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Abstract

This short note presents the derivation of a new a priori estimate for the Oldroyd-
B model. Such an estimate may provide useful information when investigating the
long-time behaviour of macro-macro models, and the stability of numerical schemes.
We show how this estimate can be used as a guideline to derive new estimates for
other macroscopic models, like the FENE-P model.

1 Introduction

We consider the Oldroyd-B model:

Re

(

∂u

∂t
+ u.∇u

)

= (1 − ε)∆u −∇p+ div τ , (1)

div (u) = 0, (2)

∂τ

∂t
+ u.∇τ = ∇uτ + τ (∇u)T − 1

We
τ +

ε

We

(

∇u + (∇u)T
)

, (3)

where the Reynolds number Re > 0, the Weissenberg number We > 0 and ε ∈ (0, 1)
are some non-dimensional numbers. We suppose that the space variable x lives in
a bounded domain D of IRd. This system is supplied with initial conditions on the
velocity u and on the stress tensor τ . For simplicity, we assume no-slip boundary
conditions on the velocity u:

u = 0 on ∂D. (4)

We suppose that the initial data and the geometry are such that there exists a unique
regular solution to (1)–(3) and our aim is to derive some a priori estimates on this
solution.

Let us introduce the so-called conformation tensor A = We
ε τ + Id. The partial

differential equation (PDE) on τ translates into the following PDE on A:

∂A

∂t
+ u.∇A = ∇uA + A(∇u)T − 1

We
A +

1

We
Id. (5)

One can check that if

A(t = 0) =
We

ε
τ (t = 0) + Id is a positive definite symmetric matrix, (6)

then this property is propagated forward in time by (5) (and, in particular, τ is
symmetric). Assuming uniqueness of solution, this can be proven for example by

1



using the probabilistic interpretation of A as a covariance matrix, as explained in
Section 3. We will assume throughout this note that (6) is satisfied. Concerning the
importance of positive-definiteness of A, we refer for example to [7, Section 9.8.10]
and also to the recent work [3, 4].

In Section 2, we recall how the classical a priori estimate for the Oldroyd-B model
is derived. Next we show how it can be used to derive some bounds on the stress
tensor, provided the initial condition satisfies detA(t = 0) > 1. In Section 3, we
establish a new estimate, which comes from an entropy estimate on the micro-macro
model associated with the Oldroyd-B model (see [5]). This estimate provides bounds
on (u, τ ) without any assumption on τ (t = 0) (apart from (6)). This new estimate
could be useful to study the longtime behaviour of some macro-macro models, or to
analyze the stability of some numerical schemes. Current research is directed towards
clarifying this.

2 The classical estimate

Let us first introduce the kinetic energy:

E(t) =
1

2

∫

D

|u|2. (7)

We easily obtain from (1)–(2):

Re
dE

dt
= −(1 − ε)

∫

D

|∇u|2 −
∫

D

τ : ∇u, (8)

where for two matrices A and B, we denote A : B = Ai,jBi,j = tr (ATB). On the
other hand, taking the trace of the PDE (3) on τ and integrating over D, we get:

d

dt

∫

D

tr τ = 2

∫

D

∇u : τ − 1

We

∫

D

tr τ .

We thus obtain the following estimate:

d

dt

(

Re

2

∫

D

|u|2 +
1

2

∫

D

tr τ

)

+(1 − ε)

∫

D

|∇u|2 +
1

2We

∫

D

tr τ = 0.
(9)

Remark 1 In terms of A, the energy estimate (9) writes:

d

dt

(

Re

2

∫

D

|u|2 +
ε

2We

∫

D

trA

)

+(1 − ε)

∫

D

|∇u|2 +
ε

2We2

∫

D

tr (A − Id) = 0.
(10)

In Lemma 1 below, we prove that tr τ is positive if detA(t = 0) > 1. This result
combined with the estimate (9) thus yields some a priori bounds on (u, τ) provided
det(A)(t = 0) > 1. In particular, it shows that u and τ go exponentially fast to 0 in
the long time limit, using (9) and the Poincaré inequality:

∫

D
|u|2 ≤ C

∫

D
|∇u|2.

Lemma 1 Let us assume that det A(t = 0) > 1. Then, we have ∀t ≥ 0, det A(t) > 1
and this implies that tr τ (t) > 0.

Proof: Using (5) and the Jacobi identity (which states that for any invertible matrix
M depending smoothly on a parameter t, d

dt ln detM = tr
(

M−1 dM
dt

)

), we have:

∂ ln(detA)

∂t
+ u.∇ ln(detA) =

1

We
tr
(

A
−1 − Id

)

. (11)
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Since for any symmetric positive matrix M of size d× d,

(detM)1/d ≤ (1/d)trM, (12)

we obtain
∂ ln(detA)

∂t
+ u.∇ ln(detA) ≥ d

We

(

(det A)−1/d − 1
)

,

which we can rewrite in terms of y = (det A)1/d:

We

(

∂y

∂t
+ u.∇y

)

≥ (1 − y) . (13)

This shows that y > 1 if y(t = 0) > 1, and thus that detA > 1 if det A(t = 0) > 1.
Indeed, using the characteristic method (by integrating the vector field u(t,x)),

one can rewrite (13) as

We
Dy

Dt
≥ (1 − y) .

Now, if y does not remain greater than 1, consider the first time t0 such that y(t0) = 1.
We have on the one hand Dy

Dt (t0) < 0 and, on the other hand (1 − y(t0)) = 0. We
reach a contradiction.

We thus have detA > 1 and therefore, using again (12), tr A > d. Since τ =
ε

We(A − Id), this is equivalent to tr τ > 0. ♦

Remark 2 If detA(t = 0) < 1 (which is the case if tr τ (t = 0) < 0), Equation (13)
shows that detA grows along the characteristics as long as detA < 1.

3 Entropy estimate

We now consider a micro-macro (or multiscale) formulation of the Oldroyd-B model
and some estimates based on entropy, inspired from [5].

3.1 General derivation of the entropy estimate for micro-macro

models

We consider the following system:






















































Re

(

∂u

∂t
(t,x) + u(t,x).∇u(t,x)

)

= (1 − ε)∆u(t,x) −∇p(t,x) + div τ (t,x),

div (u(t,x)) = 0,

τ (t,x) =
ε

We

(
∫

IRd

(X ⊗∇Π(X))ψ(t,x,X) dX − Id

)

,

∂ψ

∂t
(t,x,X) + u(t,x).∇xψ(t,x,X)

= −div X

((

∇xu(t,x)X − 1

2We
∇Π(X)

)

ψ(t,x,X)

)

+
1

2We
∆Xψ(t,x,X).

(14)
This system is supplied with initial conditions on the velocity u and on the distribu-
tion ψ. We recall that we suppose no-slip boundary conditions (4) on the velocity u.
This system corresponds to a micro-macro model of polymeric fluids, the polymer
being modelled by two beads linked by a spring with potential energy Π. The con-
figurational variable X ∈ IRd models the end-to-end vector of the polymer. For more
details on the modelling, we refer to [1, 8].

Notice that we could rewrite the former system as a system coupling a PDE and
a stochastic differential equation (SDE), replacing the last two equations by:

τ (t,x) =
ε

We

(

IE (Xt(x) ⊗∇Π(Xt(x))) − Id
)

, (15)

dXt(x) + u(t,x).∇xXt(x) dt

=

(

∇xu(t,x)Xt(x) − 1

2We
∇Π(Xt(x))

)

dt+
1√
We

dW t. (16)
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There, IE denotes the expectation, W t denotes a d-dimensional standard Brownian
motion independent from the initial condition (X0(x))x∈D which is such that, ∀x ∈ D,
the law of X0(x) is ψ(0,x,X) dX.

Let us introduce the kinetic energy:

E(t) =
1

2

∫

D

|u|2. (17)

We easily obtain:

Re
dE

dt
= −(1 − ε)

∫

D

|∇u|2 − ε

We

∫

D

∫

IRd

(X ⊗∇Π(X)) : ∇uψ. (18)

We now introduce the entropy of the system, namely:

H(t) =

∫

D

∫

IRd

ψ(t,x,X) ln

(

ψ(t,x,X)

ψ∞(X)

)

, (19)

=

∫

D

∫

IRd

Π(X)ψ(t,x,X) +

∫

D

∫

IRd

ψ(t,x,X) ln(ψ(t,x,X)) + C,

with

ψ∞(X) =
exp(−Π(X))

∫

IRd exp(−Π(X))
, (20)

and C = ln(
∫

IRd exp(−Π(X)))|D|. The function H is actually the relative entropy of
ψ with respect to the equilibrium distribution ψ∞.

After some computations (see [5]), we obtain:

dH

dt
= − 1

2We

∫

D

∫

IRd

ψ

∣

∣

∣

∣

∇ ln

(

ψ

ψ∞

)∣

∣

∣

∣

2

+

∫

D

∫

IRd

(X ⊗∇Π(X)) : ∇uψ. (21)

Therefore, introducing the free energy F (t) = E(t) + ε

WeH(t) of the system, we
have:

d

dt

(

Re

2

∫

D

|u|2 +
ε

We

∫

D

∫

IRd

ψ ln

(

ψ

ψ∞

))

+(1 − ε)

∫

D

|∇u|2 +
ε

2We2

∫

D

∫

IRd

ψ

∣

∣

∣

∣

∇ ln

(

ψ

ψ∞

)
∣

∣

∣

∣

2

= 0.

(22)

Using a logarithmic Sobolev inequality with respect to ψ∞ and a Poincaré in-
equality for u ∈ H1

0 (D), one can then obtain exponential convergence to equilibrium
limt→∞(u, ψ) = (0, ψ∞) (see [5]). For some generalizations to the case u 6= 0 on ∂D,
we refer to [5].

3.2 The Oldroyd-B case

Let us consider the Hookean dumbbell model, for which the potential Π of the entropic
force is:

Π(X) =
||X||2

2
. (23)

By Itô’s calculus, it is easy to derive from (16) that A = IE(Xt⊗Xt) satisfies the
following PDE:

∂A

∂t
+ u.∇A = ∇uA + A(∇u)T − 1

We
A +

1

We
Id. (24)

This translates into the following PDE for τ = ε

We(A − Id):

∂τ

∂t
+ u.∇τ = ∇uτ + τ (∇u)T − 1

We
τ +

ε

We

(

∇u + (∇u)T
)

. (25)
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The Hookean dumbbell model is thus equivalent to the Oldroyd-B model (at least for
regular enough solutions).

If ψ(0,x, .) is Gaussian (with zero mean), so is ψ(t,x, .):

ψ(t,x,X) =
1

(2π)d/2
√

det(A)
exp

(

−X
T
A

−1
X

2

)

where A = IE(Xt ⊗ Xt) =
∫

IRd X ⊗ X ψ(t,x,X) dX denotes as above the covari-
ance matrix of Xt, which depends on time and also on the space variable x. The
covariance matrix A is symmetric and nonnegative. Moreover, since for almost all

t ≥ 0,
∫

D

∫

IRd ψ(t,x,X) ln
(

ψ(t,x,X)
ψ∞(X)

)

< ∞, then for almost all t ≥ 0 and for almost

all x ∈ D, A is positive.
The following explicit expression of the relative entropy can then be derived:

∫

D

∫

IRd

ψ(t,x,X) ln

(

ψ(t,x,X)

ψ∞(X)

)

dX =

∫

D

1

2
(− ln(det A) − d+ trA) .

On the other hand,

∫

D

∫

IRd

ψ(t,x,X)

∣

∣

∣

∣

∇X ln

(

ψ(t,x,X)

ψ∞(X)

)∣

∣

∣

∣

2

dX =

∫

D

tr ((Id − A
−1)2A).

Rewriting (22), we thus obtain the following estimate, in terms of A:

d

dt

(

Re

2

∫

D

|u|2 +
ε

2We

∫

D

(− ln(detA) − d+ trA)

)

+(1 − ε)

∫

D

|∇u|2 +
ε

2We2

∫

D

tr ((Id − A
−1)2A) = 0.

(26)

This is, in the specific case of Hookean dumbbells (that is Oldroyd-B model) the
macroscopic version of (22).

Since − ln(det(A)) − d + tr (A) ≥ 0, this energy estimate yields some a priori
bounds on (u,A), and thus on (u, τ ). In sharp contrast to the classical estimate (9),
it provides bounds on (u, τ ) without any assumption on τ (t = 0) (apart from (6)).
Using a Poincaré inequality and the fact1 that, for any symmetric positive matrix M
of size d× d,

− ln(detM) − d+ trM ≤ tr ((Id −M−1)2M)

exponential convergence to equilibrium (limt→∞(u,A) = (0, Id)) can be obtained
from (26).

Remark 3 Notice that (26) can be schematically obtained as (10)− ε

2We

∫

D

(11).

Remark 4 If ψ(0,x, .) is not Gaussian, it is always possible to replace it by a Gaus-
sian initial condition with the same mean and variance, so that the macroscopic quan-
tities (u, p,A) would be the same for the two initial conditions.

3.3 Application to related macroscopic models

The energy estimate (26) can be used as a guideline to derive energy estimates for
other macroscopic models, even though they cannot be recast as a microscopic model
of the form (14).

1which can be seen as the logarithmic Sobolev inequality for Gaussian random variables translated on
their covariance matrices
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Let us consider the example of the FENE-P model [9, 2], for which

τ =
ε

We

(

A

1 − tr (A)/b
− Id

)

, (27)

∂A

∂t
+ u.∇A = ∇uA + A(∇u)T − 1

We

A

1 − tr (A)/b
+

1

We
Id. (28)

For this model, we assume (6), and also that tr (A)(t = 0) < b, and this property is
propagated forward in time by (28) (see [6]).

Using the same ideas as for the Oldroyd-B model, we consider the “entropy”H(t) =
− ln(detA) − b ln (1 − tr (A)/b), and we compute its time-derivative:

d

dt

∫

D

−b ln (1 − tr (A)/b) = 2

∫

D

∇u : A

1 − tr (A)/b
+

1

We

∫

D

(

− tr (A)

(1 − tr (A)/b)2
+

d

1 − tr (A)/b

)

,

(29)

d

dt

∫

D

ln(det(A)) =
1

We

∫

D

(

− d

1 − tr (A)/b
+ tr (A−1)

)

. (30)

Combining these expressions with (8), we obtain

d

dt

(

Re

2

∫

D

|u|2 +
ε

2We

∫

D

(− ln(detA) − b ln (1 − tr (A)/b))

)

+(1 − ε)

∫

D

|∇u|2 +
ε

2We2

∫

D

(

tr (A)

(1 − tr (A)/b)2
− 2d

1 − tr (A)/b
+ tr (A−1)

)

= 0.

(31)
One can check that for any symmetric positive matrix M of size d× d:

− ln(det(M)) − b ln (1 − tr (M)/b) ≥ −(b+ d) ln

(

b

b+ d

)

≥ d (32)

and that

− ln(det(M)) − b ln (1 − tr (M)/b) + (b + d) ln

(

b

b+ d

)

(33)

≤
(

tr (M)

(1 − tr (M)/b)2
− 2d

1 − tr (M)/b
+ tr (M−1)

)

. (34)

The proof of these inequalities is tedious and can be done by diagonalizing the ma-
trix M .

Equation (32) shows that

Re

2

∫

D

|u|2 +
ε

2We

∫

D

(

− ln(det A) − b ln (1 − tr (A)/b) + (b+ d) ln

(

b

b+ d

))

is a non-negative quantity, and thus that (31) indeed yields some a priori bounds
on (u,A).

Equation (34) (which plays the role of the log-Sobolev inequality in the micro-
macro models) shows that the estimate (31) can be used to prove exponential conver-
gence to equilibrium.
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