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Abstract.  

Serotonin 5-HT2B receptors are often co-expressed with 5-HT1B receptors, and crosstalk 

between the two receptors has been reported in various cell types. However, many 

mechanistic details underlying 5-HT1B and 5-HT2B receptors crosstalk have not been 

elucidated. We hypothesized that 5-HT2B and 5-HT1B receptors affect each other's signaling 

by modulating each other's trafficking. We thus examined the agonist stimulated 

internalization kinetics of fluorescent protein-tagged 5-HT2B and 5-HT1B receptors when 

expressed alone and upon co-expression in LMTK- murine fibroblasts. Time-lapse confocal 

microscopy and whole-cell radioligand binding analyses revealed that 5-HT2B and 5-HT1B 

receptors when expressed alone displayed distinct half-lives. Upon co-expression, serotonin-

induced internalization of 5-HT2B receptors was accelerated five-fold, and insensitive to a 5-

HT2B receptor antagonist. In this context, 5-HT2B receptors did internalize in response to a 5-

HT1B receptor agonist. In contrast, co-expression did not render 5-HT1B receptor 

internalization sensitive to a 5-HT2B receptor agonist. The altered internalization kinetics of 

both receptors upon co-expression was likely not due to direct interaction as only low levels 

of co-localization were observed. Antibody knock-down experiments revealed that 

internalization of 5-HT1B receptors (expressed alone) was entirely clathrin-independent and 

Caveolin1-dependent, while that of 5-HT2B receptors (expressed alone) was Caveolin1-

independent and clathrin-dependent. Upon co-expression, serotonin-induced 5-HT2B receptor 

internalization became partially Caveolin1-dependent, and serotonin-induced 5-HT1B 

receptor internalization became entirely Caveolin1-independent in a protein kinase Cepsilon-

dependent fashion. In conclusion, these data demonstrate that co-expression of 5-HT1B and 5-

HT2B receptors influences the internalization pathways and kinetics of both receptors.  
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Introduction. 

Serotonin (5-hydroxytryptamine, 5-HT) is a potent vasoactive molecule and also a major 

neurotransmitter in both the central and peripheral nervous systems (Hoyer et al., 2002). All 

5-HT receptors, except 5-HT3, belong to the rhodopsin-like G protein-coupled receptor 

(GPCR) superfamily. The 5-HT1B, 5-HT2B, and 5-HT2A receptors were found in endothelial 

and smooth muscle cells from several human and mouse arteries at mRNA, protein and 

functional levels (Ullmer et al., 1995; Watts et al., 1996). Also, various human meningeal 

tissues have been found to co-express 5-HT1B and 5-HT2B receptor mRNA (Schmuck et al., 

1996). Thus, given their co-expression and their role in regulating smooth muscle 

contractility (Banes and Watts, 2003), 5-HT1B and 5-HT2B receptors have been implicated in 

the pathogenesis of migraine headaches (Kalkman, 1994; Poissonnet et al., 2004; 

Schaerlinger et al., 2003), an idea supported by the efficacy of 5-HT1B receptor agonist-based 

antimigraine therapy (Imitrex, Sansert). The antimigraine efficacy of 5-HT2B receptor 

antagonists is less clear, but suspected (Schmuck et al., 1996), although the underlying 

mechanisms remain to be identified. 

 A general feature of GPCRs is the existence of complex intracellular regulatory 

mechanisms that modulate receptor responsiveness. Receptor desensitization and down-

regulation are well described for various individual GPCR sub-types and are important 

homeostatic mechanisms. Homologous desensitization involves the desensitization of a 

particular  receptor subtype upon activation of that receptor subtype. In contrast heterologous 

desensitization involves the desensitization of receptor subtype(s) upon stimulation of a 

different receptor subtype. In view of the increasing number of reports of GPCRs 

participating in complexes via dimerization or scaffolding proteins, crosstalk between 

receptor subtypes may represent an important additional regulatory mechanism at modulating 

sensitivity and/or signal transduction. Agonist-induced internalization of GPCRs uses a 
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pathway determined by a kinase that phosphorylates the receptor: for the β1-adrenergic 

receptor, protein kinase A (PKA)-mediated phosphorylation directs internalization via 

caveolae, whereas GPCR kinase (GRK)-mediated phosphorylation directs internalization 

through clathrin-coated pits (Rapacciuolo et al., 2003). The recruitment, activation, and 

scaffolding of cytoplasmic signaling complexes occurs via two multifunctional adaptor and 

transducer molecules, β-Arrestin-1 and -2 (Lefkowitz and Shenoy, 2005).  

 Among the described internalization mechanisms, 5-HT-induced receptor 

desensitization has been reported for receptors closely related to 5-HT2B receptors, i.e. 5-

HT2A and 5-HT2C receptors. Desensitization of 5-HT2A receptor was shown to involve 

receptor internalization through caveolin1 (Cav1), a scaffolding protein enriched in caveolae, 

in a number of cell lines expressing exogenous 5-HT2A receptors, and rat brain synaptic 

membrane preparations (Bhatnagar et al., 2004). There is also evidence for functional 

interactions among 5-HT2A receptors and other plasma membrane microdomain proteins: 5-

HT-induced 5-HT2A receptor desensitization can also involve receptor internalization through 

a clathrin- and dynamin-dependent process (Hanley and Hensler, 2002). Internalization and 

desensitization of 5-HT2A receptors in some cell types is arrestin-independent (Gray et al., 

2003). A direct interaction between PSD-95 and the 5-HT2A receptor at a type I PSD-95, Dlg, 

ZO-1 (PDZ)-binding domain at the C-terminus regulates the receptor’s signal transduction 

and trafficking (Xia et al., 2003). For the 5-HT2C receptor, constitutively active edited 

isoform is spontaneously internalized in an agonist-independent manner via the activity of a 

GPCR kinase (GRK)/β-arrestin (Marion et al., 2004).  

 Receptor oligomerization is a pivotal aspect of the structure and function of GPCRs 

that has also been shown to have implications for receptor trafficking, signaling, and 

pharmacology (George et al., 2002). Serotonin 5-HT2C receptors were shown to exist as 

constitutive homodimers on the plasma membrane of living cells using a confocal-based 
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fluorescent resonance energy transfer (FRET) method (Herrick-Davis et al., 2004). Inactive 

5-HT2C receptors can inhibit wild-type 5-HT2C receptor function by forming nonfunctional 

heterodimers expressed on the plasma membrane. (Herrick-Davis et al., 2005). The 5-HT1B 

and 5-HT1D receptor subtypes that share a high amino acid sequence identity have also been 

shown to exist as monomers and homodimers when expressed alone and as monomers and 

heterodimers when co-expressed (Xie et al., 1999). Heterodimerization between 5-HT1 and 

5-HT2 receptors and its functional consequences have yet to be investigated. 

 The mechanistic details of 5-HT1B receptors internalization have not yet been 

determined. Despite the co-expression of 5-HT1B and 5-HT2B receptors in various tissues 

including endothelial and smooth muscle cells (Ullmer et al., 1995), and given the inhibitory 

effect of 5-HT2B receptors on 5-HT1B receptor signaling (Tournois et al., 1998), physical 

interaction between the two receptors seems plausible. The internalization of the 5-HT2B 

receptor is faster than that of 5-HT2A and 5-HT2C receptors (Deraet et al., 2005; Porter et al., 

2001; Schaerlinger et al., 2003), though the mechanism underlying this distinction has not 

been uncovered. In this work, we investigated potential 5-HT1B/2B receptor interactions by 

examining the co-localization and internalization kinetics of 5-HT1B and 5-HT2B receptors 

expressed alone or together. Using cyan and yellow fluorescent protein (CFP and YFP) 

tagged receptors and confocal microscopy, we observed agonist-induced receptor 

endocytosis in real time. We also performed whole cells radioligand binding studies as an 

additional means of measuring receptor internalization. Our results indicate that the 

stimulation of 5-HT1B receptors affects the internalization dynamics of 5-HT2B receptors and 

vice versa, with the effect of 5-HT1B receptors on 5-HT2B receptors being more pronounced 

than the effect of the latter receptor on the former. Furthermore, we utilized an antibody 

knockdown strategy to ascertain which pathways each receptor used for internalization. Our 

findings reveal that co-expression of 5-HT1B and 5-HT2B receptors affects both the kinetics of 
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receptor internalization and the internalization pathway employed compared to either 

receptor expressed alone. 
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Materials and Methods.  

Reagents. RS-127445, 2-amino-4-(4-fluoronaphth-1-yl)-6-isopropylpyrimidine was kindly 

provided by the Roche company; CP-93129, 1,4-Dihydro-3-(1,2,5,6-tetrahydropyrid-4-

yl)pyrrolo{3,2-b} pyridin-5-one dihydrochloride, BW-723C86, 1-{5-(2-thienylmethoxy)-1H-

3-indolyl}propan-2-amine hydrochloride, H-89, N-{2-((p-Bromocinnamyl)amino)ethyl}-5-

isoquinolinesulfonamide dihydrochloride, Gö 6850-Bisindolylmaleimide I, 2-{1-(3-

Dimethylaminopropyl)-1H-indol-3-yl}-3-(1H-indol-3-yl)-maleimide, Gö 6976, 12-(2-

Cyanoethyl)-6,7,12,13-tetrahydro-13-methyl-5-oxo-5H-indolo(2,3-a)pyrrolo(3,4-c)-carbazole, 

and all other chemicals were reagent grade, purchased from usual commercial sources. The 

radioactive compounds (6)-[125I]1-(2,5-dimethoxy-4-iodophenyl)- 2-aminopropane 

hydrochloride ([125I]DOI, 81.4 TBq/mmol) and [125I]-serotonin-5-O-carboxymethyl-glycil-

iodo-tyrosamine ([125I]GTI, 81.4 TBq/mmol) were purchased from NEN Perkin Elmer. 

Already specificity-tested antibodies were used: rabbit antisera against rodent Cav1 (H-97, sc-

7875), clathrin (H-300, sc-9069), GRK2,3 (H-222, sc-8329) and GRK5,6 (C-20, sc-565) and 

goat antiserum against rodent β-Arrestin-2 (D-18, sc-30938) and PKCε (C15, sc-214) (Santa 

Cruz Biotechnology; Santa Cruz, CA). 

Mutagenesis and 5-HT2B receptor constructs-The fluorescent tagged fusion proteins of the 

mouse 5-HT2B and 5-HT1B receptors were generated by PCR-based sub-cloning. The receptor 

coding regions were sub-cloned into pECFP, pEYFP, pPA-GFP (photo-activable GFP) 

vectors with the XFP fused to the N-terminus of the receptors. The entire coding sequence of 

all constructs was verified by automated DNA sequencing.  

Cell culture-5-HT2B and 5-HT1B receptor cDNAs were stably transfected into non-

transformed murine fibroblast (LMTK-) cells, which are devoid of endogenous 5-HT 

receptors as they do not exhibit a concentration-dependent rise in second messengers after 5-

HT stimulation (Manivet et al., 2000). LMTK- cell lines were routinely cultured in 
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Dulbecco’s modified Eagle’s medium (Gibco) containing 10% heat-inactivated fetal bovine 

serum and 40 µg/ml gentamycin. The stably expressing mouse 5-HT1B and 5-HT2B cell lines 

were generated by calcium phosphate transfection followed by selection with either G-418 or 

hygromycin and clonal isolation. Stable receptor-expressing lines were sub-cultured in serum 

free medium at least 24 h prior to experiments. Stable cell lines with different combination of 

receptor expression insured the absence of individual cell based effects.  

Radioligand binding experiments-Radioligand binding experiments were performed using 

[125I]-DOI or [125I]-GTI either on intact cells or on membranes from stably transfected cells 

as previously detailed (Loric et al., 1995).  

Cell Permeabilization—The cells were washed twice with phosphate buffered saline 

containing 0.1% bovine serum albumin and exposed to 1 hemolytic unit of alveolysin/106 

cells at 22°C under agitation as described (Manivet et al., 2000).  

Internalization measurements by confocal microscopy-For confocal microscopic studies of 

living cells, stable or transiently transfected cell lines were plated 36 hr before the analysis on 

35-mm glass bottom dishes (MatTek; NH, USA) and grown in a 5.4% CO2 incubator. 

Twelve hours before the experiment, cells were washed in Dulbecco modified Eagle medium 

without serum and maintained in this medium until the experiment. Confocal analysis were 

performed at 22°C unless otherwise mentioned in the text to extend the kinetic and 37°C was 

used to confirm the observed phenomenon at 22°C. Cells were visualized using a Leica 

SP2AOBS confocal microscope (Manheim, Germany) with laser excitation lines of 458 nm 

and 514 nm for CFP and YFP tagged receptors and transmitted light. Images of CFP and 

YFP emission were recorded simultaneously with the transmitted light images. The emission 

recording channels and the intensity of the excitation lasers were carefully chosen using 

single tag control linear unmixing technique (LEICA) to avoid bleed-through. Images (in xyzt 

mode) were recorded sequentially every five minutes in two different emission intervals (462 
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nm to 500 nm and 520 nm to 600 nm for CFP and YFP, respectively) with two different 

excitation wavelengths (458 nm and 514 nm). To ensure consistency among z-plane images 

during time-lapse study, we took at least five z-plane images and manually selected only one 

plane for the time-lapse analysis. To visualize receptor internalization after agonist treatment, 

time-lapse series were taken every 5 min over a 30 min period. To calculate the 

internalization kinetics of the receptors, we selected ten regions of interest (ROI) on the 

plasma membrane per cell and followed the relative intensity changes of these ROIs by time, 

including at least three to five individual cells per experiment. Data represent more than four 

independent experiments. The kinetic curves were corrected for bleaching by using the 

intensity of the whole cell as a normalization factor. PA-GFP was activated with a 405 nm 

diode laser line pulse lasting 10 to 15 sec and visualized between 495 and 515 nm using a 

488-nm excitation. 

FRET measured by confocal microscopy-For the co-localization of 5-HT2B and 5-HT1B 

receptors in living cells, sensitized emission fluorescent resonance energy transfer (FRET) 

was used. Two additional channels, namely the FRET channel (excitation: 458 nm, emission: 

520 nm to 600 nm) and a control channel (excitation: 514 nm, emission: 462 nm to 500 nm) 

were recorded along with the CFP and YFP channels as described above. The bleed-through 

of CFP and the direct excitation of YFP by the 458 nm laser light were subtracted from the 

FRET channel signal. To estimate these artifacts, we used cells transfected with either CFP- 

or YFP-tagged receptor. Calculation of corrected FRET was carried out on a pixel-by-pixel 

basis for the entire image. Indeed, positive FRET signal could be obtained using tagged 

proteins known to interact in similar experimental set up (not shown). 

Co-localization calculation-We considered that two proteins were co-localized if the observed 

signals of the two corresponding labels were non-zero at the same pixel. The quantitative 

estimate of co-localization is given as the co-localization coefficients (Manders et al., 1992). 
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To quantify the co-localized fraction of each receptor pair, a threshold value for each channel 

was estimated and subtracted. Bleed-through in each of the two detecting channels was 

subtracted using the linear unmixing method (Leica).  

Data analysis-Binding data were analyzed using the iterative non-linear regression model 

(GraphPad Prism 2.0). This allowed the calculation of dissociation constants (KD) and the 

number of sites (Bmax). All values represent the average of independent experiments ± SEM (n 

= number of experiments as indicated in the text). Comparisons between groups were 

performed using Student’s unpaired t test or ANOVA and a Fischer test. Significance was set 

at p<0.05.  
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Results 

 Radioligand saturation binding assays were performed on membranes from stable, 

clonal cell lines expressing either 5-HT1B or 5-HT2B receptors, bearing various N-terminal 

fluorescent protein tags as well as on cells co-expressing both receptors. The clones chosen 

for subsequent experiments were selected so as to approximate physiological receptor 

expression (Bmax of approximately 100 fmol/mg protein) (Table 1). In control experiments 

with non-tagged receptors, we verified that none of the N-terminal fluorescent tags affected 

radioligand affinity (Table 1). Also, whole-cells radioligand binding experiments on clones 

expressing either fluorescent protein tagged or non-tagged receptors yielded a Bmax 

approximately 60% of that measured on membrane preparations, suggesting that the 

fluorescent tag did not perturb membrane targeting (Table 1).  

 

Kinetics of 5-HT-induced internalization of 5-HT2B and 5-HT1B receptors. 

 To establish a quantitative method to measure internalization kinetics of the tagged 

receptors, fluorescence intensity at the membrane was compared with that in the cytoplasm in 

cells treated with 100 nM 5-HT for 0 to 30 minutes. The time-dependent fluorescence 

intensity changes at the plasma membrane and in the cytoplasm both fit a one-phase 

exponential function (decrease for the plasma membrane, increase for the cytoplasm) and had 

similar half-lifes (5-HT2B receptor cytoplasm t1/2 = 23.0 ± 3.0 min, membrane t1/2 = 22.2 ± 3.3 

min; 5-HT1B receptor cytoplasm t1/2 = 9.8 ± 2.2 min, membrane t1/2 = 10.7 ± 1.4 min). 

Because the signal-to-noise ratio was higher for the measurement of decreases in plasma 

membrane fluorescence, this was chosen to measure endocytosis kinetics at the plasma 

membrane (Fig 1A-B). To further confirm that we were measuring receptor endocytosis, we 

performed experiments with photoactivable (PA) GFP-tagged 5-HT1B receptors and compared 

the rate of decrease in fluorescence intensity of the illuminated membrane region to that 
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determined for plasma membrane YFP-tagged 5-HT1B receptors. As before, for both GFP- 

and YFP-tagged 5-HT1B receptors, the internalization kinetics fitted a one-phase exponential 

decay and were identical (5-HT1B-PA-GFP t1/2 = 9.8 ± 0.7 min; 5-HT1B-YFP t1/2 = 10.1 ± 1.2 

min), further validating our image-based analysis of receptor internalization kinetics.  

 Similar confocal laser microscopy studies with various concentrations of 5-HT 

revealed a concentration dependence on internalization kinetics. While at 100 nM 5-HT-

induced internalization of 5-HT1B receptors was twice as fast as that of 5-HT2B receptors, at 

higher concentrations of 5-HT internalization of both receptors occurred at similar rate. 

Furthermore, 5-HT-induced 5-HT2B receptor internalization rate increased twice as fast as that 

of 5-HT1B receptors as a function of 5-HT concentration (Fig. 1C).  

 Having established internalization kinetics for both receptors expressed alone, we set 

out to ascertain whether co-expression altered 5-HT-induced 5-HT1B and 5-HT2B receptor 

internalization rates. Co-expression with the 5-HT1B receptor resulted in a five-fold increase 

in the rate of 5-HT-induced 5-HT2B receptor internalization (2B1B) (t1/2 = 4.0 ± 1.5 min vs. 

23.0 ± 3.0) (Fig. 1D-E). On the other hand, co-expression with 5-HT2B receptors had no effect 

on 5-HT-induced 5-HT1B receptor internalization rate (1B2B) (t1/2 = 9.0 ± 1.0 min vs. 9.8 ± 

2.2) (Fig. 1D-E). Kinetic whole-cell radioligand binding experiments corroborated our 

microscopy data revealing the asymmetric effect of receptor co-expression on 5-HT-induced 

5-HT1B and 5-HT2B receptor internalization rate (Fig. 1E-F).  

 

Agonist-dependent 5-HT2B receptor internalization.  

 To determine whether the effect of 5-HT1B receptors on 5-HT2B receptor 

internalization kinetics involved activation of 5-HT2B receptors, we stimulated cells co-

expressing both receptors in the absence and presence of the highly selective 5-HT2B receptor 

antagonist RS127445 (RS). In cells expressing 5-HT2B receptor alone, 100 nM RS completely 
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blocked 5-HT-induced 5-HT2B receptor internalization. Strikingly, RS had no effect on 5-HT-

induced 5-HT2B receptor internalization in cells co-expressing 5-HT1B receptors (Table 2). RS 

did not significantly affect 5-HT-induced 5-HT1B receptor internalization irrespective of 5-

HT2B receptor co-expression. 

 To investigate whether modulation of internalization kinetics was agonist-dependent, 

we stimulated with the preferential 5-HT2B receptor agonist BW723C86 (BW). Treatment 

with 50 nM BW induced no 5-HT1B receptor internalization, but did stimulate 5-HT2B 

receptor internalization (t1/2 = 11.0 ± 1.5 min) in non-co-expressing cells (Fig. 2A-Table 2). 

Co-expression of 5-HT1B and 5-HT2B receptors did not significantly alter the effect of BW on 

the internalization of either receptor: the internalization kinetics of 5-HT2B receptors changed 

only slightly in the presence of 5-HT1B receptor (t1/2 = 7.2 ± 1.1 min) (Fig. 2B-Table 2), while 

no internalization of 5-HT1B receptors was observed (Fig. 2C) 

 

Agonist-dependent 5-HT1B receptor internalization.  

 To further investigate putative reciprocal interactions between 5-HT1B and 5-HT2B 

receptors, we studied the agonist-induced internalization kinetics of the 5-HT1B receptor. The 

selective agonist CP93129 (CP, 75 nM), induced 5-HT1B receptor internalization (t1/2 = 

14.1±0.7) but did not affect 5-HT2B receptor distribution in non-co-expressing cells (Fig. 2D). 

We observed similar CP-induced internalization kinetics for both receptors (t1/2 = 6.9 ± 0.9 

min for 5-HT2B receptors; t1/2 = 4.9 ± 1.3 min for 5-HT1B receptors) upon co-expression (Fig. 

2E-Table 2). Interestingly, co-expression with 5-HT2B receptors caused a three-fold increase 

in CP-induced internalization of 5-HT1B receptors (t1/2 = 4.9 ± 1.3 min vs. t1/2 = 14.1 ± 0.7 

min) (Fig. 2F-Table 2). These results reveal that, while co-expression with 5-HT2B receptor 

does not affect BW-induced 5-HT1B receptor internalization, the presence of 5-HT2B receptor 

does modulate CP-induced 5-HT1B receptor internalization. 
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Temperature dependence of 5-HT1B and 5-HT2B receptor internalization.  

 To verify that agonist-induced receptor internalization was due to an energy-dependent 

endocytic process, receptor internalization assays were performed at various temperatures. As 

expected, the kinetics of 5-HT-induced receptor internalization were faster at higher 

temperatures for both receptors irrespective of co-expression. In addition, the temperature 

dependence of agonist (5-HT or subtype selective)-induced receptor internalization rate 

appeared linear for 5-HT1B receptors and biphasic for 5-HT2B receptor when expressed alone 

(Fig. 3A-B).  

 Co-expression of both receptors did not appear to affect the effect of temperature on 

CP-induced 5-HT1B receptor internalization (Fig. 3C). On the other hand, co-expression with 

5-HT1B receptors rendered the temperature dependence of BW-induced 5-HT2B receptor 

internalization more linear (Fig. 3D). Furthermore, the temperature dependence of CP-

induced 5-HT2B receptor internalization rate was identical to that observed for 5-HT1B 

receptors (Fig 3E).  

 

Microscopic analysis revealed no receptor co-localization.  

 The apparent effect of receptor co-expression on agonist-induced 5-HT2B and 5-HT1B 

receptor internalization led us to hypothesized receptor heterodimerization. Therefore, we 

performed confocal microscopy on cells co-expressing CFP-5-HT1B and YFP-5-HT2B 

receptors. Cellular distribution analysis of the two receptors revealed about 20% co-

localization in the plasma membrane prior to stimulation (Fig 4). After 30 min of agonist 

stimulation, cytoplasmic co-localization of 5-HT2B and 5-HT1B receptors was still around 20% 

irrespective of agonist. Using enhanced emission to measure FRET, we observed nearly no 

FRET signal at 5-HT1B/5-HT2B receptor co-localization points (Fig 4). Thus, our image-based 
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analysis of co-localization was not consistent with agonist-induced 5-HT1B/5-HT2B receptor 

complex formation. 

 

Serotonin 5-HT2B and 5-HT1B receptor internalization occurs via distinct pathways. 

 In the absence of evidence supporting 5-HT1B/5-HT2B heterodimerization, we 

investigated the internalization pathways used by the receptors. We performed whole-cell 

binding studies on cells permeated with antibodies against proteins known to be involved in 

GPCR internalization. Cell surface receptor expression (Bmax) was measured as a function of 

agonist exposure time to measure internalization half-life. Notably, the alveolysin and 

antibody treatments did not affect agonist and radioligand affinities (not shown). 

 We observed that the internalization of 5-HT1B receptors expressed alone was 

independent of GRK5,6 (not shown) and clathrin, but totally dependent on Cav1 and GRK2,3 

when stimulated by 5-HT or CP (Fig. 5A-B). The internalization of 5-HT2B receptors 

expressed alone was independent of GRK5,6 (not shown) and Cav1, but completely 

dependent on clathrin and Arrestin-2 when stimulated by 5-HT or BW (Fig. 5A-C). These 

results established that 5-HT1B and 5-HT2B receptors, when expressed alone, utilized distinct 

internalization pathways in an identical cell background. 

 We next applied the antibody knockdown strategy to cells co-expressing 5-HT1B and 

5-HT2B receptors. When stimulated by 5-HT or CP, but not BW, the internalization of 5-HT2B 

receptors became partially sensitive to Cav1 antibodies. Furthermore, the internalization of 5-

HT2B receptors was entirely sensitive to Arrestin-2 antibodies when stimulated with 5-HT in 

the absence or presence of 5-HT1B receptors, and with CP in the presence of 5-HT1B receptors 

(Fig. 5A-B). However, 5-HT2B receptor internalization was only partially inhibited by anti-

Arrestin-2 when co-expressed with 5-HT1B receptors and stimulated with BW (Fig. 5C). This 

result further suggested that 5-HT1B receptors could affect the internalization pathway of 5-
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HT2B receptors. Finally, the agonist-induced internalization of 5-HT2B receptors was partially 

dependent on GRK2,3 when co-expressed with 5-HT1B receptors and stimulated with 5-HT, 

CP, or BW (Fig. 5). Thus, the effect of 5-HT1B receptor co-expression on 5-HT2B receptors 

caused a fraction of 5-HT2B receptors to internalize via a Cav1-, GRK2,3-dependent pathway. 

 With respect to 5-HT1B receptors, co-expression with 5-HT2B receptors caused 5-HT-

induced 5-HT1B receptor internalization to become totally independent of Cav1 and GRK2,3. 

Furthermore, upon co-expression with 5-HT2B receptors, 5-HT-induced 5-HT1B receptor 

internalization was still independent of clathrin and Arrestin-2. In contrast, the Cav1/GRK2,3 

dependence of CP-induced 5-HT1B receptor internalization was not affected by co-expression 

with 5-HT2B receptors. Thus, the effect of 5-HT2B receptor co-expression on 5-HT1B receptor 

internalization is to alter the 5-HT-induced internalization pathway from a fully Cav1-

dependent pathway to one fully independent of both Cav1 and clathrin (Fig. 5). 

 

Serotonin-induced stimulation of PKCε by 5-HT2B receptors regulates the pathway of 5-

HT1B receptor internalization. 

 To investigate the non-Cav1-, non-clathrin-dependent internalization pathway used by 

5-HT-stimulated 5-HT1B receptors co-expressed with 5-HT2B receptors, we tested the effect of 

various protein kinase inhibitors. The wide protein kinase inhibitor staurosporine (5 µM), 

which inhibit PKC, PKA and PKG, blocked 5-HT-induced 5-HT1B receptor internalization 

when co-expressed with 5-HT2B receptors (Fig. 6). H89 (5 µM), which inhibits PKA, PKG, 

and PKCµ but not other PKCs (Davies et al., 2000), had no effect on 5-HT1B or 5-HT2B 

receptor internalization. To further refine these results, we used PKC isotype-selective 

inhibitors to identify the PKC isozyme involved. We found that Gö 6850-

Bisindolylmaleimide I (100 nM), a PKC inhibitor with high selectivity for PKCα-, βI-, βII-, 

γ-, δ-, and ε- isozymes, completely prevented 5-HT-induced 5-HT2B receptor internalization 
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or that of 5-HT1B receptors in the presence of 5-HT2B receptors. This blocking effect was not 

observed with Gö 6976 (100 nM), which selectively inhibits the Ca2+-dependent PKC α and 

βI. Finally, the blocking effect of Gö 6850-Bisindolylmaleimide was completely reproduced 

using PKCε antibody knockdown (Fig. 6). These data indicate that the 5-HT stimulation of 5-

HT2B receptors triggers 5-HT1B receptor internalization via a pathway that requires 5-HT2B 

receptor dependent PKCε activation.  
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Discussion 

 Given (i) the wide in vivo co-expression of 5-HT1B and 5-HT2B receptors (Banes and 

Watts, 2003; Ishida et al., 1999; Ishida et al., 1998; Kellermann et al., 1996; Nicholson et al., 

2003; Stefulj et al., 2000), (ii) the established inhibitory effect of 5-HT2B on 5-HT1B receptor 

signaling (Tournois et al., 1998), (iii) the clinical utility of 5-HT1B receptor agonists, and (iv) 

the putative efficacy of 5-HT2B receptor antagonists in treating migraines, knowledge about 

regulatory mechanisms between the two receptors is of high interest for understanding current 

and designing novel pharmaceuticals for therapeutic treatments. The main finding of this 

paper is the asymmetric, agonist-dependent cross-regulation of 5-HT1B and 5-HT2B receptor 

internalization. The evidence for this cross-regulation is that the 5-HT1B receptor agonist CP 

causes 5-HT2B receptor to internalize only if 5-HT1B receptor is present, while the 5-HT2B 

receptor agonist BW does not similarly affect 5-HT1B receptors. However, CP-induced 

internalization of 5-HT1B receptor is faster when 5-HT2B receptors are present, demonstrating 

an effect of 5-HT2B receptors on 5-HT1B receptor internalization. Furthermore, co-expression 

with 5-HT2B receptors causes 5-HT1B receptors to adopt a Cav1-, clathrin-independent but 

PKCε-dependent 5-HT-induced internalization, while a portion of 5-HT2B receptors assumes a 

Cav1-dependent 5-HT-induced internalization pathway.  

 The present results demonstrate that individually, 5-HT1B and 5-HT2B receptors 

expressed in non-transformed mouse fibroblast LMTK- cells use classically described agonist-

dependent internalization pathways. The differences in the kinetics and temperature 

dependence of internalization strongly support the notion that these two receptors—when 

expressed alone—use different endocytic pathways, each agonist leading to specific output. 

The antibody knock-down experiments validate these findings and demonstrate that 5-HT1B 

receptors expressed alone internalize via a Cav1-, GRK2,3-dependent pathway, while 5-HT2B 
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receptors expressed alone internalize via a clathrin- Arrestin-2- and PKCε-dependent pathway 

(Fig7A).  

 The co-expression of these two receptors influences their respective internalization 

kinetics according to the agonist used for stimulation, although in the absence of apparent 

colocalization (apparent lack of co-localization and of FRET). Interestingly, a slight 

acceleration of BW-induced internalization of 5-HT2B receptors can be observed when 

expressed with 5-HT1B receptors. However, a large acceleration of CP-induced 5-HT1B 

receptor internalization is triggered by the presence of 5-HT2B receptors. A marked 

modification of the thermodynamic profile of 5-HT2B receptor internalization is also observed 

in the presence of 5-HT1B receptors: the linear temperature dependence observed for 

internalization of 5-HT1B and 5-HT1B/5-HT2B receptors, but not for 5-HT2B receptors 

expressed alone, strongly supports the notion that co-expression of 5-HT1B receptors with 5-

HT2B receptors imposes a alternate internalization pathway on 5-HT2B receptors. Stimulation 

with 5-HT in the presence of RS shows the existence of multiple pathways for 5-HT2B 

receptor internalization: while the 5-HT-induced internalization of 5-HT2B receptors 

expressed alone is blocked by RS, co-expression with 5-HT1B receptors renders 5-HT2B 

receptor internalization sensitive to CP and insensitive to RS. The antibody knock-down 

experiments further validate that activation of 5-HT1B receptors with CP in co-expressing 

cells results in a switch of 5-HT2B receptor internalization from a totally clathrin-, Arrestin-2- 

and PKCε-dependent pathway to a Cav1, GRK2,3 partially dependent pathway (Fig. 7B).  

 Our experimental results implicate GRK2,3 in mediating the cross-regulation of 5-

HT2B receptor internalization by 5-HT1B receptors. When 5-HT2B receptors are co-expressed 

with 5-HT1B receptors, CP activates 5-HT1B receptors that in turn activate GRK2,3, which 

leads to agonist-independent, Cav1-dependent internalization of 5-HT2B receptors. One likely 
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possibility is that GRK2,3 phosphorylates 5-HT2B receptors in such a way that enables them 

to use a Cav1-dependent internalization pathway (Fig. 7B).  

 Activation of 5-HT2B receptors by 5-HT was shown to lead to PKC activation (Cox 

and Cohen, 1995; Launay et al., 2006). Our data also support the notion that PKC is 

responsible for the effect of 5-HT2B receptors on 5-HT-induced 5-HT1B receptor 

internalization (Fig. 7C). Using a combination of pharmacological inhibitors and antibody 

knockdown, we have identified PKCε as the isotype necessary for the 5-HT2B receptor-

dependent 5-HT1B receptor internalization. PKCε stimulation could phosphorylate—either 

directly or indirectly—the 5-HT1B receptor rendering it unable to internalize via a Cav1-

dependent pathway. One inconsistency between our experimental data and the proposed 

model is that activation of 5-HT2B receptors by BW does not affect the Cav1-dependent 5-

HT1B receptor internalization. One possible explanation for this discrepancy is that PKCε is 

poorly activated by the partial 5-HT2B receptor agonist BW. Alternatively, or additionally, 

both 5-HT-induced 5-HT1B receptor GRK2,3 activation and 5-HT-induced 5-HT2B receptor 

PKCε activation are required for 5-HT1B receptors to internalize via the Cav1, clathrin-

independent pathway (Fig. 7C). 

 This cross-talk, which affects receptor internalization mechanics, is likely to explain 

the previously observed Gi uncoupling of 5-HT1B receptors by 5-HT2B receptors. Activation 

of the 5-HT2B/2C receptor has been shown to inhibit the 5-HT1B receptor function in two 

independent studies: (i) Using 5-HT2C and 5-HT2A receptors stably transfected Chinese 

hamster ovary (CHO) cells, it has been reported that activation of 5-HT2C receptors abolishes 

the endogenous 5-HT1B receptor-mediated inhibition of forskolin-stimulated cAMP 

accumulation. In contrast, activation of 5-HT2A receptors does not alter the 5-HT1B response 

and 5-HT2C receptor-mediated inhibition of 5-HT1B receptor function was blocked when 5-

HT2A receptors were activated simultaneously (Berg et al., 1996). (ii) Using the 
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teratocarcinoma-derived cell line 1C11 that express endogenously and sequentially 5-HT1B 

and 5-HT2B and then 5-HT2A receptors, Tournois et al. (1998) showed that at day 2 of 

differentiation, when 5-HT1B and 5-HT2B receptor expression is induced, 5-HT2B receptors 

exert a dominant negative regulation of the Gi-coupled 5-HT1B receptor; at day 4, when 

functional 5-HT2A receptors begin to be expressed, 5-HT2A receptor activation prevents the 

negative regulation exerted by 5-HT2B receptor on 5-HT1B receptor function. Therefore, it is 

plausible that 5-HT2B and 5-HT2C receptors should share a common intracellular 

internalization and signaling pathway by which to control 5-HT1B function, while 5-HT2A 

receptors use alternate pathway(s). 

 This newly described internalization route fits with other evidence supporting 

independent intracellular trafficking of 5-HT1B and 5-HT2B receptors (i.e., internalization of 5-

HT2B receptors upon activation of 5-HT1B receptors despite the apparent lack of agonist-

induced co-localization). The fact that upon co-expression stimulating one or the other 

receptor or both generates different cellular responses is supported by completely independent 

techniques, i.e. confocal microcopy image analysis and antibody knock-down coupled with 

whole-cell radioligand binding studies. This work provides the first evidence that within the 

same cells, one receptor may adopt different internalization pathways upon the presence and 

stimulation of another receptor. Identified interactions regulate receptor internalization and 

could explain the observed co-ordination between 5-HT1B and 5-HT2B receptor 

internalization. Our work suggests that indirect events in trans are mediating the 5-HT1B/5-

HT2B receptor cross-regulation that affects their cellular distribution during the endocytic 

process. Given the wide clinical use of 5-HT1B receptor agonists in the treatment of migraines, 

and the suspected prophylactic effect of 5-HT2B receptor antagonists, these newly identified 

functional interactions may be involved in therapeutic effects of these compounds. The 

phenomenon may also be relevant to the design of novel antimigraine therapies. 
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Legends for figures  

 

FIG. 1. 5-HT stimulus on 5-HT2B and 5-HT1B receptor, dose dependence. 

Confocal studies in living cells were performed on various LMTK- transfected cell lines 

plated on glass bottom dishes in Dulbecco modified Eagle medium without serum. 

Quantitative internalization kinetics of the GFP-tagged receptors was assessed by measuring 

the fluorescence intensity disappearance at the membrane compared with the intensity 

increase in the cytoplasm of about ten ROI per cell and followed their relative intensity 

changes. Both signals could be fitted with a single exponential function over time, giving the 

same half time. (A). Series of single confocal plane images taken from living cells expressing 

5-HT1B receptor-GFP by time lapse video were used to evaluate the internalization kinetics 

after stimulation by 100 nM 5-HT. (Right panels) Distribution of 5-HT1B receptors expressed 

at 0 (0) and 50 (50) min of 5-HT stimulation. (B). Series of single confocal plane images were 

taken from living cells expressing 5-HT2B receptor-GFP by time lapse video. Internalization 

kinetics after stimulation by100 nM 5-HT stimulation. (Right panels) Distribution of 5-HT2B 

receptors expressed at 0 and 50 min of stimulation. These images are representative of more 

than 3 cells observed in each of at least 4 independent experiments. Bars 2 µM. (C). Similar 

studies by confocal laser microscopy showed that 5-HT1B and 5-HT2B receptors internalized 

with a single exponential kinetics after stimulation with 100 nM, 1 µM or 10 µM 5-HT and 

their half life were concentration-dependent. (D). Study by confocal laser microscopy showed 

that, when 5-HT2B receptors were co-expressed with 5-HT1B receptors (5-HT2B1B), the 5-

HT2B receptor internalized with a single exponential kinetics after stimulation with 100 nM 5-

HT but its half life became five times faster. (E). When 5-HT1B receptors were co-expressed 

with 5-HT2B receptors (5-HT1B2B light grey bar), the 5-HT1B receptor internalized after 

stimulation with 100 nM 5-HT with a similar half life to 5-HT1B receptor alone (black bar). 
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(F). Independent radioligand binding experiments using [125I]-DOI (5-HT2B receptor) or [125I]-

GTI (5-HT1B receptor) on intact living cells confirmed that, compared to 5-HT2B receptor 

expressed alone (dark grey bar) when the 5-HT2B receptor was co-expressed with 5-HT1B 

receptors, stimulation with 100 nM 5-HT decreased the 5-HT2B receptor (5-HT2B1B white 

bar) half life but not that of 5-HT1B receptors (5-HT1B2B light grey bar). Graphs display the 

mean±sem of at least 3 independent experiments. 

 

 

FIG. 2. Ligand dependency of 5-HT1B receptor and 5-HT2B receptor  internalization.  

Quantitative internalization kinetics of the GFP-tagged receptors was assessed by measuring 

the fluorescence intensity disappearance at the membrane of series of single confocal plane 

images taken from living transfected LMTK- cells by time lapse video. (A-C). The 

fluorescence intensity disappearance have been fitted with a single exponential function over 

time and used to evaluate the internalization kinetics after stimulation by the preferential 5-

HT2B receptor agonist BW723C86 (BW) at the final concentration of 50 nM that produced no 

effect on the internalization of 5-HT1B receptor alone. (D-F). The fluorescence intensity 

disappearance have been fitted with a single exponential function over time and used to 

evaluate the internalization kinetics after stimulation by the selective 5-HT1B receptor agonist 

CP93129 (CP) at the final concentration of 75 nM that produced no effect on the 

internalization of 5-HT2B receptor alone. The x-axes display 0 to 30 minutes recording for fast 

internalization (A,B,C,E) and 0 to 60 minutes for slow internalization (D,F). Deduced half life 

values are reported in table 2 with statistics. 
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FIG. 3. Temperature dependency of the of 5-HT1B receptor and 2B receptors 

internalization.  

The receptors half life (t1/2) were evaluated using transfected LMTK- cells expressing GFP-

tagged receptors by measuring the fluorescence intensity disappearance at the membrane after 

fitting with a single exponential function over time. Upon 5-HT stimulation, the t1/2 values in 

single receptor transfected cells was evaluated at different temperatures (22°C to 25°C and 

37°C), for 5-HT1B receptors (A), for 5-HT2B receptors (B) or alone or co-expressed, after 

stimulation by CP for 5-HT1B receptors (C-E), or for 5-HT2B receptor (D-E) after BW 

stimulation. NS: no significant statistical difference; * P<0.05, more than 3 cells were 

analyzed in at least 4 independent experiments. 

 

 

FIG. 4. Single-cell fluorescence measurements for quantitative analysis.  

The cellular distribution of CFP-tagged 5-HT2B receptors (2B, red) co-expressed with YFP-5-

HT1B receptors (1B green) was video-recorded and is displayed on a single confocal plane 

before (0 min) and after (30 min) stimulation with different agonists. The corresponding co-

localizing points (1B2B, yellow) and deduced FRET values are shown (right panels, white). 

(A). Distribution of 5-HT2B receptor expressed at 0 and 30 min of CP stimulation. (B). 

Distribution of 5-HT2B receptor expressed at 0 and 30 min of 5-HT stimulation. (C). 

Distribution of 5-HT2B receptor expressed at 0 and 30 min of BW stimulation. These images 

are representative of more than 3 cells observed in each of at least 4 independent experiments. 

Bars 2 µM.  
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FIG. 5.Whole-cell binding and antibody knockdown for quantitative analysis. 

The amount of membrane receptor sites in transfected LMTK- cells was assessed by 

radioligand binding experiments using [125I]-DOI (5-HT2B receptor) or [125I]-GTI (5-HT1B 

receptor) on intact living cells 0, 5, and 10 minutes after agonist stimulation (KD and Bmax). 

With unmodified KD (not illustrated), the time-dependent changes in Bmax allowed to 

approximate the receptor half life in response to various agonists (left panels). Exposure of 

alveolysin-permeabilized cells to antibodies against Caveolin-1, Clathrin, Arrestin-2, or 

GRK2,3 modifies the receptor half life (expressed as fold over unexposed cells- right panels), 

upon agonist stimulation (A) 5-HT, (B) CP and (C) BW. Black bars, 5-HT1B receptors; light 

grey bars, 5-HT1B receptors co-expressed with 5-HT2B receptors (5-HT1B2B); dark grey bars, 

5-HT2B receptors; white bars, 5-HT2B receptors co-expressed with 5-HT1B receptors (5-

HT2B1B). Graphs display the mean±sem of at least 3 independent experiments. 

 

FIG. 6.Whole-cell binding and pharmacological treatment for quantitative analysis. 

The amount of membrane receptor sites in transfected LMTK- cells was assessed by 

radioligand binding experiments using [125I]-DOI (5-HT2B receptor) or [125I]-GTI (5-HT1B 

receptor) on intact living cells 0, 5, and 10 minutes after agonist stimulation (KD and Bmax). 

With unmodified KD (not illustrated), the time-dependent changes in Bmax allowed to 

approximate the receptor half life in response to various protein kinase blockers, (A) 5-HT, 

(B) 5-HT+staurosporine (5 µM), (C) 5-HT+H89 (5 µM), (D) 5-HT+Gö 6976 (100 nM), and 

(E) 5-HT+Gö 6850-Bisindolylmaleimide I (100 nM). (F) Exposure of alveolysin-

permeabilized cells to antibodies against PKCε modifies the receptor half life, upon 5-HT 

stimulation. Black bars, 5-HT1B receptors; light grey bars, 5-HT1B receptors co-expressed with 

5-HT2B receptors (5-HT1B2B); dark grey bars, 5-HT2B receptors; white bars, 5-HT2B receptors 
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co-expressed with 5-HT1B receptors (5-HT2B1B). Graphs display the mean±sem of 3 

independent experiments. 

 

FIG. 7. Model of interactions between 5-HT2B and 5-HT1B receptors in their 

internalization pathways.  

A) When expressed as a single receptor in cells devoid of endogenous 5-HT receptors 

expression and upon 5-HT stimulation, 5-HT1B receptor internalizes via a Cav1 and GRK2,3 

dependent pathway, while 5-HT2B receptors internalizes via clathrin and Arrestin-2 dependent 

pathway. B) When co-expressed, the two receptors respond differently to selective agonists. 

A selective 5-HT2B receptor agonist, BW, does not trigger any internalization of co-expressed 

5-HT1B receptor and acts as 5-HT on the 5-HT2B receptor internalization (not illustrated). By 

contrast, stimulation of 5-HT1B receptor by CP, a selective 5-HT1B receptor agonist, makes the 

5-HT1B receptor internalizing via Cav1 and GRK2,3 as 5-HT. While inefficient on cells 

expressing 5-HT2B receptor alone, CP triggers also the internalization of co-expressed 5-HT2B 

receptor via Cav1, GRK2,3, and Arrestin-2 imposing for these two receptors the same kinetic 

for internalization. GRK2,3 becomes a partner of this trans-internalization of 5-HT2B 

receptors. C) The co-stimulation of both receptors by 5-HT makes 5-HT2B receptors to 

internalize via its classical clathrin but also via 5-HT1B triggered Cav1-dependent pathways 

(large arrow), which imposes in return 5-HT1B receptors to adopt new internalization 

pathways independent of both clathrin and Cav1 but that becomes dependent on 5-HT2B 

receptor-induced PKCε (small arrow).  
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Table 1 Pharmacological properties of native or GFP-tagged receptors 

      Membrane       Whole cells 

    KD (nM)   Bmax (fmol/mg prot)  KD (nM)   Bmax (fmol/mg prot) 

5-HT1B-YFP clone 9  0.82±0.14   119±5*   0.84±0.15   73±5 

5-HT1B clone 5  0.56±0.11   72±4    /    / 

5-HT1B-PA-GFP clone 3 0.83±0.13   122±5*        

5-HT2B-PA-GFP clone 9 26.8±6.3   138±8*   26.3±6.5   76±3 

5-HT2B clone 17  16.5±4.5   65±5    /    / 

5-HT2B-YFP clone 22  28.8±5.8   132±8*        

 

Receptors    5-HT1B R   5-HT2BR    5-HT1BR    5-HT2BR 

    KD (nM) Bmax  KD (nM) Bmax  KD (nM) Bmax  KD (nM) Bmax 

5-HT1B-YFP/5-HT2BPAGFP 0.79±0.15 69±6  19.1±4.5 80±9  0.73±0.10 64±5  26.0±3.5 80±8 

5-HT1B-YFP/5-HT2B-CFP 0.73±0.12 87±9  27.1±5.8 81±8 

Saturation binding assays were performed using [125I]-DOI (5-HT2B receptor) or [125I]-GTI (5-HT1B receptor) on membrane fraction of cell 

homogenate (Membranes) or intact cells (Whole cells) of the different stable clonal cell lines expressing either the 5-HT1B receptor, the 5-HT2B 

receptor alone or co-expressing both receptor subtypes, with our without tag. Binding data were analyzed using the iterative non-linear fitting 

software Graphpad-Prism 2.0 to calculate dissociation constants (KD) and maximum number of sites (Bmax). Insertion of the various GFPs at the 

N-terminal part of the receptor did not affects the receptor affinity. Intact cells Bmax represents only about 60% of that of binding on membranes. 

Co-expression of the receptor subtypes did not alter the receptor affinity for GTI or DOI. * P<0.05 vs. non-tagged receptors by Student's t test. 

Values are means±standard errors of 3 independent determinations in triplicate. 
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Table 2 Ligand dependence of 5-HT1B receptor and 5-HT2B receptor  internalization.  

Agonist Conc  1B T1/2 2B T1/2 

 (nM)  min min 

"SINGLE"     

5-HT 100  10.6±2.8* 23.0±1.0# 

5-HT/RS 100/100  10.8±0.9* ∞# 

BW 50  ∞* 11.0±1.5# 

CP93 75  14.1±0.7#* ∞# 

"DOUBLE"     

5-HT 100  9.0±1.0 4.0±1.5 

5-HT/RS 100/100  7.7±1.6 4.1±2.0 

BW 50  ∞* 7.2±2.2 

CP93 75  4.9±2.3 6.9±0.9 

Quantitative internalization kinetics of the GFP-tagged receptors was assessed by measuring the 

fluorescence intensity disappearance at the membrane for more than ten ROI per cell and followed the 

relative intensity changes of these ROI by time. In 5-HT2B receptors or 5-HT1B receptors transfected 

cells (single), this signal could be fitted with a single exponential function over time. Applying the 

same protocol on 5-HT2B receptors in the presence of 5-HT1B receptors transfected cells (double), a 

change in internalization rate could be observed. * P<0.05 by Student's t test 5-HT1B vs. 5-HT2B 

receptors, # P<0.05 by Student's t test single vs. double transfected receptors. Values are 

means±standard errors of more than 3 cells analyzed in at least 4 independent experiments. 
















