
HAL Id: hal-00135126
https://hal.science/hal-00135126v1

Preprint submitted on 6 Mar 2007 (v1), last revised 29 Aug 2007 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Graphic processors to speed-up simulations for the
design of high performance solar receptors

Caroline Collange, Marc Daumas, David Defour

To cite this version:
Caroline Collange, Marc Daumas, David Defour. Graphic processors to speed-up simulations for the
design of high performance solar receptors. 2007. �hal-00135126v1�

https://hal.science/hal-00135126v1
https://hal.archives-ouvertes.fr

ha
l-0

01
35

12
6,

 v
er

si
on

 1
 -

 6
 M

ar
 2

00
7

Graphic processors to speed-up simulations
for the design of high performance solar receptors∗

Sylvain Collange (ELIAUS), Marc Daumas (LIRMM-CNRS & ELIAUS) and David Defour (ELIAUS)
Université de Perpignan Via Domitia

52 avenue Paul Alduy — Perpignan 66860 — France
firstname.lastname@univ-perp.fr

Abstract

Graphics Processing Units (GPU) are now powerful and
flexible systems adapted and used for other purposes than
graphics calculations (General Purpose computation on
GPU — GPGPU). We present here a prototype to be in-
tegrated into simulation codes that estimate temperatures,
velocities and pressure to design next generations of so-
lar receivers. Such codes will delegate to our contribution
on GPUs the accurate computation of heat transfers due
to radiations. We use Monte-Carlo line-by-line ray-tracing
through finite volumes. That means data-parallel arithmetic
transformations on large data structures. Our prototype is
inspired on the source code of GPUBench. Our perfor-
mances on two recent graphics cards (Nvidia 7800GTX and
ATI RX1800XL) show some speed-up higher than 400 com-
pared to CPU implementations leaving most of CPU com-
puting resources available.

1 Introduction

Graphics Processing Units (GPU) offer computing re-
sources higher than the ones available on general process-
ing units [8]. With the delivery of the latest generations of
GPUs, they can be used for general processing (GPGPU)
[7]1 and become application specific co-processors for reg-
ular and heavily data-parallel processing.

We strongly believe that the development of GPGPU will
necessary pass through the identification of key applications
that will benefit of the various hardwired functionalities
available on GPU. We describe the architecture of GPUs

∗This work has been partially funded by the EVA-Flo project ofthe
ANR and a STICS-UM2 multidisciplinary grant awarded to LIRMM, ELI-
AUS and PROMES laboratories. This work has been possible thanks to the
kind help of Gilles Flamant, Pierre Neveu, Xavier Py and Régis Olives
from PROMES laboratory (CNRS) and Frédéric André from CETHIL
(CNRS-INSA Lyon).

1Seehttp://www.gpgpu.org/.

and properties of the implemented floating point arithmetic
in Section 2. Section 3 presents the accurate estimation of
radiative heat transfers due to the filtering of incidental rays
and the generation of heat induced rays. We elaborate on
the performances of our prototype and perspectives in Sec-
tion 4. We do not account for diffusion of rays in this pre-
liminary study as our medium does not contain particles and
is relatively scattered. Such a task could be done by main-
taining line by line radiosity and by partially hiding data
transfers between GPU and main memory.

To the best of our knowledge, there is no prior art in
the implementation of the tasks reported here on GPUs.
Monte-Carlo ray-tracing and line-by-line analysis are rou-
tinely performed on CPUs for simulations of radiative heat
transfers though these tasks usually saturate CPUs leaving
no opportunity to the coupling of convective and radiative
phenomena on real applications. Other applications heav-
ily rely on elaborate physical models ([5, 6] and references
herein) leaving a large gap before direct numerical simula-
tion (DNS) could be envisioned. Many simulations are cur-
rently performed only for simple reference cases (isother-
mal gas column at equilibrium). The description of gas
spectrum is generally simplified in calculation with engi-
neering interests leading to errors in the range of 5-15%

Although our approach is based on finite volumes used
for example by Fluent and Trio-U, this work can also be
applied to accurately instantiate source terms in software
based on finite element methods such as Femlab.

2 Graphics Processing Units (GPU)

GPUs treat mainly geometrical objects and pixels. Im-
ages are created by applying geometrical transformations
to vertices and by splitting objects into fragments or pix-
els. Calculations are carried out by various stages compos-
ing the graphics pipeline, as presented in Figure 1. Ac-
tual pipelines of existing GPUs differ slightly. Manufactur-
ers move, share, duplicate or add resources depending on
boards and processors. The figure shows the various stages

Graphic card

Host

B
le

nd
in

g
/z

-c
om

pa
re

Texture memory

shaders Pixel shaders
Vertex

R
as

te
riz

er

FIG. 1 – Model of the graphics pipeline.

L2 (shared)

Floating point
vector unitaccess unit

Texture

Branch unit

Texture memory

scalar unit
Floating point

Primitive unit

NV4x vertex shader
Viewport

processing

Texture cache

FIG. 2 – Vertex shader of the Nvidia 7800GTX.

on the example of a triangle. Vertex shaders treat 3 ver-
tices whereas pixel shaders treat 17 pixels. For a given geo-
metrical object, the number of pixels is usually larger than
the number of vertices. Modern architectures contain more
pixel shaders than vertex shaders. The current ratio is com-
monly 24 against 8.

The host sends vertices to position primitive geometrical
objects (polygons, lines, points). Objects are transformed
(rotation, translation, illumination. . .) and assembled to cre-
ate more elaborate objects. These operations are carried out
by vertex shaders(see Figure 2 adapted from [8]). At each
cycle, the vertex shader is able to initiate aMultiply and
Accumulate(MAD) operation on 4 pieces of data in the
vector unit and aspecialoperation in the scalar unit. The
implementedspecialoperations are exponential functions
(exp, log), trigonometric functions (sin, cos) and reciprocal
functions (1/x and1/

√
x). Since hardware support of Di-

rectX 9.0, vertex shaders are able to address texture memory
through a dedicated unit.

When an object has reached its final position, form and
lighting, it is split into fragments or pixels. An interpolation
is applied to deduce properties of each pixel. Pixels are han-
dled bypixel shaders to apply textures and set colors, for
example (see Figure 3 adapted from [8]). The first floating

Texture memory

Texture data Pixels data

floating point unit

Branch unit

Fog ALU

MiniALU

Texture

Texture cache
L1

First
FP unit

Second
FP unit

MiniALU

NV4x Pixel shader

Texture cache
L2 (shared)

FIG. 3 – Pixel shader of the Nvidia 7800GTX.

point unit carries out 4 MADs or an access to texture via a
dedicated unit. The result is then sent to the second floating
unit which carries out 4 MADs. In the case of Nvidia 7800
GTX, each pixel shader includes a level 1 texture cache.

Table 1 presents floating point formats implemented on
GPUs and CPUs. Before porting our application to GPUs,
we surveyed two pieces of software testing performances
and implementations of floating point arithmetic on Nvidia
7800GTX and ATI RX1800XL [1, 4]. Tests have drawn the
first following conclusions :

– Additions and multiplications are truncated.
– Subtractions seem to benefit from a guard bit with

Nvidia but not with ATI.
– Multiplications attain faithful rounding.
– Errors on divisions indicate that divisions are based on

multiplications by approximations of the reciprocal.
We wrote additional test vectors summarized in Table 2.

We used OpenGL primitives and stored data in textures us-
ing Frame Buffer Objectand respectivelytexture rectangle
and texture 2D for Nvidia and ATI chips. We set up vertex
and pixel shaders for computation with the OpenGL shad-
ing language. We ran these tests on Nvidia 7800 GTX with
driver ForceWare 81.98 and on ATI RX1800XL with driver
Catalyst 6.3. We mostly targeted single precision (32 bits)
though these tests can be adapted to smaller formats.

On some architectures, internal registers store numbers
with a precision higher than the one used in memory or with
a larger dynamics for the exponents. Sometimes MADs
maintain larger accumulators or round results only once, af-
ter the addition.

Tests showed that no such things occur on GPUs but they
revealed a surprising feature. It appears that the first float-
ing point unit produces a mantissa with one extra bit that
can be used by the second unit on pixel shaders of Nvidia.
We conjecture that this extra bit is implemented for back-
ward compatibility with some old functionality of graphic
hardware.

This extra bit seems to be a nice feature to reduce round-
off errors but the differencex + y − x⊕ y can no longer be

TAB . 1 – Representation format of floating point numbers on GPUs and CPUs. A number is represented by its mantissa, its
exponente and its sign bits. The first bit of the mantissa (left of the fraction point) canbe set to 1 unless the number to be
represented is very small. The remaining bits form the fraction f . A normal representation stores(−1)s · 1.f · 2e and a
subnormal one stores(−1)s · 0.f · 2emin whereemin is the minimum allowed exponent. Single precision (32 bit) became
available on GPUs with Shader Model 3.0. Manufacturers of GPUs do not claim full compatibility with ANSI-IEEE standard
on floating point arithmetic.

Reference Number of bits Non numerical
Total Sign Exponent Fraction values

Nvidia 16 1 5 10 NaN, Inf
32 1 8 23 (as documented in [2])

ATI 16 1 5 10 Not implemented
24 1 7 16
32 1 8 23 Not documented

ANSI-IEEE 754 [11] 32 1 8 23 NaN, Inf
64 1 11 52

represented in the working format for input that do not over-
flow. This implied modifications in some multiple precision
tools [3].

Fast small multipliers usually ignore partial products be-
low a given threshold and add a constant to correct the intro-
duced statistical bias [10]. Results lead us to think that this
constant is2−35 on ATI and41 · 2−30 and that multipliers
accumulate partial products on 9 extra rows on ATI and 6
extra rows on Nvidia. These figures do not include the extra
bit left of the mantissa. Other tests indicate that multipliers
use radix 2 sign-magnitude logic internally.

Additional tests showed that subnormal numbers are re-
placed by 0 during transfers even when no arithmetic op-
eration is performed on GPUs meaning that drivers proba-
bly perform arithmetic operations on textures. Non numeri-
cal quantities are not modified except that sNaN (signaling
NaN) is changed to qNaN (quiet NaN) on ATI.

3 Monte-Carlo line-by-line ray tracing

The experimental setting is presented in Figure 4. Ab-
sorption coefficientsκν of infrared participating gases CO2
and H2O (O2 and N2 are ignored) represent millions of lines
that are functions of temperatureT , pressurep, and compo-
sition xg in the following formulas [9, Annex A.2]. GPUs
handle all data-parallel computations in Listing 1 using con-
stants of Table 3.

Sig(T)

Sig(T0)
=

Q(T0)

Q(T)
· e

−
hcE′′

i
kBT

e
−

hcE′′

i
kB T0

·

(

1 − e
−

hcν0

kB T

)

(

1 − e
−

hcν0

kBT0

)

κν =
∑

g∈{g1,g2}

xgp

kBT

∑

i

Sig(T)Φi(ν − ν0,i)

Iout = Iin · e−κν ·l +
2hν3

c2
· 1
(

e
hcν

kB T − 1
) ·

(

1 − e−κν ·l
)

The first formula provides a ratioSig(T)
Sig(T0)

for spectral ray
i centered on wavenumberν0. This ratio is applied to the 16
contributions in the wavelength space of spectral rayi and
gasg in κν . Once this transformation is performed for all
the spectral rays of all the gases, the contributions are cu-
mulated to obtainκν for all the considered wavenumbersν.
We apply Beer-Lamber law for absorption (first term ofIout)
and Planck law for heat induced emissions (second term of
Iout) for a ray passing through lengthl of an isothermal ho-
mogeneous finite volume of Figure 5.

Wavelength integration computes the total heat transfer
∫

(Iin−Iout)dν of about224 values stored in a matrix of size
original_size and returns to main memory the total
energy absorbed in the finite volume. This task requires to
sum all the data of a texture. It is done by code in Listing 2
based on a parallel reduction scheme already published [8].
The total is evaluated with a multipass algorithm applied
log2(original_size) times as during each pass the al-
gorithm produces the sum of4 pieces of data from the pre-
vious stage.

Simulation of non-isothermal flows needs, at least, inte-
grations with respect to space. This is obtained by Monte-
Carlo line-by-line ray-tracing paradigm as presented Fig-
ure 5. The main simulation code on CPU directs this process
and averages the effect of individual rays.

We designed a program in two parts. The first part is
executed by the CPU and represents 3500 lines of C++
code and OpenGL directives. The second part is executed
by the pixel shaders of the GPU and represents 250 lines
of OpenGL shading primitives (ARB fragment program).
Among these 250 lines, Listing 1 and 2 correspond to the

TAB . 2 – Arithmetic experimentations and results.⊕, ⊖, ⊗ are the addition, subtraction and multiplication operators im-
plemented on GPU.M = 2127(2 − 2−23). U [a, b) are uniformly distributed random variables on[a, b). {ATI ;NV}-{P ;V}
corresponds to the Pixel or Vertex shader on ATI or Nvidia GPU. ’All’ means all combinations. Random tests are performed
on223 inputs, other tests are exhaustive.

Operations Unit Observations
(M ⊕ M) ⊖ M All −→ ∞

MAD(x, y,−x ⊗ y) All x ∼ U [1, 2) ∧ y ∼ U [1, 2) −→ 0
1 ≤ i ≤ 23 −→ 1.5 − 2−i

ATI-P i = 24 −→ 1.5 − 2−23

25 ≤ i −→ 1.5
1 ≤ i ≤ 23 −→ 1.5 − 2−i

NV-P 24 ≤ i ≤ 25 −→ 1.5 − 2−23

1.5 ⊖ 2−i 26 ≤ i −→ 1.5
ATI-V 1 ≤ i ≤ 23 −→ 1.5 − 2−i

24 ≤ i −→ 1.5 − 2−23

1 ≤ i ≤ 23 −→ 1.5 − 2−i

NV-V i = 24 −→ 1.5 − 2−23

25 ≤ i −→ 1.5
1 ≤ i ≤ 23 −→ 1.5 − 2−i

(1 ⊕ 0.5) ⊖ 2−i All-P 24 ≤ i ≤ 25 −→ 1.5 − 2−23

26 ≤ i −→ 1.5
1 ≤ i ≤ 23 −→ −2−i

ATI-P i = 24 −→ −2−23

25 ≤ i −→ 0
(1.5 ⊖ 2−i) ⊖ 1.5 1 ≤ i ≤ 23 −→ −2−i

NV-P 24 ≤ i ≤ 25 −→ −2−23

26 ≤ i −→ 0
x ⊗ y + (±x) ⊗ (∓y) All x ∼ U [1, 2) ∧ y ∼ U [1, 2) −→ 0
x ⊗ y − (−x) ⊗ (−y) All x ∼ U [1, 2) ∧ y ∼ U [1, 2) −→ 0

x ⊗ y − ((2 · x) ⊗ y)/2 All x ∼ U [1, 2) ∧ y ∼ U [1, 2) −→ 0
ATI-P i ≤ (211 − 1) · 212 −→ correct

(1 + 2−23) ⊗ (1 + 2−23i) NV-P i ≤ 23 · 217 −→ correct
ATI-V i ≤ 223 −→ correct
NV-V i ≤ 219 −→ correct
ATI-P x ∈ [1, 2) ∧ y ∈ [1, 2/x) −→ {−1.00031 ulp · · · 0.00215 ulp}

x ∈ [1, 2) ∧ y ∈ [2/x, 2) −→ {−1.00013 ulp · · · 0.00085 ulp}
NV-P x ∈ [1, 2) ∧ y ∈ [1, 2/x) −→ {−0.51099 ulp · · · 0.64063 ulp}

x ⊗ y − x × y x ∈ [1, 2) ∧ y ∈ [2/x, 2) −→ {−0.76504 ulp · · · 0.32031 ulp}
ATI-V x ∈ [1, 2) ∧ y ∈ [1, 2/x) −→ {−1 ulp · · · 0}

x ∈ [1, 2) ∧ y ∈ [2/x, 2) −→ {−1 ulp · · · 0}
NV-V x ∈ [1, 2) ∧ y ∈ [1, 2/x) −→ {−0.82449 ulp · · · 0.93750 ulp}

x ∈ [1, 2) ∧ y ∈ [2/x, 2) −→ {−0.91484 ulp · · · 0.46875 ulp}

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��
��
��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��
��
��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��
��
��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��
��
��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

������������

������������

������������

������������

������������

������������

������������

������������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

N2, 02, C02, H2O

Pressurized air

(8 atm)

(400-500˚ C)

Heat induced emissions
(mostly infra-red)

Metal pipe Turbine

Concentrated sunlight (partially reflected)

Heated gases

(800-1000˚ C)

FIG. 4 – The solar receptor as simulated. This device produces electricity from sunlight concentrated by a large reflector.
Concentrated sunlight is used to heat a metal pipe that transfers heat through contact and infra-red radiations. The goal is
to transfer as much energy as possible to the turbine. Dynamic and thermal phenomena are intricately interwoven as air
temperature raises.

Listing 1 – Parallel monochromatic intensity
!!ARBfp1.0
...
Suming up the contributions of gases
MUL kappa_nu, sig_g1, vnu_g1;
MAD kappa_nu, sig_g2, vnu_g2, kappa_nu;

MUL kappa_nu, kappa_nu, ll;

Special functions need 4 invocations
EX2 exp_kappa_nu_l.x, kappa_nu.x;
EX2 exp_kappa_nu_l.y, kappa_nu.y;
EX2 exp_kappa_nu_l.z, kappa_nu.z;
EX2 exp_kappa_nu_l.w, kappa_nu.w;

MUL exponent, hckbt, nu;
EX2 den.x, exponent.x;
EX2 den.y, exponent.y;
EX2 den.z, exponent.z;
EX2 den.w, exponent.w;

SUB den, den, one;

RCP inv.x, den.x;
RCP inv.y, den.y;
RCP inv.z, den.z;
RCP inv.w, den.w;

MUL nu3, nu, nu;
MUL nu3, nu3, nu;
MUL nu3, nu3, hc2;

MUL factor1, inv, nu3;
SUB factor2, one, exp_kappa_nu_l;
MUL term, i_in, exp_kappa_nu_l;

MAD i_out, factor1, factor2, term;

END

TAB . 3 – Constants of Listing 1. Vector constants of gases
g1 andg2 are computed on CPU and transfered to graphic
textures on program initialization. Other (scalar) constants
are computed on CPU and transfered to GPU for each itera-
tion. Factors1/ln(2) are introduced as GPUs currently only
support base-2 exponentials.

Scalar values computed on CPU and transfered to GPU

qr_g{1-2} = Q(T0)
Q(T)

ll = − l
ln(2)

hc2 = 2h
c2

hckbt = hc
kBT ln(2)

xpkbt_g{1-2} =
xgp

kBT

Vector values stored in graphic textures

vnu_g{1-2} = Sig(T0)Φi(ν − ν0,i)

Es_g{1-2} = E′′
i

den_g{1-2} = e
E′′

i
kB T0

(

1 − e
−

hcν0

kBT0

)−1

Listing 2 – Sum of the monochromatic energy absorbed by
the current finite volume
i n t s r c _ s i z e = o r i g i n a l _ s i z e ;
i n t d e s t _ s i z e = o r i g i n a l _ s i z e / 2 ;
i n t l e v e l s = log2 (o r i g i n a l _ s i z e) ;

f o r (i n t i = 0 ; i < l e v e l s − 1 ; i ++) {
/ / Reading from r e d u c t [i]
r e d u c t [i]−>AssignTexNum (8) ;
/ / Drawing to r e d u c t [i +1]
r e d u c t [i +1]−> A t tachRender T ar ge t (0) ;
g lBeg in (GL_TRIANGLES) ;
. . .

!!ARBfp1.0

OUTPUT I_sum = result.color;
TEMP I0, I1, I2, I3, I_sum_1, I_sum_2;

TEX I0, fragment.texcoord[0], texture[8], RECT;
TEX I1, fragment.texcoord[1], texture[8], RECT;
TEX I2, fragment.texcoord[2], texture[8], RECT;
TEX I3, fragment.texcoord[3], texture[8], RECT;

ADD I_sum_1, I0, I1;
ADD I_sum_2, I2, I3;
ADD I_sum, I_sum_1, I_sum_2;

END
. . .
g lEnd () ;
s r c _ s i z e = d e s t _ s i z e ;
d e s t _ s i z e = d e s t _ s i z e / 2 ;

}

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��Updated spectrum

Current volume
Temperature
Composition
Geometry

Current (incoming) spectrum A
bsorbed

energy

Next volume

Random ray (direction and origin)

Previous volume

FIG. 5 – Monte-Carlo ray-tracing through finite volumes

 100000

 1e+06

 1e+07

 1e+08

 1000 10000 100000 1e+06
 10

 100

 1000

R
ay

s
pe

r
se

co
nd

S
pe

ed
up

Cell size

Intel Pentium 4 3GHz
Nvidia 7800 GTX
ATI X1800 XL
Speedup

FIG. 6 – Number of ray treated by second. Both GPUs run
100 iterations. GPU performance loss around106 rays is
due to data to large to fit in graphic memory and should
disappear with newer GPU boards.

core of the process we are simulating. In addition, we wrote
the same program entirely using CPU to measure the benefit
of the GPU. We ran these programs on a Pentium 4 system
with 1 GB of memory and with a Nvidia 7800GTX and an
ATI RX1800XL graphic card both with 256 MB. We mea-
sured the number of rays evaluated per second depending
on the number of cells we are considering. The results are
plotted in Figure 6 with logarithmic axis and show a speed-
up as high as 420 compared to CPU.

This impressive speed-up is due to the ability of GPUs
to perform many complex operations per cycle. Each pixel
shader can start one exponential per cycle thanks to dedi-
cated hardware. As there are up to 24 shaders, 24 exponen-
tials are initiated at 486 Mhz leading to13.2 109 exponen-
tials per second. On the CPUs, exponential functions are
evaluated in software or in micro-code and require typically
100 cycles to complete. On a 3 Ghz Pentium 4 this means
about30 106 exponentials per second. The second reason
for oour speed-up lies in fact that GPUs and drivers exploit
regularity in the code to hide memory latency and execute
floating point operations in parallel in pixel shaders.

4 Conclusion and perspectives

We started this report with test vectors aimed at the char-
acterization of floating operators on GPUs that helped us in
the development of simulation of solar receptor. We showed
that :

– Temporary results are computed to 32 bit format.
– Multipliers uses constants to compensate for dis-

carded partial products.
– Some Nvidia adders use an extra bit.

We will certainly set up more test vectors as we continue
working on GPUs.

We accelerated the computation of radiation properties
in order to simulate precisely, i.e. using line-by-line spec-
tra of gases. Common speed-up brought by GPU start at 5
and may climb to 50 as some developments in the indus-
try are claiming2. Our GPU implementation is 400 times
faster than CPU evaluation. This performance almost pre-
serves the computing resource available on CPU as we no-
ticed a runtime increase below 1% program saturates our
CPU and GPU compared to the same program with no re-
quest to GPU.

These figures where obtained using a fixed number (16)
of points of evaluation for each ray. Our next version will
dynamically adapt the number of rays depending on the lo-
cal temperature and the intensity of the ray. This tasks will
involve vertex shadders and blending units. Blending units
starting with Nvidia 8800 operate on 32 bit floating point
data. Work on radiosity will be performed only if discrep-
ancies between simulations and experimentations show that
the effect of diffusion cannot be ignored.

The impressive speed-up reported here was due to the
large number of spectral rays for one single ray-tracing
leading to a huge amount of data parallel transformations.
Similar speed-ups may be obtained for other settings. One
possible application of GPGPU with connection to the in-
dustry, is a prototype to speed-up simulations of complex re-
ceptor surfaces that average spectral effects to two bands of
wavelength (infrared and visible) but require a large number
of rays to accurately account for anisotropic reflections and
absorptions. Such simulations could be the key to the de-
sign of home solar receptors with enhanced behavior during
mornings and evenings when domestic activities use most
heated water.

As we are building know-how on porting simulations for
thermal sciences to GPUs we will explore automatic tools
and build libraries of techniques to efficiently reuse partsof
our developments.

Références

[1] I. Buck, K. Fatahalian, and P. Hanrahan. GPUbench : eval-
uating gpu performance for numerical and scientifc appli-
cation. InProceedings of the ACM Workshop on General-
Purpose Computing on Graphics Processors, pages C–20,
Los Angeles, California, 2004.

[2] C. Cebenoyan. Floating point specials on the GPU. Techni-
cal report, Nvidia, february 2005.

[3] G. D. Graça and D. Defour. Implementation of float-float
operators on graphics hardware. In7th Real Numbers and
Computers Conference, pages 23–32, Nancy, France, 2006.

[4] K. Hillesland and A. Lastra. GPU floating-point paranoia. In
ACM Workshop on General Purpose Computing on Graph-
ics Processors, page C8, August 2004.

2Seehttp://www.emphotonics.com/fastfdtd.html.

[5] L. Ibgui and J.-M. Hartmann. An optimized line by line
code for plume signature calculations — I : model and data.
Journal of Quantitative Spectroscopy and Radiative Trans-
fer, 75(3) :273–295, 2002.

[6] K. A. Jensen, J.-F. Ripoll, A. A. Wray, D. Joseph, and M. E.
Hafi. On various modeling approaches to radiative heat
transfer in pool fires.Combustion and Flame, 148(4) :263–
279, 2007.

[7] D. Manocha. General purpose computations using graphics
processors.IEEE Computer, 38(8) :85–88, 2005.

[8] M. Pharr, editor.GPUGems 2 : Programming Techniques for
High-Performance Graphics and General-Purpose Compu-
tation. Addison-Wesley, 2005.

[9] L. Rothman et al. The HITRAN molecular spectroscopic
database and HAWKS (hitran atmospheric workstation) :
1996 edition.Journal of Quantitative Spectroscopy and Ra-
diative Transfer, 60(5) :665–710, 1998.

[10] M. J. Schulte and E. E. Swartzlander. Truncated multipli-
cation with correction constant. InProceedings of the 6th
IEEE Workshop on VLSI Signal Processing, pages 388–396.
IEEE Computer Society Press, 1993.

[11] D. Stevenson et al. An American national standard : IEEE
standard for binary floating point arithmetic.ACM SIG-
PLAN Notices, 22(2) :9–25, 1987.

