Sylvie Boldo
email: sylvie.boldo@inria.fr

Marc Daumas
email: marc.daumas@ens-lyon.org

Pascal Giorgi
email: pascal.giorgi@lirmm.fr

Formal proof for delayed finite field arithmetic using floating point operators *

Formal proof checkers such as Coq are capable of validating proofs of correction of algorithms for finite field arithmetics but they require extensive training from potential users. The delayed solution of a triangular system over a finite field mixes operations on integers and operations on floating point numbers. We focus in this report on verifying proof obligations that state that no round off error occurred on any of the floating point operations. We use a tool named Gappa that can be learned in a matter of minutes to generate proofs related to floating point arithmetic and hide technicalities of formal proof checkers. We found that three facilities are missing from existing tools. The first one is the ability to use in Gappa new lemmas that cannot be easily expressed as rewriting rules. We coined the second one "variable interchange" as it would be required to validate loop interchanges. The third facility handles massive loop unrolling and argument instantiation by generating traces of execution for a large number of cases. We hope that these facilities may sometime in the future be integrated into mainstream code validation.

Introduction

Introducing a new algorithm is a difficult task. Authors have to persuade readers that their algorithm is correct and efficient. Such goals are usually attained by providing pen-and-paper proofs of correction more or less interlaced with the description of the algorithm. Authors may also provide results of tests to guarantee correction and efficiency on random cases and on known or new hard cases. Alas, this process is known to fail on mundane as well as notorious occurrences [START_REF] Rushby | Formal verification of algorithms for critical systems[END_REF].

Developing a proof of correction in a formal proof checker using higher order logic such as Coq [START_REF] Bertot | Interactive Theorem Proving and Program Development[END_REF] would be a nice alternative but such a task usually represents a large amount of work outside the fields of expertise of most authors.

The delayed solver studied here works on a N × N unitary triangular matrix on Z/pZ finite field. The key improvement of this algorithm compared to state of the art lies in the fact that delayed algorithms use floating point units to perform operations with no rounding error and delay computations of remainders as much as possible. Operations on floating point numbers are limited to three functions. The other functions use combinatorial logic.

The first function (DGEMM_NEG) performs a naive matrix multiplication and Gappa may soon be able to handle the proof obligation generated by a tool such as the Why platform [START_REF] Filliâtre | The Why/Krakatoa/Caduceus platform for deductive program verification[END_REF] and the corresponding floating-point annotations [START_REF] Boldo | Formal verification of floating point programs[END_REF]. The second function (DTRSM) is invoked only under the delay predicate. This is enforced by the condition on the induction of the invoking function (LZ_TRSM) for N between 2 and 54 with p prime varying between 2 and 94, 906, 266. Variable interchange in the delay predicate allows to limit the proof to the 53 different values of N where a naive user would consider the 94, 906, 265 different values of p.

Proof obligations are usually derived from a static analysis of the source code considered. Our work showed that generating proof obligations from traces of execution after most parameters have been instantiated may also be useful. We have set up a C++ class to provide such proof obligations but we hope that such capability will be provided by Why and similar tools in the future.

We present some background information in the remaining of the introduction. We continue with a new lemma that might be used by Gappa for inductive linear bounds in Section 2 and with our prototyping variable interchange developments in Sections 3. We conclude this work in Section 4.

Finite field arithmetic and application to linear algebra

Finite field arithmetic plays a crucial role in nowadays applications. One of the most extensively studied application of finite fields is cryptography. Another key application of finite field arithmetic arises with exact linear algebra computation where modular techniques (e.g. CRT or P-adic lifting) allow some control on expression swell with high performances (see [START_REF] Eberly | Solving sparse rational linear systems[END_REF] and references herein). While cryptographic applications need finite fields of large cardinality for security purpose, most exact linear algebra restrains to machine word size prime field (e.g. 32 or 64 bits) in order to benefit from machine arithmetic units.

A classical way to perform one arithmetic operation in a prime field, here we refer to integers modulo a prime number, is to first perform the operation on integers and second reduce the result to the destination field. Let x, y ∈ Z/pZ and * ∈ {+, ×}. One may compute z = x * y ∈ Z/pZ by computing t = x * y ∈ Z and a modular reduction z = t mod p.

When one deals with fixed precision prime field arithmetic, two majors issues arise: performances and cardinality limitation. The latter issue can have a non-negligible impact on the former one. As was just said, the classical way to perform arithmetic operations over a prime field is to perform operations on integers and reduce intermediate results. Therefore, all integers between 0 and (p -1) 2 must be representable to correctly perform multiplications over Z/pZ. This limitation slightly increase to perform an AXPY operation (a multiplication followed by an addition) with only one reduction step. This implies that all integers between 0 and p × (p -1) must be representable.

Using word-size machine integers and classic arithmetic we obtain the following cardinality limitation: p < 2 16 on 32 bit architectures and p < 2 32 on 64 bit architectures with unsigned types. An alternative to increase cardinality of word-size prime fields is to use floating point numbers. According to the IEEE 754 standard [START_REF] Goldberg | What every computer scientist should know about floating point arithmetic[END_REF], mantissas of double precision floating point numbers can store 53 bit integers (including the implicit bit). Therefore, we can perform prime field arithmetic with cardinality up to 2 26 using double. Note that, the reduction is easily obtained by the fmod function available in standard libraries. This approach is quite interesting in practice since floating point multiplications and divisions may be faster than their integer counterparts.

On selected classes of algorithms, delayed prime field arithmetic sustains better performances. The idea is to perform several integer operations before reduction into the field. It has been very fruitful for exact linear algebra [START_REF] Dumas | FFPACK: Finite field linear algebra package[END_REF]. Delayed exact linear algebra computations also benefit from optimized numerical BLAS (e.g. ATLAS [START_REF] Whaley | Automated empirical optimizations of software and the ATLAS project[END_REF], GOTO [START_REF] Goto | On reducing TLB misses in matrix multiplication[END_REF]) libraries for exact computations and they often reach peak FPU throughput for operations over a finite field.

Beside basics linear algebra operations such as matrix-vector products and matrix multiplications, delayed arithmetic over a prime field is valuable when expressions swell largely such as solving systems of linear equations. This approach works perfectly for unitary triangular system (only ones along the diagonal) despite the exponential growth of the intermediate variables.

Formal proof checking and Gappa

Gappa [START_REF] Daumas | Generating formally certified bounds on values and round-off errors[END_REF] has been created to generate formal certificates of correction for programs that use floating point arithmetic [START_REF] De Dinechin | Assisted verification of elementary functions using Gappa[END_REF][START_REF] Michard | Optimisation d'oprateurs arithmtiques matriels base d'approximations polynomiales[END_REF][START_REF] Melquiond | Formally certified floating-point filters for homogeneous geometric predicates[END_REF] and is related to other developments [START_REF] Harrison | Formal verification of floating point trigonometric functions[END_REF][START_REF] Daumas | Guaranteed proofs using interval arithmetic[END_REF]. It is available from http://lipforge.ens-lyon.fr/www/gappa/.

It will in the future be able to interact seamlessly with Why [START_REF] Boldo | Formal verification of floating point programs[END_REF], a tool to certify programs written in a generic language. C and Java can be converted to this language.

Gappa manipulates arithmetic expressions on real and rational numbers and their evaluations on computers. Exact and rounded expressions are bounded using interval arithmetic [START_REF] Jaulin | Applied interval analysis[END_REF], forward error analysis and properties of dyadic fractions. To the authors' best knowledge, Gappa is the first tool that can convert some of the simple tasks performed here into formal proofs validated by an automatic proof checker. Such goal has previously been quoted as invisible formal methods [START_REF] Tiwari | Invisible formal methods for embedded control systems[END_REF] in the sense that Gappa delivers formal certificates to users that are not expected to write any piece of proof in any formal proof system.

Gappa produces a Coq file for a given input script. Users do not need to be able to write the Coq file but they can check the work of Gappa by reading it or parsing it automatically. It contains Variables, Definitions, Notations, Lemmas and comments are between (* and *) signs. Although enclosure is the only predicate available to users, Gappa internally relies on more predicates to describe properties on expressions. All the properties of the input script are defined in the Coq file. Validity of proofs can automatically be checked by Coq. More insights to Gappa are presented in [START_REF] Daumas | Generating certified properties for numerical expressions and their evaluations[END_REF].

A new lemma that might be used by Gappa for inductive linear bounds

A key application in exact linear algebra is the resolution of triangular systems over finite fields presented in Figure 1. A delayed prime field arithmetic version of this algorithm can be constructed by simply doing a delayed matrix multiplication on the operation B 1 := B 1 -A 2 X 2 . Listing 1 performs such matrix multiplication DGEMM NEG with no reduction. We used naming conventions of BLAS and LAPack for the function and the parameter names. For the sake of simplicity some parameters have be omitted and some function names were slightly modified.

Input: A ∈ Z/pZ N ×N , B ∈ Z/pZ N ×K . Output: X ∈ Z/pZ N ×K such that AX = B. if N=1 then X := A -1 1,1 × B. else (splitting matrices into ⌊ N 2 ⌋ and ⌈ N 2 ⌉ blocks) A X B A 1 A 2 A 3 X 1 X 2 = B 1 B 2 X 2 :=LZ TRSM(A 3 , B 2). B 1 := B 1 -A 2 X 2 . X 1 :=LZ TRSM(A 1 , B 1). return X.
The DREMM function computes the remainder modulo p of all the components of a matrix. We are overspecifying it for the purpose of this presentation as our proof never use the exact value of these remainders but the sole property that they are between 0 and p -1. In the definition of is exact int mat, we use the predicate exists. The property described is that X[i × LDX + j] is not any float, but it is an integer. To describe this, we require (or prove) that there exists an integer equal to the floating-point value of X[i × LDX + j]. We also use \old in the annotations: the value \old(X) represents the value of the variable X before the function execution. It allows us to specify the outputs depending on the inputs, even if the pointed values are modified. Some ghost variables are introduced in our example to ease the proofs. A mechanism not presented here prevents such ghost variables to remain in the code once compiled.

Let M be the width of matrix A 2 or the height of vector X 2 and FP EPSILON be the machine ǫ for fp in float, double or long double and FP in FLT, DBL or LDBL respectively. The DREMM reduction can be delayed until the end of DGEMM NEG provided (p -1) 2 × M ≤ 2/FP EPSILON, as all the number between 0 and 2/FP EPSILON can be represented exactly with type fp.

Assertions on the DGEMM_NEG function generate proof obligation

-1 ≤ Y [i × LDY + k] (p -1) 2 × (j + 1) = oY ik -A[i × LDA + j] × X[j × LDX + k] (p -1) 2 × (j + 1)
for all iterations defined by i, j and k. It can be proved by induction on j with the following lemma that we proved in Coq and similar ones for the other relations.

. Matrix-matrix multiplication Y <-Y -AX and component-wise remainder # i n c l u d e < math .h > t y p e d e f double fp ; # define F P _ E S P I L O N D B L _ E P S I L O N

/* @ logic real e p s i l o n () { 2^^(-53) } @ */ /* @ logic real m a x _ i n t () { 2 / e p s i l o n () } @ */ /* @ p r e d i c a t e i s _ e x a c t _ i n t _ m a t (fp *X , int LDX , int N , int M) { @ \ v a l i d _ r a n g e(X ,0 , LDX * N) && M <= LDX && @ \ forall int i ; \ forall int j ; 0 <= i < N && 0 <= j < M = > @ \ r o u n d _ e r r o r (X [i * LDX + j])==0 && \ exists int v ; X [i * LDX + j]== v @ } @ */ /* @ p r e d i c a t e i s _ e x a c t _ i n t _ m a t _ b o u n d e d _ b y @ (fp *X , int LDX , int N , int M , int min , int max) { @ i s _ e x a c t _ i n t _ m a t (X , LDX ,N , M) && \ forall int i ; \ forall int j ; @ 0 <= i < N && 0 <= j < M = > min <= X [i * LDX + j] <= max @ } @ */ /* @ r e q u i r e s (p -1)*(p -1)* M <= m a x _ i n t () && @ i s _ e x a c t _ i n t _ m a t for (j = 0 ; j < M ; j ++) for (k = 0; k <

K ; k ++) { oYik = Y [i * LDY + k]; Y [i * LDY + k] = Y [i * LDY + k] -A [i * LDA + j] * X [j * LDX + k]; /* @ assert -1 <= Y [i * LDY + k] / ((p -1)*(p -1)*(j +1)) && Y [i * LDY + k] <= p -1 @ */ } }
/* @ r e q u i r e s i s _ e x a c t _ i n t _ m a t (X , LDX ,N , K) @ a s s i g n s X [..] @ e n s u r e s i s _ e x a c t _ i n t _ m a t _ b o u n d e d _ b y (X , LDX ,N ,K ,0 ,p -1) && @ \ forall int i ; \ forall int j ;

0 <= i < N && 0 <= j < K = > @ \ exists int d ; X [i * LDX + j] == \ old (X [i * LDX + j]) + d * p @ */ void DREMM (int N , int K , int p , fp *X , int LDX) { int i , k ; for (i = 0; i < N ; i ++) for (k = 0; k < K ; k ++) { X [i * LDX + k] = fmod (X [i * LDX + k] , p); if (X [i * LDX + k] < 0) X [i * LDX + k] += p ; } }

Gappa does not handle arrays so we have to rename

A[i × LDA + j] to Aik, X[j × LDX + k] to Xjk and Y [i × LDY + k] to Yik.
The following Gappa text should be sufficient to prove the generic case of the induction if our lemma is added to Gappa. A Gappa file usually starts with aliases. Gappa uses them for its outputs and in the formal proof instead of machine generated names. We do not need any alias here. Identifiers are assumed to be universally quantified over the set of real numbers the first time Gappa encounters them.

{ p in [2 ,1 b53] -> j in [1 ,1 b53] -> oYik in [-1 b53 ,1 b53] -> Aij /(p -1) in [0 ,1] -> Xjk /(p -1) in [0 ,
The main assertion is written between brackets ({ }). The hypotheses end with the last line finished by an implication sign (->). Each states that a variable or an expression is within an interval or bounded. Note that p1 → p2 → p3 is logically equivalent to p1 ∧ p2 → p3. The goal is next. It is a conjunction (/\). Statements about intermediate variables are given as goals to force Gappa to establish them first.

The statement after the brackets are hints that propose replacements. Gappa replaces the left side of the -> sign by the right side as soon as it encounters the former. It also tries to prove that the replacements are valid. They help Gappa identify the proper theorems syntactically. Conditions on the validity of the hints are expressed between brackets.

Variable interchange in a predicate

For the sake of completeness we recall an optimal bound on integer coefficients growth during backward substitution. Corollary. [7, corollary 3.3] Let A ∈ Z N ×N be a unit diagonal upper triangular matrix, and b ∈ Z N , with |A|, |B| ≤ p -1. Then x ∈ Z N the solution of the system Ax = B is such that

|x| ≤ p -1 2 p N -1 + (p -2) N -1 ,
and this bound is optimal.

As this formula also bounds all the intermediate values, enough bits are available to combine a few recursion steps of LZ TRSM without reduction and guarantee that all numerical results are exact. We present in Listing 2 an improved version for the delayed prime field arithmetic by replacing the last levels of the recursion by calls to DTRSM numerical solver according to Listing 2. Delayed solution of a unitary triangular system over a finite field /* @ p r e d i c a t e delay (int N , int p) @ */ /* @ logic int l_pmax (int n) @ */ // F l o a t i n g point exact s o l u t i o n to a small u n i t a r y t r i a n g u l a r system /* @ r e q u i r e s N <= 54 && @ i s _ e x a c t _ i n t _ m a t _ b o u n d e d _ b y (X , LDX ,N ,K ,0 , l_pmax (N) -1) && @ i s _ e x a c t _ i n t _ m a t _ b o u n d e d _ b y (A , LDA ,N ,N ,0 , l_pmax (N) -1) @ a s s i g n s X [..] @ e n s u r e s @ i s _ e x a c t _ i n t _ m a t _ b o u n d e d _ b y (X , LDX ,N ,K , -m a x _ i n t() , m a x _ i n t ()) @ */ void DTRSM (int N , int K , fp *A , int LDA , fp *X , int LDX) { int i , j , k ; for (i = N -2; i >= 0; i --) for (j = i +1; j < N ; j ++) for (k = 0 ; k < K ; k ++)

X [i * LDX + k] = X [i * LDX + k] -A [i * LDA + j] * X [j * LDX + k]; } /* @
r e q u i r e s (p -1)*(p -1)* N <= m a x _ i n t () && @ i s _ e x a c t _ i n t _ m a t (A , LDA ,N , N) && i s _ e x a c t _ i n t _ m a t (B , LDB ,N , K) @ a s s i g n s B [..] @ e n s u r e s i s _ e x a c t _ i n t _ m a t (B , LDB ,N , K) @ */ void L Z _ T R S M (int N , int K , int Nmax , int p ,

Function Nmax of Listing 2 uses a strict inequality in equation (1) to control the loop because it computes the bound with the same floating point format than the one used by LZ TRSM. We focus now on proving that the DTRSM function invoked by LZ TRSM never produce any round-off error.

One could port the proof of Corollary 3.3 [START_REF] Dumas | FFPACK: Finite field linear algebra package[END_REF] to Coq to finish the proof of correction. We decided to use Gappa and simple techniques that could be made automatic. Syntactically, the DTRSM function is invoked by LZ_TRSM only if the condition delay(N, p) is fulfilled. We may define it by: delay(N, p) = N ≤ N max (p).

Gappa does not handle loops and branches. We perform a case analysis but p may vary from 2 to 94, 906, 266. On the other hand, N varies only between 2 and 54. Table 1 presents the value computed by the pmax function. Variable interchange should allow to prove that DTRSM is invoked only on the condition delay(N, p) ⇐⇒ p ≤ p max (N).

A C++ class produces a trace for N between 2 and 54 where all branches and control statements have been removed. Each trace contains only floating point operations. Table 2 gives the time needed by Gappa on a 1.86 GHz Quad-Core Intel Xeon Processor with 2x4MB L2 cache and 2x1GB of memory, to produce each of the proofs that no round-off error occurred for all the values of N between 2 and 54. That ends the proof of correction of the algorithm.

Figure 1 .

 1 Figure 1. First algorithm for LZ TRSM(A, B)

∀

 a, b, c, d, e ∈ R ; e ≤ a b ∧ e ≤ c d ∧ 0 < b × d =⇒ e ≤ a + c b + d Listing 1

 _ b o u n d e d _ b y (Y , LDY ,N ,K ,0 ,p -1) && @ i s _ e x a c t _ i n t _ m a t _ b o u n d e d _ b y (A , LDA ,N ,M ,0 ,p -1) && @ i s _ e x a c t _ i n t _ m a t _ b o u n d e d _ b y (X , LDX ,M ,K ,0 ,p -1) @ a s s i g n s Y [..] @ e n s u r e s @ i s _ e x a c t _ i n t _ m a t _ b o u n d e d _ b y (Y , LDY ,N ,K ,(1 -p)*(p -1)* M ,p -1) @ */ void D G E M M _ N E G (int N , int M , int K , int p , fp *A , int LDA , fp *X , int LDX , fp *Y , int LDY) { int i , j , k ; fp oYiK ; for (i = 0; i < N ; i ++)

 1] -> oYik / ((p -1)*(p -1)* j) >= -1 -> ((p -1)*(p -1)* j) * ((p -1)*(p -1)) >= 0 /\ -Aij * Xjk / ((p -1)*(p -1)) >= -1 /\ (oYik -Aij * Xjk) / ((p -1)*(p -1)*(j +1)) >= -1 } -Aij * Xjk / ((p -1)*(p -1)) -> -(Aij /(p -1)) * (Xjk /(p -1)) { (p -1) <> 0 }; (oYik -Aij * Xjk) / ((p -1)*(p -1)*(j +1)) -> (oYik + (-Aij * Xjk)) / (((p -1)*(p -1)* j) + ((p -1)*(p -1))) { ((p -1)*(p -1)*(j +1)) <> 0 , ((p -1)*(p -1)* j) * ((p -1)*(p -1)) <> 0 };

 fp *A , int LDA , fp *B , int LDB) { if (N <= Nmax) { /* @ assert N <= 54 && delay (N , p) @ */ DTRSM (N , K , A , LDA , B , LDB); DREMM (N -1 , K , p , B , LDB); } else { int P = N /2 , G = N -P ; L Z _ T R S M (G , K , Nmax , p , A + P *(LDA +1) , LDA , B + P * LDB , LDB); D G E M M _ N E G (P , G , K , p , A +P , LDA , B + P * LDB , LDB , B , LDB); DREMM (P , K , p , B , LDB); L Z _ T R S M (P , K , Nmax , p , A , LDA , B , LDB); } } /* @ e n s u r e s \ forall int N ; N <= \ result = > delay (N , p) @ */ int Nmax (int p) { fp pp = 1 , p2 = 1; int N ; for (N = 0; ((p -1)*(pp + p2))/2 < 2 / 2^53; N ++) { pp *= p ; p2 *= p -2;}; return N ; } /* @ e n s u r e s \ result == l_pmax (N) && @ \ forall int p ; p <= \ result = > delay (N , p) @ */ int pmax (int N) { int p ; for (p = 1; N <= Nmax (p); p ++); return p -1; }

Table 1 . Maximum value pmax of parameter p for each value of parameter N allowed

 1

	N	2	3	4	5	6	7	8	9	10	11	12
	p max 94906266 208064 9739 1553 457 191 97	59	39	29	19
	N	13	14	15	16 • • • 19	20 • • • 23	24 • • • 34	35 • • • 54	
	p max 17	13	11	7	5			3	2		

Table 2 . Time to establish that no round-off occurred and generate a Coq proof script

 2) 01.38 01.63 01.91 02.90 02.90 03.73 05.93 13.71 38.32 Coq 03.22 03.77 05.26 07.13 12.22 19.50 38.13 421.4 5767 the above corollary. Recursion is stopped for the maximal integer N max such that

	Script	N	2	3	4	5	6	7	8	9	10	11
	no	time(s) 00.02 00.06 00.10 00.19 00.29 00.43 00.57 00.74 00.93 01.15
	Coq		00.02 00.06 00.13 00.22 00.35 00.50 00.87 01.35 01.84 02.43
	Script	N	12	13	14	15	17	19	23	34	54
	no	time(s									

p -1 2 p Nmax-1 + (p -2) Nmax-1 ≤ 2/FP EPSILON.

This report presents a new use of Gappa based on proof obligations generated from a trace of execution [14]. It would enable us to prove in Coq in the future that expression swell within the studied algorithm of delayed finite field arithmetic does not introduce round off errors [7]. This full certification will not be obtained by porting the initial proof to Coq but by a case analysis on the 53 possible values of one argument N . Pieces of the formal proof have been generated by Gappa for each individual value of N .

Our approach can be easily reproduced to other exact linear applications over finite fields. More precisely, the FFLAS-FFPACK project has been successful on using delayed prime field arithmetic for linear algebra applications. http://ljk.imag.fr/membres/Jean-Guillaume.Dumas/FFLAS/

This work has been partially founded by PICS 2533 of the CNRS, project EVA-Flo of the ANR, project CerPAN of the ANR and PPF Surna.