicted in Fig.2. 

B. Algorithmic complexity of TWED  
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The time complexity of TWED is the same as DTW and ERP, namely O(p.q), where p and q 

are the lengths of the two time series being matched.  The space complexity is also the same as 

DTW i.e. O(p.q), but as well as the ERP distance, the costs )'( Λ→aγ  and )'( b→Λγ can be 

tabulated to speed up the calculation leading to an extra space complexity of O(p+q) for TWEDδ . 

 

 

Fig 2: Iterative implementation of the TWED distance. 
 

float TWED(float A[1..n], float timeStampsA[1..n], 
 float B[1..m], float timeStampsB[1..m], 
 float lambda, float nu) { 

 
    declare int DTW[0..n,0..m]; 
    declare int i, j; 
    declare float cost; 
    declare float A[0] :=0, timeStampsA[0] :=0; 
    declare float B[0] :=0, timeStampsB[0] :=0; 
 
    for i := 1 to m 
        TWED[0,i] := infinity; 
    for i := 1 to n 
        TWED[i,0] := infinity; 
    TWED[0,0] := 0; 
 
    for i := 1 to n { 
        for j := 1 to m { 
            cost:= L1Dist(A[i],B[j]);  // Distance-L1 
            DTW[i,j] := minimum( 
            // insertion 
                DTW[i-1,j  ] + L1Dist(A[i-1], A[i])+ 

nu*(timeStampsA(i)- timeStampsA(i-1)+lambda,  
          // deletion    
                DTW[i  ,j-1] + L1Dist(B[j-1], B[j])+ 

nu*(timeStampsB(j)- timeStampsB(j-1)+lambda,     
          // match 
                DTW[i-1,j-1] + L1Dist(A[i],B[j])+ 

nu*|timeStampsA(i)- timeStampsB(j)| ); 
        } // End for j 
    } // End for i 
 
    Cost = TWED[n,m]; 
    Return; } 
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C. Some properties of TWED  

 

Let us use γλδ , instead of TWEDδ  to refer to the TWED measure and let us use DL1 to refer to the 

L1-distance. 

 

Lemma 1: γλδ ,  is upper bounded by DL1. 

),,(),(,0,0 1,

2 YXDYXUYX L≤∈∀>≥∀ γλδγλ  whenever X and Y have the same 

length. 

Proof: let us consider the sequence of editing operations consisting in m match operations, 

where m is the length of the X and Y. This sequence has a cost equal to the L1-distance between 

the two time series X and Y. Since γλδ ,  is equal to the cost of the optimal sequences of edit 

operations, the result follows. � 

 

Lemma 2:  γλδ ,  is an increasing function of γλ  and :  

),(),(,''0,0 ',',

2
YXYXUYX γλγλ δδγγλλγλ ≤∈∀≥∀≥∀>≥∀  

Proof: Let us consider one of the optimal sequences of editing operations evaluated with the 

tupple ),( γλ with minimal cost equal to ),(',' YXγλδ . If we keep this sequence of editing operation 

while replacing )','( γλ  with ),( γλ  in all the elementary operation costs we get a cost for this 

sequence that is lower than ),(',' YXγλδ  but greater than the cost of the optimal sequences 

),(, YXγλδ evaluated using ),( γλ . The result follows. � 
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V. BOUNDING THE TWED MEASURE 

 

In this section we get back to our second motivation about defining a measure that exploits 

time stamps while verifying the triangle inequality and shows how piecewise constant 

approximations (PWCA) with few segments of time series can be used to improve the efficiency 

of range queries. Various methods exist to get polygonal curve approximations of time series, in 

particular heuristic [7][8][10][12], near optimal [14][21]  or optimal  [24] solutions. Most of 

them can be adapted to provide PCWA approximation of time series. 

We define rpA ,

1
a PWCA of time series pA1

 containing 01 ≥−r  constant segments. This 

approximation can be obtained using any kind of solution (from heuristic to optimal solutions), 

let say the optimal solution similar to the one proposed in [24]. rpA ,

1  and pA1  have the same 

number of samples, namely p.  Let r
A1

~
be the time series composed with the r segment extremities 

of rpA ,

1 . r
A1

~
contains r samples. Let us similarly define ',

1

rpB  and '

1

~ r
B  from time series pB1 . 
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Fig 2: Linking the matching of time series in the original space to the matching in the 

down-sampled space. 

 

Lemma 3: ).)(()
~

,(     [,;1[,0,0 1

,

1,1 TrpXXUXpr
rrpp ∆+−≤∈∀∈∀>≥∀ γλδγλ γλ , where 

T∆  is the time difference average between two successive samples inside the piecewise constant 

segments of the approximation. 

The proof for this lemma is straightforward: let us consider the sequence of operations 

consisting in r match operations for the end extremities of the piecewise constant segments and 

(p-r) delete operations for the set of samples in rpX ,

1
 that are not end extremities of the piecewise 

constant segments. In this sequence each match operations has a null cost, and each delete 

operation has a λ  fixed penalty and a penalty proportional to the time stamps difference between 

two successive samples ))1()(.( −− itimeStampsitimeStampsγ . Then, the cost for this sequence of 

editing operations is  ).)(( Trp ∆+− γλ . Finally the optimal sequence of editing operation as a 

cost )
~

,( 1

,

1,

rrp
XXγλδ  lower or equal to ).)(( Trp ∆+− γλ . � 
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rp
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,

1  
',

1
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1
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),( 11,

qp BAγλδ  
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( 11,

rr
BAγλδ  

Original time series 

 

Down-sampled time series (r << min{p,q}) 

 

PWCA approximations of time series 
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From these previous lemmas we can bound the matching of two time series evaluated into the 

original space with the matching of their approximations evaluated into the down sampled space 

as follows:  

3        );.)('()
~

,(

applies 1length  same  thehave  and since );,(),(

3      );.)(()
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From these inequalities and the triangle inequality verified by  γλδ ,  we get: 
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And since γλδ , verifies the triangle inequality we have: 
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)
~

,(),(),
~

()
~

,
~

(

11,1

',

111

,

11

'

11,11,11,

'

11,

qpqrq

L

prp

L

rqqpprrr

BABBDAADrrqpT

BBBAAABA

γλ

γλγλγλγλ

δγλ

δδδδ

+++−−+∆+≤

++≤
 

)
~

,
~

(),(),()')(.(

),
~

()
~

,
~

()
~

,(),(

'

11,1

',

111

,

11

1

'

1,

'

11,11,11,

rrqrq

L

prp

L

qrrrrpqp

BABBDAADrrqpT

BBBAAABA

γλ

γλγλγλγλ

δγλ

δδδδ

+++−−+∆+≤

++≤
 

 

Leading to: 

),(),()')(.()
~

,
~

(),( 1

',

111

,

11

'

11,11,

qrq

L

prp

L

rrqp
BBDAADrrqpTBABA ++−−+∆+≤− γλδδ γλγλ  

 

This shows that )
~

,
~

( and ),( '

11,11,

rrqp
BABA γλγλ δδ are potentially close when two conditions are 

satisfied: 
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1. The PWCA approximations of A and B are close to the original time series in the sense 

of the L1-distance. This should be ensured by the optimal solution of the min-ε 

problem using piecewise constant segments whenever the number of segments r is not 

too small. 

 

2. T∆+ . γλ is small comparatively to (p+q-r-r’).  

Hence we get the following lower bounds that can be considered tight if the two previous 

conditions are satisfied: 

applies. 2 since   ),(),(
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This last inequality is potentially still useful to design fast and dirty filters dedicated to range 

query searching for applications for which ' and ' γλ  cannot be small enough, while γλ  and  can 

be set up small. 

For range query search, if R is the radius of the range query and pA1  the center of the query 

ball, then qB1  is outside the search range if one of the following conditions is verified: 
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For time series information retrieval applications, equations (10) and (11) are potentially 

useful. If ),
~

( and ),
~

( 1

'

1,11,

prpr BBAA γλγλ δδ are pre-computed during the indexing phase, the tighter 

bound can be used. Otherwise the second bound can be evaluated during the retrieval phase 

through the computation of L1-distances.  If ),min(.)/1(' qpKrr ==  the complexity for 

evaluating )
~

,
~

( 11,

rr BAγλδ is lower than )/.( 2KqpO . 

 

VI. EXPERIMENTATIONS 

 

To evaluate empirically the effectiveness of the TWED distance comparatively to other metrics 

or similarity measures, we address a simple classification task experiment.  The classification 

task we have considered consists in assigning one of the possible categories to an unknown time 

series for the following data sets:  

- 20 data sets available at UCR repository [13], 

- the PWM1 and PWM2 data sets we have constructed with the intention of causing some 

difficulties either to Dynamic Time Warping pseudo distances or ERP distance. These two 

data sets are detailed in Appendix 2.  

 

For each dataset, a training subset is defined as well as a testing subset. The classification is 

based on the simple nearest neighbor decision rule: first we select a training data set containing 

time series for which the correct category is known. To assign a category to an unknown time 

series selected from a testing data set (different from the train set), we select its nearest neighbor 

(in the sense of a distance or similarity measure) within the training data set, then, assign the 
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category associated to its nearest neighbor.  

 

 Given a dataset, we adapt the stiffness parameter as follows: we use the training dataset to 

select the ‘best stiffness’ (γ) value as well as the best λ value, namely the ones leading to the 

minimal error rate on the training data, according to a leave-one-out procedure (that consists in 

selecting iteratively one time series into the training set and then in considering it as a test 

against the remaining time series within the training set itself).  

Finally, the testing dataset is used to evaluate the final error rate (reported in Tab.1 and 

Tab.2) with the best γ  and λ values estimated on the training set. This leads to OTWED, the 

optimized versions of TWED.  

 

The same procedure is used to set up the parameters defined for the other parametric measures, 

i.e. ODTW and LCSS.  

 

Tab.1 and Tab.2 show the results obtained for the tested methods, e.g. Euclidian Distance on 

the original time series, optimized DTW with best warping windows (ODTW) as defined in [25], 

classical DTW (DTW) with no warping window, Longest Common Subsequence (LCSS) as 

defined in [29], Edit distance with Real Penalty (ERP) as defined in  [5] and OTWED. In Tab.1 

and Fig.3 the time series are not preprocessed, while in Tab.2 and Fig 4. time series are down 

sampled using an optimal Piecewise Constant Approximation procedure similar as the one 

described in [24] for polygonal approximation.  In this last experiment, each down sampled time 

series has exactly 50% less samples than the original time series. The sampling rate for the down 

sampled time series is indeed varying since the size of the constant segments used to approximate 
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the time series are not constant in general. 

 

For parameterized measures, best values are selected on the training data in order to minimize 

the error rate estimated on the training data. More precisely the settings are as follows: 

 

� ODTW: the best corridor value is selected for each dataset among the set {0, 

max{p,q}} such as to minimize the classification errors estimated on the training 

data.  If different corridor values lead to the minimal error rate estimated on the 

training data then the lowest corridor value is selected. 

 

� LCSS: the best δ and ε  values are selected for each dataset respectively among the 

sets 1kkk n/25.n/2 and q}max{p,n with }, n/2, n/4, n/2, {n, +<≤=… , and 

1k2kk /202120/2 with  }, ,20/2 20/4, 20/2, {20, +− <≤… e such as to minimize the 

classification errors estimated on the training data.  If different ),( εδ  values lead 

to the minimal error rate estimated on the training data then the pairs having the 

highest δ  value are selected first, then the pair with the highest ε  value is 

finally selected. 

 

� OTWED: for our experiment, ‘stiffness value’ (γ) is selected into {1e10
-5

,  1e10
-4

, 

1e10
-3

, 1e10
-2

, e10
-1

, 1} and λ is selected into {0, .25, .5, .75, 1.0 }. The γ  and λ 

parameter values are selected for each dataset such as to minimize the classification 

errors estimated on the training data. If different ),( λγ  values lead to the minimal 
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error rate estimated on the training data then the pairs containing the highest γ  

value are selected first, then the pairs with the highest λλλλ value is finally 

selected. 

 

For ERP and OTWED we used the L1-norm, while the L2-norm has been implemented in 

DTW and ODTW as reported in [25]. The gap value used in ERP has been set to 0 as suggested 

by the authors [5]. 

 

Finally, as time is not explicitly given for these datasets, we used the index value of the 

samples as the time stamps for the whole experiment. This leads to the following 

implementations of TWED:  
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This experiment shows that the TWED distance is effective on the considered task 

comparatively to ED, DTW, ODTW, ERP and LCSS measures since it exhibits in average the 

lowest error rates on the testing data as shown in Tab. 1 and Fig. 3. The gain in average is 

relatively significant: 3.9% against ODTW, 4.8% against LCSS, 5% against ERP, 10.8% against 

ED and 11% against DTW.  

 

The same experiment carried on down sampled time series (Tab. 2 and Fig. 4) shows that 

error rates drop more than twice time faster for ED, DTW, ERP, LCSS, ODTW (>7%) than for 
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TWED (3.5%). In that experimental context coping with time stamps when matching not 

uniformly down sampled time series seems to be quite effective. 

 

 

      Dataset Nbr of classes | 

Size of testing 

set 

1-NN 

ED 

1-NN 

ODTW 

1-NN 

DTW  

1-NN 

LCSS 

1-NN 

ERP 

1-NN 

OTWED 

Synthetic Control 6|300 0.12 0.017 0.007 0.047 0.036 0.033 

Gun-Point  2|150  0.087 0.087  0.093 0.013 0.04 0.007 

CBF  3|900  0.148 0.004  0.003 0.009 0.003 0.007 

Face (all)  14|1690  0.286 0.192  0.192 0.201 0.202 0.192 

OSU Leaf  6|242  0.483 0.384  0.409 0.202 0.397 0.219 

Swedish Leaf  15|625  0.213 0.157 0.210 0.117 0.12 0.102 

50Words  50|455  0.369 0.242  0.310 0.213 0.281 0.189 

Trace  4|100  0.24 0.01  0.0 0.02 0.17 0.03 

Two Patterns  4|4000  0.09 0.0015  0.0 0.0 0.0 0.001 

Wafer  2|6174  0.005 0.005  0.020 0 0.009 0.004 

Face (four)  4|88  0.216 0.114  0.170 0.068 0.102 0.045 

Lighting2  2|61  0.246 0.131  0.131 0.18 0.148 0.131 

Lighting7  7|73  0.425 0.288  0.274 0.452 0.301 0.247 

ECG 2|100 0.12 0.12 0.23 0.1 0.13 0.09 

Adiac 37|391 0.389 0.391 0.396 0.425 0.378 0.366 

Yoga 02|3000 0.170 0.155 0.164 0.137 0.147 0.132 

Fish 7|175 0.267 0.233 0.267 0.091 0.12 0.057 

Coffee 228 0.25 0.179 0.179 0.214 0.25 0.25 

OliveOil 4|30 0.133 0.167 0.133 0.8 0.167 0.133 

Beef 5|30 0.467 0.467 0.5 0.533 0.5 0.567 

PWM11 60|600 0.12 0.033 0.245 0.038 0.42 0.003 

PWM22 30|300 0.34 0.34 0.31 0.053 0.047 0.047 

MEAN   0.238 0.169 0.240 0.178 0.180 0.13 

STD   0.127 0.138 0.132 0.205 0.146 0.14 

 

TAB.1: COMPARATIVE STUDY USING THE UCR DATASETS [13]: CLASSIFICATION ERROR RATE 

OBTAINED USING THE FIRST NEAR NEIGHBOR CLASSIFICATION RULE 

 FOR ED,  DTW, ODTW, LCSS, ERP,  AND OTWED DISTANCES 
 

 
1 PWM1 is a synthetic adhoc dataset built to beat DTW and ERP distances (see annexe 2 for details) 
2 PWM2 is a synthetic adhoc dataset built to beat ODTW and DTW distances (see annexe 2 for details) 
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Fig. 3: Comparison of distance pairs (δδδδx,δδδδy). The x and y axes show the error rates for the two 

compared distances. The straight line has a slope of 1.0 and dots correspond to the error rate 

for the selected distance pair and tested data sets. A dot below (resp. above) the straight line 

indicates that distance δδδδy has a lower (resp. higher) error rate than distance δδδδx. Plot (a) shows 

OTWED v.s. ED, plot (b) shows OTWED v.s. DTW, plot (c) shows OTWED v.s. ERP,  plot (d) 

shows OTWED v.s. ODTW, plot (e) shows OTWED v.s. LCSS.  
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      Dataset Nbr of classes | 

Size of testing 

set 

1-NN 

ED 

1-NN 

ODTW 

1-NN 

DTW  

1-NN 

LCSS 

1-NN 

ERP 

1-NN 

OTWED 

Synthetic Control 6|300 0.233 0.173 0.177 0.243 0.22 0.147 

Gun-Point  2|150 0.14 0.113 0.067 0.027 0.047 0.047 

CBF  3|900 0.24 0.027 0.017 0.03 0.028 0.034 

Face (all)  14|1690 0.482 0.273 0.292 0.336 0.346 0.26 

OSU Leaf  6|242 0.541 0.455 0.43 0.393 0.475 0.376 

Swedish Leaf  15|625 0.932 0.323 0.322 0.288 0.291 0.162 

50Words  50|455 0.327 0.303 0.369 0.251 0.323 0.2 

Trace  4|100 0.07 0 0 0 0.06 0.01 

Two Patterns  4|4000 0.593 0 0 0.104 0.013 0.008 

Wafer  2|6174 0.025 0.014 0.022 0.018 0.013 0.004 

Face (four)  4|88 0.432 0.239 0.216 0.295 0.261 0.136 

Lighting2  2|61 0.263 0.098 0.115 0.148 0.115 0.148 

Lighting7  7|73 0.521 0.315 0.342 0.427 0.26 0.301 

ECG 2|100 0.18 0.25 0.26 0.32 0.2 0.12 

Adiac 37|391 0.527 0.486 0.483 0.448 0.496 0.437 

Yoga 02|3000 0.204 0.166 0.171 0.188 0.189 0.153 

Fish 7|175 0.371 0.354 0.354 0.189 0.28 0.194 

Coffee 228 0.179 0.143 0.179 0.214 0.25 0.214 

OliveOil 4|30 0.567 0.167 0.167 0.333 0.333 0.133 

Beef 5|30 0.533 0.533 0.5 0.5 0.5 0.167 

PWM13 60|600 0.407 0.41 0.632 0.4 0.623 0.135 

PWM24 30|300 0.4 0.46 0.387 0.5 0.247 0.253 

MEAN   0.371 0.241 0.250 0.257 0.253 0.165 

STD   0.211 0.165 0.178 0.157 0.169 0.113 

 

TAB.2: COMPARATIVE STUDY USING THE UCR DATASETS [13]: CLASSIFICATION ERROR RATE 

OBTAINED USING THE FIRST NEAR NEIGHBOR CLASSIFICATION RULE 

 FOR ED,  DTW, ODTW, LCSS, ERP,  AND OTWED DISTANCES 

 

 
3 PWM1 is a synthetic adhoc dataset built to beat DTW and ERP distances (see annexe 2 for details) 
4 PWM2 is a synthetic adhoc dataset built to beat ODTW and DTW distances (see annexe 2 for details) 
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Fig. 4: Comparison of distance pairs (δδδδx,δδδδy) when times series have been down sampled . The 

x and y axes show the error rates for the two compared distances. The straight line has a slope 

of 1.0 and dots correspond to the error rate for the selected distance pair and tested data sets. 

A dot below (resp. above) the straight line indicates that distance δδδδy has a lower (resp. higher) 

error rate than distance δδδδx. Plot (a) shows OTWED v.s. ED, plot (b) shows OTWED v.s. DTW, 

plot (c) shows OTWED v.s. ERP,  plot (d) shows OTWED v.s. ODTW, plot (e) shows OTWED 

v.s. LCSS.  
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VII. CONCLUSION 

 

From a graphical curve editing perspective and from earlier work on symbolic edit distance and 

dynamic time warping we have developed an elastic similarity measure called TWED to match 

time series with some time shifting tolerance. We have proved that the TWED measure is a 

metric, and as such TWED can be used complementarily with methods developed for searching 

in metric spaces as potential solutions for time series searching and retrieval applications when 

time shift tolerance is concerned. The originality of TWED, comparatively to similar elastic 

measures, apart from the way insertions and deletions are managed,  lies in  the introduction of a 

parameter  which drives the ‘stiffness’ of the measure thus placing TWED in between the 

Euclidian distances (infinite stiffness) and the DTW similarity measure (null stiffness). Moreover 

TWED involved a second parameter which defines a constant penalty for insert or delete 

operations, similarly to the edit distance defined for string matching.  These two parameters can 

be straightforwardly optimized for each application or dataset as far as training data are available.  

Furthermore, a procedure has been sketched to lower bound the TWED metric. This procedure 

consists in approximating the time series using polygonal or piecewise constant approximations. 

It takes benefits from the triangle inequality to relate the TWED measure evaluated on the 

approximated representations of time series to the TWED measure evaluated on the original time 

series. The computational cost reduction of TWED when evaluated in the approximated 

representation space is quadratic with the compression rate of the approximation. Nevertheless, 

this kind of lower bound has no linear complexity. Experimentation to evaluate the effectiveness 

of this procedure is a perspective as well as the search for a lower bound whose complexity is 
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effectively linear and that could be efficiently used in conjunction with the proposed lower 

bounding procedure. 

The empirical quality of the distance has been evaluated on a classification experiment based 

on the first near neighbor classification rule for 22 different datasets. Globally, on this 

experiment, TWED performs in average significantly better than the Euclidian distance and 

Dynamic Time Warp measure and slightly better than the Longest Common Subsequence 

measure, the Edit Distance with Real Penalty and the Dynamic Time Warping measure with 

optimized search corridor size. When the classification experiment is applied on down sampled 

time series, TWED shows to be more robust than the other tested measures. This is mainly 

because the times series are not uniformly sampled in this experiment and in that case it is 

relevant coping with time stamps. 
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APPENDIX 1 

 

Let U be the set of finite discrete time series: { } { }Ω∪∈= +NpAU p /1 , where Ω is the empty 

time series (with null length). Let pA1 be a time series with discrete time index varying between 1 

and p. Let ia'  be the i
th

 sample of time series A. We will consider that TSa i ×∈'  where d
RS ⊂  

with 1≥d  embeds the multidimensional space variables and RT ⊂  embeds the time stamp 

variable, so that we can write ),('
iaii taa = where TtSa

iai ∈∈   and  , with the condition that 

ji aa tt > whenever i>j (time stamp are strictly increasing in the sequence of samples). 

 

 

Let define TWEDδ as: 
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where d is any distance on R
d+1

. In practice, we will choose 

),(.),()','( baLpLP ttdbadbad γ+= whereγ is a parameter which characterizes the 

stiffness of the elastic distance 
TWEDδ , and λ any positive constant element in R

d+1
. 

 

The recursion is initialized setting: 
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Proof of theorem 1: TWEDδ is a distance on the set U of finite discrete time series: 

P1: non-negativity 

For all ),( 11

qp BA in UU × let m=p+q. Non-negativity of 
0TWEDδ  is proved by induction on m. 

P1 is true for m=0 by definition of TWEDδ  and the induction hypothesis holds. 

Suppose P1 is true for all  { }1,..0 −∈ nm  for some n>0. Then for all ),( 11

qp BA in UU × such that 

nm = , as ),(),,( 1

1

1

11

1

1

−−− qp

TWED

qp

TWED BABA δδ and ),( 1

11

−qp

TWED BAδ are assumed positive and as 

the non-negativity of distance d holds, ),( 11

qp

TWED BAδ is necessary non-negative, showing that P1 

is true for all { }.,..0 nm∈  By induction, P1 holds for all .Nm ∈ � 

 

P2: identity of indiscernibles 

For all ),( 11

qp BA in UU × , if qp BA 11 =  then p=q and { } ii bapi '',,...,1 =∈∀ . It is easy to show by 

induction on p that  0)','(),(),(0
1

1111 =≤=≤ ∑
=

p

i

ii

pp

TWED

qp

TWED badBABA δδ  leading to 

.0),( 11 =qp

TWED BAδ  

Now consider the backward proposition  P’2: qpqp

TWED BABA 1111 0),( =⇒=δ . P’2 is proved by 

induction on m=p+q.  



PF Marteau, September 2006 "Time Warp Edit Distances with Stiffness Adjustment for Time Series Matching" 

 

38 

 

Suppose P2 is true for all  { }1,..0 −∈ nm  for some n>0. Then for all ),( 11

qp BA in UU × such that 

nm =  and 0),( 11 =qp

TWED BAδ  we have necessarily 

)','(),(),( 1

1

1

111 qp
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TWED

qp

TWED badBABA += −−δδ . 

We verify that the cases where λδδ ++= −
− )','(),(),( 1

1

1111 qq
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TWED bbdBABA  or 

λδδ ++= −
− )','(),(),( 11

1

111 pp
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TWED aadBABA  are impossible since )','( 1−qq bbd and 

)','( 1−pp aad are strictly positive (the reason being that time stamps are strictly increasing). Thus,  

0),(
1

1

1

1 =−− qp

TWED BAδ  and 0)','( =qp bad  leading to 1

1

1

1

−− = qp BA  and qp ba '' = . Finally p=q and 

necessarily qp BA 11 = �. 

 

P3: Symmetry 

Proof: Since the distance d on the sample space TS ×  is symmetric, it is easy to show that 

),( 11

qp

TWED BAδ  is symmetric for all ),( 11

qp BA in UU ×  by induction on m=p+q. � 
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(P4): Triangle inequality 
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For all ),,( 111

rqp CBA in ,UUU ××  ).,(),(),( 111111
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TWED CBBACA δδδ +≤  

Proof: We will proved P4 by induction on m=p+q+r. 

 

P4 is true for m=0 since ),(),(0),( ΩΩ+ΩΩ≤=ΩΩ TWEDTWEDTWED δδδ  and the induction 

hypothesis holds. 

 

(H4): Suppose P4 is true for all { }1,..0 −∈ nm  for some n>0. Let 
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8
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 Case: if     
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1

1
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δδ
, then: 
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 twice.applies )4(),(),(),(    
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9
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 Case: if     
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−
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So property P4 holds for all m in { }n,..0 . By induction P4 holds for all m in N and so P4 holds 

for all ),,( 111

rqp CBA in UUU ×× .� 
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APPENDIX 2 

THE PWM DATASETS 

1. Motivation 

The artificial ‘Pulse Width Modulation’ (PWM) datasets have been defined to demonstrate a 

weakness in dynamic time warping (DTW) pseudo distance.  

Basically, DTW does not penalize the matching of similar events having different time durations. 

For instance, the DTW similarity between any two time series chosen among the set given in 

Figure 3 below is the constant 0. 

 

S1=0101010 

S2=0101100111000 

S3=0111000110010 

S4=0101110001100 

Matching between S1 and S3 

 

S1=  0 1 0 1 0 1 0 

 

S3= 0 1 1 1 0 0 0 1 1 0 0 1 0 

Fig. 1: Matching example between S1 and S3 time series 

2. PWM Datasets 

To demonstrate that this could affect recognition or classification of time series, the PWM 

datasets (PWM1 and PWM2) are defined having in mind a classification experiment with the 

same kind of conditions as those defined by E. Keogh & al. at UCR [13].  
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2.1 PWM1 dataset 

The PWM1 dataset consists of artificial time series belonging to three categories. The considered 

task consists in classifying an input time series as one of three possible classes, ‘123’ (a), ‘321’ 

(b) or ‘132’ (c). These classes are built as a sequence of three pulses having the same height but 

different widths: pulse ‘1’ has the shortest width, while pulse ‘3’ has the larger one and pulse ‘2’ 

is in between.  

To make it a little bit tougher, following Cylinder Bell Funnel artificial time series definition 

[26], random noise at four levels is added: 

- a centered Gaussian noise with a standard deviation equal to 10% of the amplitude of 

each pulse is added, 

- The onset time for each spike is selected uniformly inside a finite interval, 

- The width of each spike is selected uniformly inside a finite interval that depends on its 

category (‘1’, ‘2’ or ‘3’). 

- Time delays between two successive spikes are chosen uniformly inside a finite interval. 

 

2.1.1 Time series definitions 

Time series are generated according to their class as follows:  

Class 123: 

)()()()()( ]3,[],[],[ 32211
ttttta wswsws χχχε +++=  
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Class 321: 

)()()()()(
],[],[],[

1
'

32
'
231

ttttta
wswsws χχχε +++=  

Class 132: 

)()()()()(
],[]3,[],[

2
''

32
11

ttttta
wswsws χχχε +++=  

 

where: )(tε  is drawn from a standard normal distribution N(0,1/10),  

 

w1 is an integer drawn uniformly from [4, 8],  

w2 is an integer drawn uniformly from [10, 16],  

w3 is an integer drawn uniformly from [20, 28], 

s1, s’1, s’’1 are integers drawn uniformly from [2, 18], 

s2 is an integer drawn uniformly from [s1 + w1, s1+ s’1+w1],  

s3 is an integer drawn uniformly from [s2 +w2, s2+ s’’1 +w2],  

s’2 is an integer drawn uniformly from [s1+w3, s1+ s’1 +w3],  

s’3 is an integer drawn uniformly from [s’2+ s’’1 +w2, s’2+ s’’1 +w2],  

s’’3 is an integer drawn uniformly from [s2+w3, s2+ s’’1 + w3],  
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0 20 40 60 80 100
−0.5

0

0.5

1

1.5
(a) class 123

0 20 40 60 80 100
−0.5

0

0.5

1

1.5
(b) class 321

0 20 40 60 80 100
−0.5

0

0.5

1

1.5
(c) class 132

 

Figure 2: utterances for classes (a) 123 red, (b) 321 blue, (c) 132 black for the PWM1 dataset 

 

 

2.2 The PWM2 dataset 

The PWM2 dataset consists of artificial time series belonging to three categories. The considered 

task consists in classifying an input time series as one of three possible classes, ‘123’ (a), ‘321’ 

(b) or ‘132’ (c). These classes are built as a sequence of three subsequences of three pulses 
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having the same height but different widths: subsequence ‘1’ is composed of the shortest width 

pulses, while subsequence ‘3’ is composed of the largest width pulses and subsequence ‘2’ is 

composed of in between width pulses.  

To make it a little bit tougher, following Cylinder Bell Funnel artificial time series definition 

[26], random noise at four levels is added: 

- a centered Gaussian noise with a standard deviation equal to 10% of the amplitude of 

each pulse is added, 

- The onset time for each pulse is selected uniformly inside a finite interval, 

- The width of each pulse is selected uniformly inside a finite interval that depends on its 

category (‘1’, ‘2’ or ‘3’). 

- Time delays between two successive pulses are chosen uniformly inside finite intervals 

that depend on the subsequence class. 

 

2.1.1 Time series definitions 

Time series are generated according to their class. Each time series contains three subsequences. 

Each subsequence has a fixed length of 25 samples.   A subsequence is defined using three 

parameters: the starting time stamps t0, the pulse width w and the pulse amplitude A. The 

subsequence )(],,[ 0
tsq Awt is defined as follows: 
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00],[],[],[

0

],,[ 2100

tt

tttA

tt

tsq wtwtwtAwt χχχ  

 where: 

t1 is an integer drawn uniformly from [t0+w+1, t0+w+25-3.w-1] 

t2 is an integer drawn uniformly from [t1+w+1, t1+w+25-2.w] 

and








>

≤≤

<

=

β

βα

α

χ βα

t

t

t

t

0

1

0

)(],[  

Finally the three classes are defined as follows: 

Class 123: 

]2,,50[]2,,25[]2,,[ 302010
)(1)( wtwtwt sqsqsqtta ++ ++++−= ε  

Class 321: 

]2,,50[]2,,25[]2,,[ 102030
)(1)( wtwtwt sqsqsqtta ++ ++++−= ε  

Class 132: 

]2,,50[]2,,25[]2,,[ 203010
)(1)( wtwtwt sqsqsqtta ++ ++++−= ε  

 

where: )(tε  is drawn from a standard normal distribution N(0,1/10),  
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t0 is an integer drawn uniformly from [2, 32], 

w1 is an integer drawn uniformly from [2, 3],  

w2 is an integer drawn uniformly from [4, 5], 

w3 is an integer drawn uniformly from [6, 7] 

0 20 40 60 80 100 120 140
−2

−1

0

1

2
(a) class 123

0 20 40 60 80 100 120 140
−2

−1

0

1

2
(b) class 321

0 20 40 60 80 100 120 140
−2

−1

0

1

2
(c) class 132

 

 

 

Figure 3: utterances for classes (a) 123 red, (b) 321 blue, (c) 132 black for the PWM2 dataset 
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3. The files 

The 3 classes are equi-likely inside the training and testing datasets for PWM1 and PWM2: 

TEST_PWM1 contains 600 time series, 200 per classes 

TRAIN_PWM1 contains 60 time series, 20 per classes. 

TEST_PWM2 contains 300 time series, 100 per classes 

TRAIN_PWM2 contains 30 time series, 10 per classes. 

 

File Format 

TEST_PWM1, TEST_PWM2, TRAIN_PWM1 and TRAIN_PWM2 are ASCII files in which 

each line begins with a label (a number) that characterizes the class (1 for class 123, 2 for class 

321 and 3 for class 132; the time series (1D data) samples are then coded in the rest of the line as 

a sequence of floating point number in ASCII format. 

 

PWM1 and PWM2 datasets can be downloaded at the following URL: 

http://www-valoria.univ-ubs.fr/Pierre-Francois.Marteau/PWM 

 
 

 


