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New entropy estimates for the Oldroyd-B model, and related models

This short note presents the derivation of a new a priori estimate for the Oldroyd-B model. Such an estimate may provide useful information when investigating the long-time behaviour of macro-macro models, and the stability of numerical schemes. We show how this estimate can be used as a guideline to derive new estimates for other macroscopic models, like the FENE-P model.

Introduction

We consider the Oldroyd-B model:

Re ∂u ∂t + u.∇u = (1 -ε)∆u -∇p + div τ , (1) 
div (u) = 0, (2) ∂τ ∂t + u.∇τ = ∇uτ + τ (∇u

) T - 1 We τ + ε We ∇u + (∇u) T , (3) 
where the Reynolds number Re > 0, the Weissenberg number We > 0 and ε ∈ (0, 1) are some non-dimensional numbers. We suppose that the space variable x lives in a bounded domain D of IR d . This system is supplied with initial conditions on the velocity u and on the stress tensor τ . For simplicity, we assume no-slip boundary conditions on the velocity u: u = 0 on ∂D.

We suppose that the initial data and the geometry are such that there exists a unique regular solution to (1)-( 3) and our aim is to derive some a priori estimates on this solution.

Let us introduce the so-called conformation tensor A = We ε τ + Id. The partial differential equation (PDE) on τ translates into the following PDE on A:

∂A ∂t + u.∇A = ∇uA + A(∇u) T - 1 We A + 1 We Id. ( 5 
)
One can check that if

A(t = 0) = We ε τ (t = 0) + Id is a positive definite symmetric matrix, (6) 
then this property is propagated forward in time by [START_REF] Jourdain | Long-time asymptotics of a multiscale model for polymeric fluid flows[END_REF] (and, in particular, τ is symmetric). Assuming uniqueness of solution, this can be proven for example by using the probabilistic interpretation of A as a covariance matrix, as explained in Section 3. We will assume throughout this note that ( 6) is satisfied. Concerning the importance of positive-definiteness of A, we refer for example to [START_REF] Keunings | Fundamentals of Computer Modeling for Polymer Processing, chapter Simulation of viscoelastic fluid flow[END_REF]Section 9.8.10] and also to the recent work [START_REF] Fattal | Constitutive laws for the matrix-logarithm of the conformation tensor[END_REF][START_REF] Fattal | Time-dependent simulation of viscoelastic flows at high Weissenberg number using the log-conformation representation[END_REF].

In Section 2, we recall how the classical a priori estimate for the Oldroyd-B model is derived. Next we show how it can be used to derive some bounds on the stress tensor, provided the initial condition satisfies det A(t = 0) > 1. In Section 3, we establish a new estimate, which comes from an entropy estimate on the micro-macro model associated with the Oldroyd-B model (see [START_REF] Jourdain | Long-time asymptotics of a multiscale model for polymeric fluid flows[END_REF]). This estimate provides bounds on (u, τ ) without any assumption on τ (t = 0) (apart from [START_REF] Jourdain | Convergence of a stochastic particle approximation of the stress tensor for the FENE-P model[END_REF]). This new estimate could be useful to study the longtime behaviour of some macro-macro models, or to analyze the stability of some numerical schemes. Current research is directed towards clarifying this.

The classical estimate

Let us first introduce the kinetic energy:

E(t) = 1 2 D |u| 2 . ( 7 
)
We easily obtain from (1)-( 2):

Re

dE dt = -(1 -ε) D |∇u| 2 - D τ : ∇u, (8) 
where for two matrices A and B, we denote A : B = A i,j B i,j = tr (A T B). On the other hand, taking the trace of the PDE (3) on τ and integrating over D, we get:

d dt D tr τ = 2 D ∇u : τ - 1 We D tr τ .
We thus obtain the following estimate:

d dt Re 2 D |u| 2 + 1 2 D tr τ +(1 -ε) D |∇u| 2 + 1 2We D tr τ = 0. ( 9 
)
Remark 1 In terms of A, the energy estimate (9) writes:

d dt Re 2 D |u| 2 + ε 2We D tr A +(1 -ε) D |∇u| 2 + ε 2We 2 D tr (A -Id) = 0. (10)
In Lemma 1 below, we prove that tr τ is positive if det A(t = 0) > 1. This result combined with the estimate (9) thus yields some a priori bounds on (u, τ ) provided det(A)(t = 0) > 1. In particular, it shows that u and τ go exponentially fast to 0 in the long time limit, using [START_REF] Peterlin | Hydrodynamics of macromolecules in a velocity field with longitudinal gradient[END_REF] and the Poincaré inequality:

D |u| 2 ≤ C D |∇u| 2 .
Lemma 1 Let us assume that det A(t = 0) > 1. Then, we have ∀t ≥ 0, det A(t) > 1 and this implies that tr τ (t) > 0.

Proof: Using (5) and the Jacobi identity (which states that for any invertible matrix M depending smoothly on a parameter t, d dt ln det M = tr M -1 dM dt ), we have:

∂ ln(det A) ∂t + u.∇ ln(det A) = 1 We tr A -1 -Id . (11) 
Since for any symmetric positive matrix M of size d × d,

(det M ) 1/d ≤ (1/d)tr M, (12) 
we obtain

∂ ln(det A) ∂t + u.∇ ln(det A) ≥ d We (det A) -1/d -1 , which we can rewrite in terms of y = (det A) 1/d : We ∂y ∂t + u.∇y ≥ (1 -y) . (13) 
This shows that y > 1 if y(t = 0) > 1, and thus that det

A > 1 if det A(t = 0) > 1.
Indeed, using the characteristic method (by integrating the vector field u(t, x)), one can rewrite (13) as

We Dy Dt ≥ (1 -y) .
Now, if y does not remain greater than 1, consider the first time t 0 such that y(t 0 ) = 1.

We have on the one hand Dy Dt (t 0 ) < 0 and, on the other hand (1 -y(t 0 )) = 0. We reach a contradiction.

We thus have det A > 1 and therefore, using again (12), tr

A > d. Since τ = ε We (A -Id), this is equivalent to tr τ > 0. ♦ Remark 2 If det A(t = 0) < 1 (which is the case if tr τ (t = 0) < 0), Equation (13)
shows that det A grows along the characteristics as long as det A < 1.

Entropy estimate

We now consider a micro-macro (or multiscale) formulation of the Oldroyd-B model and some estimates based on entropy, inspired from [START_REF] Jourdain | Long-time asymptotics of a multiscale model for polymeric fluid flows[END_REF].

General derivation of the entropy estimate for micro-macro models

We consider the following system:

                           Re ∂u ∂t (t, x) + u(t, x).∇u(t, x) = (1 -ε)∆u(t, x) -∇p(t, x) + div τ (t, x), div (u(t, x)) = 0, τ (t, x) = ε We I R d (X ⊗ ∇Π(X))ψ(t, x, X) dX -Id , ∂ψ ∂t (t, x, X) + u(t, x).∇ x ψ(t, x, X) = -div X ∇ x u(t, x)X - 1 2We ∇Π(X) ψ(t, x, X) + 1 2We ∆ X ψ(t, x, X).
(14) This system is supplied with initial conditions on the velocity u and on the distribution ψ. We recall that we suppose no-slip boundary conditions (4) on the velocity u. This system corresponds to a micro-macro model of polymeric fluids, the polymer being modelled by two beads linked by a spring with potential energy Π. The configurational variable X ∈ IR d models the end-to-end vector of the polymer. For more details on the modelling, we refer to [START_REF] Bird | Dynamics of polymeric liquids[END_REF][START_REF] Öttinger | Stochastic Processes in Polymeric Fluids[END_REF].

Notice that we could rewrite the former system as a system coupling a PDE and a stochastic differential equation (SDE), replacing the last two equations by:

τ (t, x) = ε We IE (X t (x) ⊗ ∇Π(X t (x))) -Id , ( 15 
)
dX t (x) + u(t, x).∇ x X t (x) dt = ∇ x u(t, x)X t (x) - 1 2We ∇Π(X t (x)) dt + 1 √ We dW t . (16) 
There, IE denotes the expectation, W t denotes a d-dimensional standard Brownian motion independent from the initial condition (X 0 (x)) x∈D which is such that, ∀x ∈ D, the law of X 0 (x) is ψ(0, x, X) dX.

Let us introduce the kinetic energy:

E(t) = 1 2 D |u| 2 . ( 17 
)
We easily obtain:

Re dE dt = -(1 -ε) D |∇u| 2 - ε We D I R d (X ⊗ ∇Π(X)) : ∇u ψ. ( 18 
)
We now introduce the entropy of the system, namely:

H(t) = D I R d ψ(t, x, X) ln ψ(t, x, X) ψ ∞ (X) , (19) 
= D I R d Π(X)ψ(t, x, X) + D I R d ψ(t, x, X) ln(ψ(t, x, X)) + C, with ψ ∞ (X) = exp(-Π(X)) I R d exp(-Π(X)) , (20) 
and C = ln( I R d exp(-Π(X)))|D|. The function H is actually the relative entropy of ψ with respect to the equilibrium distribution ψ ∞ . After some computations (see [START_REF] Jourdain | Long-time asymptotics of a multiscale model for polymeric fluid flows[END_REF]), we obtain:

dH dt = - 1 2We D I R d ψ ∇ ln ψ ψ ∞ 2 + D I R d (X ⊗ ∇Π(X)) : ∇u ψ. (21) 
Therefore, introducing the free energy

F (t) = E(t) + ε
We H(t) of the system, we have:

d dt Re 2 D |u| 2 + ε We D I R d ψ ln ψ ψ ∞ +(1 -ε) D |∇u| 2 + ε 2We 2 D I R d ψ ∇ ln ψ ψ ∞ 2 = 0. ( 22 
)
Using a logarithmic Sobolev inequality with respect to ψ ∞ and a Poincaré inequality for u ∈ H 1 0 (D), one can then obtain exponential convergence to equilibrium lim t→∞ (u, ψ) = (0, ψ ∞ ) (see [START_REF] Jourdain | Long-time asymptotics of a multiscale model for polymeric fluid flows[END_REF]). For some generalizations to the case u = 0 on ∂D, we refer to [START_REF] Jourdain | Long-time asymptotics of a multiscale model for polymeric fluid flows[END_REF].

The Oldroyd-B case

Let us consider the Hookean dumbbell model, for which the potential Π of the entropic force is:

Π(X) = ||X|| 2 2 . ( 23 
)
By Itô's calculus, it is easy to derive from (16) that A = IE(X t ⊗ X t ) satisfies the following PDE:

∂A ∂t + u.∇A = ∇uA + A(∇u) T - 1 We A + 1 We Id. ( 24 
)
This translates into the following PDE for τ = ε We (A -Id):

∂τ ∂t + u.∇τ = ∇uτ + τ (∇u) T - 1 We τ + ε We ∇u + (∇u) T . (25) 
The Hookean dumbbell model is thus equivalent to the Oldroyd-B model (at least for regular enough solutions). If ψ(0, x, .) is Gaussian (with zero mean), so is ψ(t, x, .):

ψ(t, x, X) = 1 (2π) d/2 det(A) exp - X T A -1 X 2 where A = IE(X t ⊗ X t ) = I R d X ⊗ X ψ(t,
x, X) dX denotes as above the covariance matrix of X t , which depends on time and also on the space variable x. The covariance matrix A is symmetric and nonnegative. Moreover, since for almost all t ≥ 0, D I R d ψ(t, x, X) ln ψ(t,x,X) ψ∞(X)

< ∞, then for almost all t ≥ 0 and for almost all x ∈ D, A is positive.

The following explicit expression of the relative entropy can then be derived:

D I R d ψ(t, x, X) ln ψ(t, x, X) ψ ∞ (X) dX = D 1 2 (-ln(det A) -d + tr A) .
On the other hand,

D I R d ψ(t, x, X) ∇ X ln ψ(t, x, X) ψ ∞ (X) 2 dX = D tr ((Id -A -1 ) 2 A).
Rewriting (22), we thus obtain the following estimate, in terms of A:

d dt Re 2 D |u| 2 + ε 2We D (-ln(det A) -d + tr A) +(1 -ε) D |∇u| 2 + ε 2We 2 D tr ((Id -A -1 ) 2 A) = 0.
(26) This is, in the specific case of Hookean dumbbells (that is Oldroyd-B model) the macroscopic version of (22).

Since -ln(det(A)) -d + tr (A) ≥ 0, this energy estimate yields some a priori bounds on (u, A), and thus on (u, τ ). In sharp contrast to the classical estimate [START_REF] Peterlin | Hydrodynamics of macromolecules in a velocity field with longitudinal gradient[END_REF], it provides bounds on (u, τ ) without any assumption on τ (t = 0) (apart from ( 6)). Using a Poincaré inequality and the fact1 that, for any symmetric positive matrix M of size d × d, -ln(det M ) -d + tr M ≤ tr ((Id -M -1 ) 2 M ) exponential convergence to equilibrium (lim t→∞ (u, A) = (0, Id)) can be obtained from (26).

Remark 3 Notice that (26) can be schematically obtained as (10)-ε 2We D (11).

Remark 4 If ψ(0, x, .) is not Gaussian, it is always possible to replace it by a Gaussian initial condition with the same mean and variance, so that the macroscopic quantities (u, p, A) would be the same for the two initial conditions.

Application to related macroscopic models

The energy estimate (26) can be used as a guideline to derive energy estimates for other macroscopic models, even though they cannot be recast as a microscopic model of the form (14). Let us consider the example of the FENE-P model [START_REF] Peterlin | Hydrodynamics of macromolecules in a velocity field with longitudinal gradient[END_REF][START_REF] Bird | Polymer solution rheology based on a finitely extensible bead-spring chain model[END_REF], for which

τ = ε We A 1 -tr (A)/b -Id , (27) 
∂A ∂t + u.∇A = ∇uA + A(∇u) T - 1 We A 1 -tr (A)/b + 1 We Id. (28) 
For this model, we assume [START_REF] Jourdain | Convergence of a stochastic particle approximation of the stress tensor for the FENE-P model[END_REF], and also that tr (A)(t = 0) < b, and this property is propagated forward in time by (28) (see [START_REF] Jourdain | Convergence of a stochastic particle approximation of the stress tensor for the FENE-P model[END_REF]).

Using the same ideas as for the Oldroyd-B model, we consider the "entropy" H(t) = -ln(det A) -b ln (1 -tr (A)/b), and we compute its time-derivative:

d dt D -b ln (1 -tr (A)/b) = 2 D ∇u : A 1 -tr (A)/b + 1 We D - tr (A) (1 -tr (A)/b) 2 + d 1 -tr (A)/b , (29) 
d dt D ln(det(A)) = 1 We D - d 1 -tr (A)/b + tr (A -1 ) . (30) 
Combining these expressions with (8), we obtain 

The proof of these inequalities is tedious and can be done by diagonalizing the matrix M . Equation (32) shows that Equation (34) (which plays the role of the log-Sobolev inequality in the micromacro models) shows that the estimate (31) can be used to prove exponential convergence to equilibrium.

2 + ε 2We 2 D

 22 (det A) -b ln (1 -tr (A)/b)) +(1 -ε) D |∇u| tr (A) (1 -tr (A)/b) 2 -2d 1 -tr (A)/b + tr (A -1 ) = 0.(31) One can check that for any symmetric positive matrix M of size d × d:-ln(det(M )) -b ln (1 -tr (M )/b) ≥ -(b + d) ln b b + d ≥ d(32)and that -ln(det(M )) -b ln (1 -tr (M )/b) + (b + d) ln b b + d (33) ≤ tr (M ) (1 -tr (M )/b) 2 -2d 1 -tr (M )/b + tr (M -1 ) .

Re 2 D

 2 |u| 2 + ε 2We D -ln(det A) -b ln (1 -tr (A)/b) + (b + d) ln b b + dis a non-negative quantity, and thus that (31) indeed yields some a priori bounds on (u, A).

which can be seen as the logarithmic Sobolev inequality for Gaussian random variables translated on their covariance matrices