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Abstract

In this article we discuss a teleportation scheme of coherent states of cavity field. The experimen-

tal realization proposed makes use of cavity quatum electrodynamics involving the interaction

of Rydberg atoms with micromaser and Ramsey cavities. In our scheme the Ramsey cavities

and the atoms play the role of auxiliary systems used to teleport the state from a micromaser

cavity to another. We show that, even if the correct atomic detection fails in the first trials, one

can succeed in teleportating the cavity field state if the proper measurement occurs in a later

atom.

PACS: 03.65.Ud; 03.67.Mn; 32.80.-t; 42.50.-p

Keywords: teleportation; entanglement; non-locality; Bell states; cavity QED.

1 Introduction

Quantum teleportation was first proposed by Bennett et al [1] and it is a consequence of entanglement
and nonlocality in quantum mechanics. These features were first noticed by Einstein, Podolsky
and Rosen [2] who have originally proposed the EPR experiment in order to show that quantum
mechanics were not a complete theory to describe reality. At the same time Schrödinger has done a
formal discussion about the description and the measurements performed on two system which have
interacted and that are far apart from each other [3]. These strange features of quantum mechanics
are consequence of the superposition principle, which leads to a quantum system to exist in a linear
superposition of different eigenstates of an observable. They were the cause of an intense and long
debate [4] whose result was in quantum mechanics’ favour [5].
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Since the proposal of Bennett and co-workers for teleportation [1], it has been carried out using
pairs of entangled photons [6], NMR [7], as well as trapped ions [8]. Besides, several schemes have
been suggested to implement the teleportation in cavity QED [9, 10, 11, 12], but these schemes are
probabilistic in the sense that one depends on a successful and specific sequence of measurements
which one can not a priori guarantee the out coming result. In this article we propose a scheme
in which flows of Rydberg atoms, properly prepared, interact with a setup, involving three super-
conducting cavities (C1, C2 and C3), to teleport the field state of a cavity to another. Hence, we
are concerned with the state of the system formed from the three cavities (C1, C2 and C3). In the
beginning we suppose the system in a pure state. After interacting with the first atom of the atomic
beam, the global state is still a pure state. In order to teleport the field state from a cavity to
another, specific measurements have to be done, i.e., one has to measure atoms in one of its possible
states. The central point is: what does it happen if any detection fails? The three cavities’ state
becomes a statistical mixture. We show that this statistical mixture evolves in a such manner which
permits one to obtain the teleportation as long as one performs the correct measurements, even with
failures during the process. The only restriction concerns to the field’s coherence lifetime τcoeh inside
the cavities: all the correct measurements have to be done in a time less than τcoeh.

This paper is organized as follow. In section 2 we show the process of preparing the Bell states
for a system formed from two cavities, which is a necessary condition to the teleportation. We follow
the basic ideas present in Ref. [13], which discuss schemes to entangle atoms, to achieve this goal. In
section 3 we show that, through appropriate measurements, we can perform the teleportation and,
finally, in section 4 we discuss the feasibility of our proposal considering the experimental limitations.

2 Realization of Bell states

Consider a three-level cascade atom Ak with | hk〉, | ek〉 and | gk〉 being the upper, intermediate and
lower atomic state respectively (see Fig. 1). We assume that the transition | hk〉 ⇀↽| ek〉 is far from
resonance with the cavity central frequency such that only virtual transitions occur between these
states (only these states interact with the cavity field). In addition we assume that the transition
| hk〉 ⇀↽| gk〉 is highly detuned from the cavity frequency so that there will be no coupling with the
cavity field. However, from now on we shall consider only the levels | ek〉 and | gk〉. We will not
consider the level | hk〉 anymore, since it will not play any role in our scheme except to introduce the
phase factor in the time evolution operator (see Eq.(2.1)) due to the dispersive interaction, whereas
the states | ek〉 and | gk〉 are coupled in the Ramsey cavities, which we use to perform transformation
in the atomic state [13]. Therefore, concerning the whole system, we have effectively a two-level
system involving states | ek〉 and |gk〉. Considering these levels, when the atoms cross the cavities Ci

(i = 1, 2, 3), we can write an effective time evolution operator

UAkCi
= eiϕ1a†a | ek〉〈ek | +eiϕ2a†a|gk〉〈gk |, (2.1)

according to the well known interaction of a three-level atom with a single mode of the electromagnetic
field (see Appendix of Ref. [12], and also Refs. [14] and [15]) .

In (2.1) a (a†) is the annihilation (creation) operator for the field in the cavity. ϕ1 = κ2
ehτ/∆eh,

κeh is the coupling constant between the states | h〉, | e〉, ∆eh = ωh − ωe − ω is the detuning, where
ωh and ωe are the frequencies of the upper and intermediate levels respectively. ω is the cavity field
frequency and τ is the atom-field interaction time. ϕ2 = κ2

egτ/∆eg, κeg is the coupling constant
between the states | e〉, | g〉, ∆eg = ωe −ωg −ω is the detuning where ωe and ωg are the frequencies
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of the intermediate and lower levels respectively. Since κeg is smaller than κeh and ∆eg ≪ ∆eh, one
can consider ϕ2 ≈ 0. In what follows we consider ϕ1 = π.

A sketch of the Bell states’ preparation is displayed in Fig.2. Let us assume that we have a source
SA which can prepare the atoms of an atomic beam in one of the states

| A±
k 〉 =

1√
2
(| ek〉± | gk〉). (2.2)

Evidently the source SA consist of a system involving an oven, from which the atoms emerge, a
velocity selection device, an excitation zone — where the atoms are prepared in the state |g〉 — and
a classical microwave cavity, which transforms the state |g〉 in one of the states | A±

k 〉 [16]. Suppose
that A1 is the first atom coming from SA and interacting with the cavity C1 prepared in a coherent
state |−α〉1. Then, taking into account the evolution operator UA1C1

(see Eq.(2.1)), the system A1C1

evolves to

| ψ〉A1C1
=

1√
2

(

| e1〉|α〉1+ | g1〉| − α〉1
)

. (2.3)

If we define the even and odd coherent states

|Ei〉 =
1

√

N+

i

(

|α〉i + | − α〉i
)

,

|Oi〉 =
1

√

N−
i

(

|α〉i − | − α〉i
)

, (2.4)

with N±
i = 2

(

1 ± e−2|α|2
)

≈ 2 and 〈Oi | Ei〉 ≈ 0 [17], we have

| ψ〉A1C1
=

1

2

[

|E1〉
(

| e1〉+ | g1〉
)

+ |O1〉
(

| e1〉− | g1〉
)]

. (2.5)

Making use of (2.2) we can rewrite the above expression as

| ψ〉A1C1
=

1√
2

(

|E1〉 | A+

1 〉 + |O1〉|A−
1 〉

)

. (2.6)

Now we let atom A1 fly through another cavity C2 prepared in the coherent state | −α〉2 and, again
taking into account UA1C2

(2.1), we have

| ψ〉A1C1C2
=

1

2

[

|E1〉
(

|E2〉|A+

1 〉 + |O2〉|A−
1 〉

)

+ |O1〉
(

|E2〉|A−
1 〉 + |O2〉|A+

1 〉
)]

. (2.7)

Then A1 enters a Ramsey cavity R1 where the atomic states are rotated according to

|A+

1 〉 −→| e1〉 and |A−
1 〉 −→| g1〉, (2.8)

leading the system to the state

| ψ〉A1C1C2
=

1

2

[

|E1〉
(

|E2〉 | e1〉 + |O2〉 | g1〉
)

+ |O1〉
(

|E2〉 | g1〉 + |O2〉 | e1〉
)]

. (2.9)

Then, after passing through the cavity R1, if the detector DA measures atom A1 in the level | e1〉,
we get for the system consisted of the two cavities C1 and C2 the state

|Φ+〉C1C2
=

1√
2

(

|E1〉|E2〉 + |O1〉|O2〉
)

. (2.10)
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In the last passage, if instead measuring A1 in | e1〉 we had measured it in the level | g1〉, the state
of C1 and C2 would have collapsed into the state

| Ψ+〉C1C2
=

1√
2

(

|E1〉|O2〉 + |O1|E2〉
)

. (2.11)

Following a similar procedure, in which the only difference is C2 prepared initially in the state
|α〉2, we can also prepare the states

| Φ−〉C1C2
=

1√
2

(

|E1〉|E2〉 − |O1〉|O2〉
)

, (2.12)

and

| Ψ−〉C1C2
=

1√
2

(

|E1〉|O2〉 − |O1〉|E2〉
)

. (2.13)

The states (2.10), (2.12), (2.11) and ( 2.13) are Bell states and form a Bell basis [18].
But it is important to notice that, in order to obtain any of the states (2.10), (2.12), (2.11) and

(2.13), it is necessary to measure the atom A1 in a specific state, | e1〉 or | g1〉. Suppose we want to
construct the state (2.10), i.e.,

|Φ+〉C1C2
=

1√
2

(

|E1〉|E2〉 + |O1〉|O2〉
)

.

After passing through R1, concerning the detector DA, the atom A1 has its state given by the reduced
density operator

ρA1
= TrC1C2

[

|ψ〉A1C1C2
〈ψ|A1C1C2

]

=
1

2

(

|e1〉〈e1| + |g1〉〈g1|
)

, (2.14)

where |ψ〉A1C1C2
is given by (2.9). Therefore, considering an ideal detector adjusted for measuring

the atom A1 only in the state |e1〉, we have a 50% probability of failure in obtaining the above Bell
state for the system C1C2. If it were an ideal detector, the failure in measuring the state |e1〉, would
correspond to measure it in the state |g1〉. Consequently the system C1C2 would collapses into the
state (2.11). In fact, we do not deal with ideal detectors and for this reason, if it does not measure
the atom in the state |e1〉, we can not say anything else than Eq.(2.14). Besides, if no atom has even
been registered, how can we be sure that an atom had passed through the cavity? This can be solved
with a “detector” which is composed of two devices: a detector adjusted for measuring the atom A1

only in the state |e1〉 and an ionising chamber which detects the passage of the atom whatever its
state.

Thus we have to take it into account when we think a proposal to construct an entangled state,
such as the above Bell state (2.10), in order to perform teleportation. Our teleportation scheme,
shown in section 3, was planned to work with the state (2.10), hence our first task is to guarantee
we can obtain it without any chance of failure or, at least, with a good chance of success.

Then, suppose we fail in measuring A1 in the state |e1〉. The system C1C2 will be described by
the reduced density operator

ρC1C2
= TrA1

[

|ψ〉A1C1C2
〈ψ|A1C1C2

]

,

=
1

4

[

|E1E2〉〈E1E2| + |E1E2〉〈O1O2|
|E1O2〉〈E1O2| + |E1O2〉〈O1E2|
|O1E2〉〈O1E2| + |O1E2〉〈E1O2|
|O1O2〉〈O1O2| + |O1O2〉〈E1E2|

]

, (2.15)
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where |ψ〉A1C1C2
is given by (2.9). As it can be easily verified, ρC1C2

correspond to a statistical
mixture.

The next step is to analyse the effect caused by the passage of the following atom of the atomic
beam through C1 and C2. Call this atom A2. Before entering the cavity C1, the system A2C1C2 is
described by the density operator

ρA2C1C2
(0) = ρC1C2

⊗ ρA2
, (2.16)

where ρC1C2
is given by Eq.(2.15) and ρA2

= |A+
2 〉〈A+

2 | is the corresponding density operator of the
atomic pure state |A+

2 〉 (see Eq.(2.2)).
The passage of one atom Ak through Ci (i = 1 or 2) is given by the operator UAkCi

, Eq.(2.1), and
its result is easy to be obtained, when the system is in a pure state, as we have done above. Since
the system is now in a statistical mixture described by (2.16), the passage of one atom through one
of the cavities can be described by UAkCi

according to

ρA2C1C2
(after) = UA2Ci

[

ρA2C1C2
(before)

]

U †
A2Ci

with i=1 or 2, (2.17)

where ρA2C1C2
(before) and ρA2C1C2

(after) are the density operator before and after the passage of
atom Ak through one of the cavities, respectively. Then, after A2 passes through the firts cavity C1,
it yields

ρA2C1C2
(1) = UA2C1

[

ρA2C1C2
(0)

]

U †
A2C1

=
1

4

[

|A+

2 E1E2〉〈A+

2 E1E2| − |A+

2 E1E2〉〈A−
2 O1O2|

+ |A+

2 E1O2〉〈A+

2 E1O2| − |A+

2 E1O2〉〈A−
2 O1E2|

+ |A−
2 O1E2〉〈A−

2 O1E2| − |A−
2 O1E2〉〈A+

2 E1O2|
+ |A−

2 O1O2〉〈A−
2 O1O2| − |A−

2 O1O2〉〈A+

2 E1E2|
]

, (2.18)

where ρA2C1C2
(0) is given by Eq.(2.16). Now, after passing through C2, the atom A2 leaves the system

described by

ρA2C1C2
(2) = UA2C2

[

ρA2C1C2
(1)

]

U †
A2C2

=
1

4

[

|A+

2 E1E2〉〈A+

2 E1E2| + |A+

2 E1E2〉〈A+

2 O1O2|
+ |A−

2 E1O2〉〈A−
2 E1O2| + |A−

2 E1O2〉〈A−
2 O1E2|

+ |A−
2 O1E2〉〈A−

2 O1E2| + |A−
2 O1E2〉〈A−

2 E1O2|
+ |A+

2 O1O2〉〈A+

2 O1O2| + |A+

2 O1O2〉〈A+

2 E1E2|
]

. (2.19)

Then, following its trajectory, the atom A2 passes through R1, which perform the transformation
(2.8), and the system becomes

ρA2C1C2
=

1

4

[

|e2E1E2〉〈e2E1E2| + |e2E1E2〉〈e2O1O2|
+ |g2E1O2〉〈g2E1O2| + |g2E1O2〉〈g2O1E2|
+ |g2O1E2〉〈g2O1E2| + |g2O1E2〉〈g2E1O2|
+ |e2O1O2〉〈e2O1O2| + |e2O1O2〉〈e2E1E2|

]

. (2.20)
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Now, if we succeed in measuring the atomic state |e2〉, it yields

ρC1C2
=

1

2

[

|E1E2〉〈E1E2| + |E1E2〉〈O1O2|

+ |O1O2〉〈O1O2| + |O1O2〉〈E1E2|
]

, (2.21)

which is the density operator corresponding to the pure state (2.10)

|Φ+〉C1C2
=

1√
2

(

|E1〉|E2〉 + |O1〉|O2〉
)

.

Otherwise, if we fail again in measuring the atomic state, the system C1C2 will be described by the
partial trace of Eq.(2.20) with respect to the atomic states, i.e,

ρC1C2
= TrA2

[

ρA2C1C2

]

, (2.22)

whose result is

ρC1C2
=

1

4

[

|E1E2〉〈E1E2| + |E1E2〉〈O1O2|
|E1O2〉〈E1O2| + |E1O2〉〈O1E2|
|O1E2〉〈O1E2| + |O1E2〉〈E1O2|
|O1O2〉〈O1O2| + |O1O2〉〈E1E2|

]

,

which is exactly Eq.(2.15)!
Therefore, in order to obtain the Bell state (2.10) for C1 and C2, we have only to wait the passage

of the atoms until one of them is measured in the appropriate state |e〉: while the detector does not
measure any atom in the state |e〉, the system C1C2 returns to its initial state (2.15). Hence, our
problem concerns the relation between the field’s coherence lifetime τcoeh [19] in C1 and C2, and the
time necessary to pass a large number of atoms so that the probability of measuring one of them
in state |e〉 can be supposed approximately equal to one. For a cavity damping time τcav equal
to 10−1 s and an average number of photons in the cavities |α|2 equals to 9, the decoherence time
τcoeh = τcav/2|α|2 is 5 × 10−3 s. Even with a no high detection efficiency, if we have an atomic flux
of 2500 atoms per second, it is sufficient to detect one in every ten atoms in order to guarantee the
preparation of the desired Bell state.

3 Teleportation of a field state

We imagine that two parties, Alice and Bob, far apart from each other, have the cavities C2 and
C1, respectively, prepared according to last section in the state (2.10). Suppose that Alice wants to
teleport the state

|ψ〉C3
= Y1|E3〉 + Y2|O3〉, (3.23)

of a third cavity C3 to Bob. Thus the state of the cavity C1 is to be changed to the above one(3.23).
The whole experimental arrangement is sketched in Fig.3. It is consisted of five arms. The first one
correspond to the setup to prepare the Bell state involving the cavities C1 and C2. The second one
corresponds to the preparation of the state (3.23), which should be performed at the same time of
the preparation of the Bell state. We let to appendix a brief discussion about it. The third one is
composed of an atomic source SA, the cavities C2 and C3, a Ramsey cavity R2 and a detector DA.

6



From SA come the atoms of type A prepared in the state |A+〉 (2.2), which are the same used in the
last section. In the fourth and fifth arms one finds the sources SB, which we supposed initially turned
off and from which come the atoms of type B. Contrary to atoms A, the atoms B are two-level atoms
resonant with the cavities C2 and C3 and their appropriate detection unravel C1 from C2C3, leading
C1 to the state (3.23), as we wish. The detectors DA and DB detect the atoms A and B, respectively.

If we let an atom A1 crosses through C2 and C3, the whole system evolves from the state

|ψ〉C1C2C3A1
= |Φ+〉C1C2

|ψ〉C3
|A+

1 〉 =
1√
2

(

|E1〉|E2〉 + |O1〉|O2〉
)(

Y1|E3〉 + Y2|O3〉
)

|A+

1 〉 (3.24)

to the state

|ψ〉C1C2C3A1
=

1√
2

[(

Y1|E1E2E3〉 + Y2|O1O2O3〉
)

|A+

1 〉 −
(

Y1|O1O2E3〉 + Y2|E1E2O3〉
)

|A−
1 〉

]

(3.25)

according to the evolution operator (2.1) applied to each cavity, C2 and C3, when atom A1 passes
through them. After the atom A1 crosses the Ramsey cavity R2, which performs the transformation
(2.8)

|A+

1 〉 −→| e1〉 and |A−
1 〉 −→| g1〉,

we obtain

|ψ〉C1C2C3A1
=

1√
2

[(

Y1|E1E2E3〉 + Y2|O1O2O3〉
)

|e1〉 −
(

Y1|O1O2E3〉 + Y2|E1E2O3〉
)

|g1〉
]

. (3.26)

At this moment we would like to detect the atomic state |e1〉, in order to obtain the system C1C2C3

in the state

|ψ〉C1C2C3
=

1√
2

(

Y1|E1E2E3〉 + Y2|O1O2O3〉
)

, (3.27)

but suppose we fail. Then the system C1C2C3 is described by

ρC1C2C3
= TrA1

[

|ψ〉C1C2C3A1
〈ψ|C1C2C3A1

]

=
1

2

[ (

Y1|E1E2E3〉 + Y2|O1O2O3〉
)(

Y∗
1 〈E1E2E3| + Y∗

2 〈O1O2O3|
)

+
(

Y1|O1O2E3〉 + Y2|E1E2O3〉
)(

Y∗
1 〈O1O2E3| + Y∗

2 〈E1E2O3|
)]

. (3.28)

The effect of the next atom crossing C2, C3 is given by

ρC1C2C3A2
= UA2C3

UA2C2

[

ρC1C2C3
⊗ |A+

2 〉〈A+

2 |
]

U †
A2C2

U †
A2C3

, (3.29)

in accordance with Eq.(2.17), and after passing the Ramsey cavity, it yields

ρC1C2C3A2
=

1

2

[ (

Y1|E1E2E3e2〉 + Y2|O1O2O3e2〉
)(

Y∗
1 〈E1E2E3e2| + Y∗

2 〈O1O2O3e2|
)

+
(

Y1|O1O2E3g2〉 + Y2|E1E2O3g2〉
)(

Y∗
1 〈O1O2E3g2| + Y∗

2 〈E1E2O3g2|
)]

. (3.30)

If now we succeed in measuring the atomic state |e2〉, the resultant density operator of C1C2C3 is
given by

ρC1C2C3
= 〈e2|ρC1C2C3A2

|e2〉 =
1

2

(

Y1|E1E2E3〉 + Y2|O1O2O3〉
)(

Y∗
1 〈E1E2E3| + Y∗

2 〈O1O2O3|
)

, (3.31)
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which correspond to the pure state (3.27). However, if we fail again, the resultant density operator
is

ρC1C2C3
= TrA2

[

ρC1C2C3A2

]

, (3.32)

where ρC1C2C3A is given by (3.30), and it yields Eq. (3.28).
Therefore, while the cavities sustain their coherence, it does not matter if we fail in measuring

the atomic state |e〉 in the first, second,...trial, because the system returns always to the same
configuration (3.28) and we can try to detect until we have success.

According to the definition of the even and odd coherent state (2.4), the state (3.27) can be
written as

|ψ〉C1C2C3
=

1√
2

(

Y1|E1E2E3〉 + Y2|O1O2O3〉
)

=
(

Y1|E1〉 + Y2|O1〉
)( |α2〉|α3〉 + | − α2〉| − α3〉

2

)

+
(

Y1|E1〉 − Y2|O1〉
)( |α2〉| − α3〉 + | − α2〉|α3〉

2

)

. (3.33)

Then, we suppose that the detection of |e〉 turns off the atomic beam A and turns on the two atomic
beams B. This can be done with a fast eletronics, in which it is used the Stark effect to tune properly
the atoms within the cavities. The atoms B are two-level atoms resonant with the cavities C2 and
C3, with |b〉 and |a〉 being their lower and upper levels, respectively. Besides, with the detection of
|e〉, we also suppose that it is injected the states |α2〉 and |α3〉 in the cavities C2 and C3, respectively,
through a classical current oscillating in antennas coupled to them. Thus, before the first two atoms,
B2 and B3, arrive in the cavities, C2 and C3, respectively, the state |ψ〉C1C2C3

becomes

|ψ〉C1C2C3
=

(

Y1|E1〉 + Y2|O1〉
)( |2α2〉|2α3〉 + |∅2〉|∅3〉

2

)

+
(

Y1|E1〉 − Y2|O1〉
)( |2α2〉|∅3〉 + |∅2〉|2α3〉

2

)

, (3.34)

where |∅i〉 denotes the vacuum in the cavity Ci (i = 2, 3). Hence, at this moment, the state of the
whole system is given by |ψ〉C1C2C3B2B3

= |ψ〉C1C2C3
⊗ |b〉2|b〉3, whose evolution, due to the atoms’

passage through the cavities, is governed by the well known interaction of a two-level atom resonant
with a single mode of the eletromagnetic field [20]: if atom Bj , initially in the lower state |b〉j ,
encounters the cavity Cj in the vacuum (j = 2, 3), their state does not change, it remains |bj〉|∅j〉;
however, if Bj encounters the cavity in the state |2αj〉, their state evolves to

|bj〉|2αj〉 −→ |aj〉|χa
j 〉 + |bj〉|χb

j〉 = |ajχ
a
j 〉 + |bjχb

j〉, (3.35)

where |χa
j 〉 and |χb

j〉 represent two different states of the field. In fact, in this case their expression
are well known –

|χa
j 〉 = −i

∑

n

Cn+1 sin(gt
√
n + 1)|nj〉, |χb

j〉 =
∑

n

Cn cos(gt
√
n)|nj〉 and Cn = e−

1

2
|2αj |2(2αj)

n/
√
n!

– but for the rest of the work |χ〉 shall represent any possible state of the field inside one of the
cavities.

Therefore, after B2 and B3 pass the cavities, the system state reads

|ψ〉C1C2C3B2B3
=

(

Y1|E1〉 + Y2|O1〉
)[(

|a2χ
a
2〉 + |b2χb

2〉
)(

|a3χ
a
3〉 + |b3χb

3〉
)

+ |b2∅2〉|b3∅3〉
]

+
(

Y1|E1〉 − Y2|O1〉
)[(

|a2χ
a
2〉 + |b2χb

2〉
)

|b3∅3〉 + |b2∅2〉
(

|a3χ
a
3〉 + |b3χb

3〉
)]

.

(3.36)
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If we detect the atoms in the states |a2〉 and |a3〉, we reach our aim: the above state yields

|ψ〉C1C2C3B2B3
=

(

Y1|E1〉 + Y2|O1〉
)

|χa
2〉|χa

3〉|a2〉|a3〉, (3.37)

which corresponds to the teleportation of the state (3.23) to cavity C1. However, let us suppose that
we fail this detection, in order to show that the teleportation can still be achieved. In fact, we have
just to continue trying to measure the atoms in the two secundary beams B. Then, if we fail in the
last detection, the system C1C2C3 is described by

ρC1C2C3
= TrB2

[

TrB3

(

|ψ〉C1C2C3B2B3
〈ψ|C1C2C3B2B3

)]

, (3.38)

where |ψ〉C1C2C3B2B3
is given by (3.36).

In order to simplify the above expression, which is rather long, let us call

|φ1〉 = Y1|E1〉 + Y2|O1〉 and |γ1〉 = Y1|E1〉 − Y2|O1〉. (3.39)

Thus by making use of (3.36), Eq.(3.38) reads

ρC1C2C3
= |φ1χ

a
2χ

a
3〉〈φ1χ

a
2χ

a
3| +

[

|φ1χ
b
2χ

a
3〉 + |γ1∅2χ

a
3〉

][

h.c.
]

+
[

|φ1χ
a
2χ

b
3〉 + |γ1χ

a
2∅3〉

][

h.c.
]

+
[

|φ1χ
b
2χ

b
3〉 + |γ1χ

b
2∅3〉 + |φ1∅2∅3〉 + |γ1∅2χ

b
3〉

][

h.c.
]

, (3.40)

where h.c. means Hermetian conjugate.
Now, if we consider the next coming pair of atoms, B2 and B3, our system is described by

ρC1C2C3B2B3
= ρC1C2C3

⊗ |b2〉〈b2| ⊗ |b3〉〈b3|, where ρC1C2C3
is the above expression, and every terms of

ρC1C2C3B2B3
will evolve, as consequence of the passage of B2 through C2 and B3 through C3, according

to the evolution of their corresponding bra’s and ket’s:

|bjχa
j 〉 −→ |ajχ

a
j ′〉 + |bjχb

j′〉 or 〈bjχa
j | −→ 〈ajχ

a
j ′| + 〈bjχb

j ′|,
|bjχb

j〉 −→ |ajχ
a
j ′′〉 + |bjχb

j ′′〉 or 〈bjχb
j | −→ 〈ajχ

a
j ′′| + 〈bjχb

j′′|,
|bj∅j〉 −→ |bj∅j〉 or 〈bj∅j| −→ 〈bj∅j |. (3.41)

Hence, according to (3.41) ρC1C2C3B2B3
yields

ρC1C2C3B2B3
=

[

|φ1〉
(

|a2χ
a
2′〉 + |b2χb

2′〉
)(

|a3χ
a
3′〉 + |b3χ3

2′〉
)

][

h.c.

]

+

[

|φ1〉
(

|a2χ
a
2′′〉 + |b2χb

2′′〉
)(

|a3χ
a
3′〉 + |b3χb

3′〉
)

+ |γ1〉|b2∅2〉
(

|a3χ
a
3′〉 + |b3χb

3′〉
)

][

h.c.

]

+

[

|φ1〉
(

|a2χ
a
2′〉 + |b2χb

2′〉
)(

|a3χ
a
3′′〉 + |b3χb

3′′〉
)

+ |γ1〉
(

|a2χ
a
2′〉 + |b2χb

2′〉
)

|b3∅3〉
][

h.c.

]

+

{

|φ1〉
(

|a2χ
a
2′′〉 + |b2χb

2′′〉
)(

|a3χ
a
3′′〉 + |b3χb

3′′〉
)

+ |γ1〉
(

|a2χ
a
2′′〉 + |b2χb

2′′〉
)

|b3∅3〉

+ |φ1〉|b2∅2〉|b3∅3〉 + |γ1〉|b2∅2〉
(

|a3χ
a
3′′〉 + |b3χb

3′′〉
)

}{

h.c.

}

. (3.42)

Now, what we have to verify is the following: i) if we measure |a2〉 and |a3〉, do we obtain the
same result that this measurement causes in (3.37)?; and ii) if we fail, i.e., if we do not succeed to
measure |a2〉 and |a3〉 simultaneously, will we obtain a reduced density operator ρC1C2C3

similar to
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(3.40)? The answer to both question is yes. Let us see then the former: if we measure |a2〉 and |a3〉,
it means that the system is projected onto the subspace associated with the projector |a2a3〉〈a2a3|,
i.e.,

|a2a3〉〈a2a3|ρC1C2C3B2B3
|a2a3〉〈a2a3| = ρC1C2C3

⊗ |a2a3〉〈a2a3|, (3.43)

where, by inspection of (3.42), it is easy to see that

ρC1C2C3
= 〈a2a3|ρC1C2C3B2B3

|a2a3〉 = |φ1〉〈φ1| ⊗
(

|χa
2′χa

3′〉〈χa
2′χa

3′| + |χa
2′′χa

3′〉〈χa
2′′χa

3′|
+ |χa

2′χa
3′′〉〈χa

2′χa
3′′| + |χa

2′′χa
3′′〉〈χa

2′′χa
3′′|

)

= |φ1〉〈φ1| ⊗ ρC2C3
. (3.44)

ρC2C3
is no more a pure state, as it happens in (3.37), but it does not matter, because we are

concerned with cavity C1. Indeed, according to the above equation, we have achieved our goal: we
have performed the teleportation of the state (3.23) to C1, which is given by |φ1〉 = Y1|E1〉+Y2|O1〉.

Now, let us see the other question. If we fail in detecting |a2〉 and |a3〉 simultaneously, our system
reduces to

ρC1C2C3
= TrB2

TrB3

[

ρC1C2C3B2B3

]

= TrB2
TrB3

[

ρS

]

= 〈a2a3|ρS|a2a3〉 + 〈a2b3|ρS|a2b3〉 + 〈b2a3|ρS|b2a3〉 + 〈b2b3|ρS|b2b3〉, (3.45)

where

〈a2a3|ρS|a2a3〉 = |φ1χ
a
2′χa

3′〉〈φ1χ
a
2′χa

3′| + |φ1χ
a
2′′χa

3′〉〈φ1χ
a
2′′χa

3′|

+|φ1χ
a
2′χa

3′′〉〈φ1χ
a
2′χa

3′′| + |φ1χ
a
2′′χa

3′′〉〈φ1χ
a
2′′χa

3′′|,

〈a2b3|ρS|a2b3〉 = |φ1χ
a
2′χb

3′〉〈φ1χ
a
2′χb

3′| + |φ1χ
a
2′′χb

3′〉〈φ1χ
a
2′′χb

3′|

+
[

|φ1χ
a
2′χb

3′′〉 + |γ1χ
a
2′∅3〉

][

h.c.
]

+
[

|φ1χ
a
2′′χb

3′′〉 + |γ1χ
a
2′′∅3〉

][

h.c.
]

,

〈b2a3|ρS|b2a3〉 = |φ1χ
b
2′χa

3′〉〈φ1χ
b
2′χa

3′| + |φ1χ
b
2′χa

3′′〉〈φ1χ
b
2′χa

3′′|

+
[

|φ1χ
b
2′′χa

3′〉 + |γ1∅2χ
a
3′〉

][

h.c.
]

+
[

|φ1χ
b
2′′χa

3′′〉 + |γ1∅2χ
a
3′′〉

][

h.c.
]

,

〈b2b3|ρS|b2b3〉 = |φ1χ
b
2′χb

3′〉〈φ1χ
b
2′χb

3′| +
[

|φ1χ
b
2′′χb

3′′〉 + |γ1χ
b
2′′∅3〉 + |φ1∅2∅3〉 + |γ1∅2χ

b
3′′〉

][

h.c.
]

+
[

|φ1χ
b
2′′χb

3′〉 + |γ1∅2χ
b
3′〉

][

h.c.
]

+
[

|φ1χ
b
2′χb

3′′〉 + |γ1χ
b
2′∅3〉

][

h.c.
]

. (3.46)
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Though the density operator ρC1C2C3
(3.45), consisted of the above terms, is much more complex

than the one given by Eq.(3.40), it preserves the feature of that one which is important to us: it
consists in every term (ket |...〉 or bra 〈...|), which constitutes the new ρC1C2C3

(3.45), where the state
|γ1〉 appears, so do the state |∅2〉 or |∅3〉. Hence, by passing a new pair of atoms in the states |b2〉 and
|b3〉 through C2 and C3, respectively, and then measuring simultaneously these atoms in the states
|a2〉 and |a3〉, it yields a density operator ρC1C2C3

in the same form of (3.44)

|φ1〉〈φ1| ⊗ ρC2C3
.

The only difference is that ρC2C3
is more complex than before. Besides, if we fail in measuring

simultaneously the states |a2〉 and |a3〉, we can repeat the whole process, the expression of ρC1C2C3

becoming even more complicated, as it happens from (3.40) to (3.45), but still maintaining the main
feature, which consist in every term where appears the state |γ1〉 it also appears the state |∅2〉 or
|∅3〉.

4 Conclusion

As mentioned before our concern for the feasibility of the above experimental setup consist in the
time scales involved. The cavity damping time τcav (with niobium superconducting cavities at very
low temperature) is of the order of 0.1s [22]. However, our restriction in the time scale is given by
the decoherence time τcoeh = τcav/2|α|2, whose value is 5 × 10−3 s for an average number of photons
in the cavities |α|2 equals to 9. Our proposal consist of three task to be done in sequence: the first
is to prepare the Bell state, involving the cavities C1 and C2 (arm I of Fig. 3), and the state to be
teleported in C3 (arm II of Fig. 3); the second is to measure properly one atom A in the arm III, in
order to entangle C1, C2 and C3; and the third is to measure properly the atoms B in the arms IV
and V of the setup, in order to unravel C1 from C2 and C3, and to teleport the field state. These
three steps have to be done while the fields sustain their coherence in the three cavities. Considering
τcoeh = 5×10−3 s, with atomic flows of 2500 per second, one has to perform five measurements in the
proper sequence in every ten atoms in order to prepare and teleport the field state. Certainly this
is not satisfactory. However, in the last decade, one has a considerable technological improvement
in the superconducting cavities: τcav = 2 × 10−6 s in 1994 [23], τcav = 220 × 10−6 s in 1996 [24],
τcav = 1 × 10−3 s in 2001 [25] and τcav = 1 × 10−1 s in 2006 [22]. Therefore, we believe that a cavity
with a damping time of the order of 1 s should be achieved in the next years, making our proposal
reasonable, i.e., to perform five measurements in the proper sequence in every hundred atoms, instead
of ten.

Concluding, we have presented a scheme of teleportation of field state. Our scheme is a deter-
ministic one in the sense that we do not depend on a sequence of measurements, which all have to
be successful at the first trial. Our proposal setup supports failures and, according to the above
discussion, we believe that it has a good chance of working in the near future.
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A Preparation of the state (3.23)

Suppose we have the cavity C3 prepared initially in a coherent state | − α〉3 and an atomic source
from which come atoms prepared in the state

| ψ〉A = ce | e〉 + cg | g〉. (A.47)

After the first atom flies through C3, taking into account the time evolution operator (2.1), the state
of the system C3A is given by

|ψ〉C3A = ce|e〉|α〉3 + cg|g〉| − α〉3. (A.48)

Then, A passes through the Ramsey zone R3, where the atomic states are rotated according to

R3 =
1√
2

[

1 −ieiθ

−ie−iθ 1

]

, (A.49)

that is,

|f〉 → 1√
2
(|e〉 − ie−iθ | g〉),

|g〉 → 1√
2
(−ieiθ|e〉 + |g〉), (A.50)

and therefore, the state of the system C3A will be given by

|ψ〉C3A =
1√
2

[

(ce − ieiθcg)|E3〉 + (ce + ieiθcg)|O3〉
]

|e〉

+
1√
2

[

(−ie−iθce + cg)|E3〉) + (−ie−iθce − cg)|O3〉
]

|g〉. (A.51)

Now, in order to obtain the state |ψ〉C3 in cavity C3, we measure the atomic state. If we detect |e〉,
we have

Y1 = (ce − ieiθcg)/
√

2 and Y2 = (ce + ieiθcg)/
√

2.

Otherwise, if we detect |g〉, we have

Y1 = (−ie−iθce + cg)/
√

2 and Y2 = (−ie−iθcf − cg)/
√

2.
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Figure Captions

Fig. 1 Energy states scheme of a three-level atom, where |h〉 is the upper state with atomic
frequency ωh, |e〉 is the intermediate state with atomic frequency ωe, |g〉 is the lower state with
atomic frequency ωg and ω is the cavity field frequency and ∆ = (ωh − ωe)− ω is the detuning. The
transition | e〉 ⇀↽| h〉 is far from resonance with the cavity central frequency such that only virtual
transitions occur between these levels (only these states interact with field in cavity Ci (i = 1, 2, 3)).
In addition we assume that the transitions |h〉 ⇀↽ |g〉 and |e〉 ⇀↽ |g〉 are highly detuned from the
cavity frequency so that there will be no coupling with the cavity field in Ci (i = 1, 2, 3).

Fig. 2 Sketch of the Bell states preparation. It involves a beam of Rydberg atoms prepared in
a source SA, crossing two high-Q cavities C1 and C2, in which coherent states is previously injected,
a low-Q cavity R1, in which a classical microwave field can be applied, and being measuring by a
detector DA.

Fig. 3 Sketch of the whole experiment.
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