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Formal proof for delayed �nite �eld arithmetiusing �oating point operators⋆Mar Daumas1 and Pasal Giorgi2
1 lirmm (umr 5506 nrs�um2) and eliaus (ea 3679 upvd)

2 eliaus (ea 3679 upvd)Abstrat Formal proof hekers suh as Coq are apable of validatingproofs of orretion of algorithms for �nite �eld arithmetis but theyrequire extensive training from potential users. The delayed solution ofa triangular system over a �nite �eld mixes operations on integers andoperations on �oating point numbers. We fous in this report on proofobligations that state that no round o� error ourred on any of the �oat-ing point operations. We use a tool named Gappa that an be learned in amatter of minutes to generate proofs related to �oating point arithmetiand hide tehnialities of formal proof hekers.1 IntrodutionIntroduing a new algorithm is a di�ult task. Authors have to persuade readersthat their algorithm is orret and e�ient. Suh goals are usually attained byproviding pen-and-paper proofs of orretion more or less interlaed with thedesription of the algorithm. Authors may also provide results of tests to guar-antee orretion and e�ieny on random ases and on known or new hard ases.Alas, this proess is known to fail on mundane as well as notorious ourrenes[1,2℄.Developing a proof of orretion in a formal proof heker using higher orderlogi suh as Coq [3,4℄ would be a nie alternative but suh a task usuallyrepresents a large amount of work outside the �elds of expertise of most authors.The delayed solver studied here works on a N ×N unitary triangular matrixon Z/pZ �nite �eld. The key improvement of this algorithm ompared to state ofthe art lies in the fat that delayed algorithms use �oating point units to performoperations with no rounding error and delay omputations of remainders as muhas possible. Operations on �oating point numbers are limited to two funtions.The other funtions use integer arithmeti.The �rst funtion (DGEMM_NEG) performs a naive matrix multipliation andGappa handles easily the proof obligation generated by a tool suh a Why [5℄.The seond funtion (DTRSM) is invoked only under the prediate Pred(N, p) =
N ≤ nmax(p). This is enfored by the ondition on the indution of the invok-ing funtion (LZ_TRSM). The prediate may be rewritten to Pred(N, p) = p ≤

⋆ This work has been partially founded by PICS 2533 of the CNRS and projet EVA-Flo of the ANR.



2 Mar Daumas and Pasal Giorgi
pmax(N) for N between 2 and 54. Gappa generated a proof that no roundingerror ourred whatever the value of the input matrix for eah of the 53 di�erentvalues of N .Proof obligations are usually derived from a stati analysis of the soure odeonsidered. Our work showed that generating proof obligations from traes ofexeution after most parameters have been instantiated may also be useful. Wehave set up a C++ lass to provide suh proof obligations but we hope that suhapability will be provided by Why and similar tools in the future.We present in Setion 2 the bakground and one algorithm of delayed solu-tions of a triangular system over a �nite �eld. We ontinue in Setion 3 by thebakground and tools of formal proof heking inluding Gappa and exerpts ofour C++ trae lass. We onlude this work in Setion 4.2 Finite �eld arithmeti and appliation to linear algebraFinite �eld arithmeti plays a ruial role in nowadays appliations. One of themost extensively studied appliation of �nite �elds is ryptography with majoronerns on seurity and e�ieny (see [6℄ for an introdution on ryptography).Another key appliation of �nite �eld arithmeti arises with exat linear algebraomputation where modular tehniques (e.g. CRT or P-adi lifting) allow someontrol on expression swell with high performanes [7,8,9℄. Arithmeti implemen-tations used in ryptography di�er from the ones used in linear algebra. Whileryptographi appliations need �nite �elds of large ardinality (e.g. 1024-2048bits for RSA [10℄, 300 bits for ECC [11℄) for seurity purpose, most exat linearalgebra restrains to mahine word size prime �eld (e.g. 32 or 64 bits) in order tobene�t from mahine arithmeti units.A lassial way to perform one arithmeti operation in a prime �eld, here werefer to integers modulo a prime number, is to �rst perform the operation onintegers and seond redue the result to the destination �eld. Let x, y ∈ Z/pZand ∗ ∈ {+,×}. One may ompute z = x∗ y ∈ Z/pZ by omputing t = x∗ y ∈ Zand a modular redution z = t mod p.In the rest of this setion, we present basi fats on word size prime �eldarithmetis and how to e�iently integrate them into an exat linear algebraappliation: solutions of triangular systems.2.1 Word-size prime �eld arithmetiWhen one deals with �xed preision prime �eld arithmeti, two majors issuesarise: performanes and ardinality limitation. The latter issue an have a non-negligible impat on the former one. As was just said, the lassial way to performarithmeti operations over a prime �eld is to perform operations on integersand redue intermediate results. Therefore, (p − 1)2 must be representable toorretly perform multipliations over Z/pZ. This limitation slightly inrease toperform an AXPY operation (a multipliation followed by an addition) with onlyone redution step. This implies that p × (p − 1) must be representable.



Formal proof for delayed �nite �eld arithmeti 3Using word-size mahine integers and lassi arithmeti we obtain the follow-ing ardinality limitation: p < 216 on 32 bit arhitetures and p < 232 on 64 bitarhitetures with unsigned types. These bounds are redued by one bit withsigned types suh as long.Note that even on 32 bit arhitetures, one an obtain 64 bit integers by usinglong long data. Full use of long long may redue performanes drastially asthe redution phase involves a 64 bit division. Integer multipliations have noimpat on performanes sine most of 32 bit proessors provide a multiplier
32bits× 32bits → 64bits (see the imul instrution on Intel arhitetures [12℄).Another alternative to inrease ardinality of word-size prime �elds is to use�oating point numbers. Aording to the IEEE 754 standard [13,14℄, mantissasof double preision �oating point numbers an store 53 bit integers (inluding theimpliit bit). Therefore, we an perform prime �eld arithmeti with ardinalityup to 226 using double. Note that, the redution is easily obtained by the fmodfuntion available in standard libraries. This approah is quite interesting inpratie sine �oating point multipliations and divisions may be faster thantheir integer ounterparts and delayed algorithms suh as the ones presentedhere allows to use optimized numerial BLAS.One an get even larger prime �elds by mixing integers and �oating pointnumbers. The idea is then to use an approximation of the quotient with �oatingpoint and Barret's method to ompute the remainder [6, hapter 14℄ as demon-strated in NTL library [15℄. It leads to prime �elds with ardinality up to 229 on32 bit arhitetures and up to 252 on 64 bit arhitetures.Prime �eld implementations above bene�t from the arithmeti units of pro-essors but performanes depend on the target arhiteture (see [16,17℄ for de-tailed omparisons). On seleted lasses of algorithms, delayed prime �eld arith-meti sustains better performanes. The idea is to perform several integer oper-ations before redution into the �eld. It has been very fruitful for exat linearalgebra [8℄. We perform a dot-produt or a matrix multipliation with a delayedredution when (p− 1)2 ×N < 2β, where n is the dimension of matries or ve-tors, p de�nes the prime �eld Z/pZ and β represents the preision of integers.Delayed exat linear algebra omputations also bene�t from optimized numerialBLAS (e.g. ATLAS [18℄, GOTO [19℄) libraries for exat omputations as shownin [8℄ and they often reah maximal FPU throughput for operations over a �nite�eld.Beside basis linear algebra operations suh as matrix-vetor produts andmatrix multipliations, delayed arithmeti over a prime �eld is valuable when ex-pressions swell largely suh as solving systems of linear equations. This approahworks perfetly for unitary triangular system (only ones along the diagonal) de-spite the exponential growth of the intermediate variables.2.2 Triangular system solving with delayed prime �eld arithmetiA key appliation in exat linear algebra is the resolution of triangular sys-tems over �nite �elds. The resolution of suh systems is a lassial problem of



4 Mar Daumas and Pasal Giorgilinear algebra and it is one of the main operations in blok Gaussian elimina-tion when right hand side is given as a matrix [20℄. Resolution of triangularsystems with matrix as right hand side redues to matrix multipliation andprovides the best known omplexity for this problem. The omplexity is go-ing from O(N3) �nite �eld operations with lassial algorithm to O (̃N2.81) us-ing Strassen-Winograd variant and reahes the best asymptoti known value of
O (̃N2.37) with Coppersmith-Winograd [21℄. The following algorithm ahievesthis redution.Algorithm LZ_TRSM(A, B)Input: A ∈ Z/pZ

N×N , B ∈ Z/pZ
N×K .Output: X ∈ Z/pZ

N×K suh that AX = B.if N=1 then
X := A−1

1,1 × B.else (splitting matries into ⌊N

2
⌋ and ⌈N

2
⌉ bloks)

A X B
︷ ︸︸ ︷
[

A1 A2

A3

]
︷ ︸︸ ︷
[

X1

X2

]

=

︷ ︸︸ ︷
[

B1

B2

]

X2 :=LZ_TRSM(A3, B2).
B1 := B1 − A2X2.
X1 :=LZ_TRSM(A1, B1).return X.A delayed prime �eld arithmeti version of this algorithm an be onstrutedby simply doing a delayed matrix multipliation on the operation B1 := B1 −

A2X2. One an easily see that modular redutions will be performed at eahlevel of the redution. However, it appears that enough bits are available toombine a few reursion steps without redution. This has been the purposeof the implementation based on BLAS triangular solver funtion (i.e. dtrsmroutine) proposed in a previous work from one of the authors (see [8, �3.2℄).Bounds on the oe�ient growth during bakward substitution allow to guar-antee that numerial results are exat. In [8℄, an optimal bound on integer oef-�ients has been proposed. For the sake of ompleteness we reall it here.Corollary 21 [8, orollary 3.3℄: Let A ∈ Z
N×N be a unit diagonal upper tri-angular matrix, and b ∈ Z

N , with |A|, |b| ≤ p − 1. Then x ∈ Z
N the solution ofthe system Ax = b is suh that

|x| ≤
p − 1

2

[
pN−1 + (p − 2)N−1

]
,and this bound is optimal.We onstrut an improved version for the delayed prime �eld arithmeti ofalgorithm LZ_TRSM by replaing the last levels of the reursion by alls to dtrsm



Formal proof for delayed �nite �eld arithmeti 5numerial solver aording to the above orollary. Reursion is stopped for themaximal integer nmax suh that
p − 1

2

[
pnmax−1 + (p − 2)nmax−1

]
< 253. (1)3 Formal proof heking and GappaGappa [22,23℄ has been reated to generate formal erti�ates of orretion forprograms that use �oating point arithmeti [24,25,26,27℄. As it was developed weextended it to simple bounds in general alulus. It will in the future be able tointerat seamlessly with Why [5℄, a tool to ertify programs written in a generilanguage. C and Java an be onverted to this language.Gappa manipulates arithmeti expressions on real and rational numbers andtheir evaluations on omputers. Exat and rounded expressions are boundedusing interval arithmeti [28℄, forward error analysis and properties of dyadifrations. Proof obligation are generated by stating that expressions that wereintended to be omputed with no round-o� error are equal to expressions thatwere atually omputed possibly with round-o� errors. Gappa generates a prooffor eah expression.To the authors' best knowledge, Gappa is the �rst tool that an onvert thesimple task performed here into a formal proof validated by an automati proofheker. Suh behavior has previously been quoted as invisible formal methods[29℄ in the sense that Gappa delivers formal erti�ates to users that are notexpeted to ever write any piee of proof in any formal proof system.Listing 1.1 is the diret transription of the algorithm presented in Setion 2to solve unitary triangular systems. We used naming onventions of BLAS andLAPak for the funtion and the parameter names. For the sake of simpliitysome parameters have be omitted and some funtion names were slightly modi-�ed.Appropriate assertions on the DGEMM_NEG funtion generate proof obligation

Y [i × LDY + k]/(j + 1) ∈ [−p + 1, p − 1]for all iterations de�ned by i, j and k. It an be proved easily by indution on jwith the help of Gappa as soon as variable Y [i × LDY + k] as been abstratedto a generi name Z.The DTRSM funtion is invoked by LZ_TRSM only on the ondition Pred(N, p) =
N ≤ nmax(p). Below is the funtion that omputes nmax for a given value of pwhere max has been set to 253.pp = 1; p2 = 1;for (nmax = 0; ((p -1)*(pp+p2 ))/2 < max ; nmax ++){pp*=p; p2*=p -2;};Gappa does not handle loops and branhes. We perform a ase analysis onthe value of N. The ode below omputes the value pmax(n) suh as Pred(N, p) =
p ≤ pmax(N). It generates Table 1.



6 Mar Daumas and Pasal GiorgiListing 1.1. Delayed solution of a unitary triangular system over a �nite �eld// Solutions to a small unitary triangular systemvoid DTRSM (int N, int K,trae *A, int LDA ,trae *X, int LDX) {A->bmes ("# DTRSM ", N);for (int i = N - 2; i >= 0; i--)for (int j = i+1 ; j < N; j++)for (int k = 0; k < K; k++)X[i*LDX+k℄ = X[i*LDX+k℄ - A[i*LDA+j℄ * X[j*LDX+k℄;}// Remainder of a matrix modulo pvoid DREMM (int N, int K, int p,trae *X, int LDX) {X->bmes ("# DREMM ", N);for (int i = 0; i < N; i++)for (int k = 0; k < K; k++)X[i*LDX+k℄. init(p);}// Matrix -matrix multipliation Y <- Y - AXvoid DGEMM_NEG (int N, int M, int K,trae *A, int LDA ,trae *X, int LDX ,trae *Y, int LDY) {A->bmes ("# DGEMM ", N);for (int i = 0; i < N; i++)for (int j = 0 ; j < M; j++)for (int k = 0; k < K; k++)Y[i*LDY+k℄ = Y[i*LDY+k℄ - A[i*LDA+j℄ * X[j*LDX+k℄;}// Indutive solutions to a unitary triangular systemvoid LZ_TRSM (int N, int K, int nmax , int p,trae *A, int LDA ,trae *B, int LDB) {if (N <= nmax ) {DTRSM (N, K, A, LDA , B, LDB);DREMM (N-1, K, p, B, LDB);} else {int P = N/2, G = N - P;LZ_TRSM (G, K, nmax , p, A+P*( LDA +1), LDA , B+P*LDB , LDB);DGEMM_NEG (P, G, K, A+P, LDA , B+P*LDB , LDB , B, LDB );DREMM (P, K, p, B, LDB);LZ_TRSM (P, K, nmax , p, A, LDA , B, LDB);}}



Formal proof for delayed �nite �eld arithmeti 7Table1. Generated values of parameter pmax for allowed valued parameter N
N 2 3 4 5 6 7 8 9 10 11 12 13 14 15

pmax 94906266 208064 9739 1553 457 191 97 59 39 29 19 17 13 11

N 16 · · · 19 20 · · · 23 24 · · · 34 35 · · · 54

pmax 7 5 3 2for (p = (int) sqrt (max )+10, nmax = 1; p > 1; p--) {if ((p > 10000) || (isprime (p))) {tmax = nmax (p);while (tmax > nmax )out << "pmax =" << p << " n=" << ++ nmax << endl;}}The DREMM funtion omputes the remainder modulo p of all the omponentsof a matrix. As visible from the proof of Corollary 21, we do not use the exatvalue of these remainders but only the fat that they are between 0 and p − 1.Most questions raised here are not new to automated reasoning. We fous inthis report on the ase analysis of DTRSM and the new tehnique leading to theproof that this funtion never produes any round-o� error.3.1 A C++ trae lass to generate input sripts to GappaGappa produes a Coq �le, for example Listing 1.5, for a given input sript,in this ase Listing 1.3. The Coq �le ontains properties and proofs. Validity ofproofs an automatially be heked by Coq. The C++ trae lass of Listing 1.2is responsible to produe Listing 1.3.The later �le ontains three setions eah assoiated with a stati ostring-stream variable in our C++ lass. The �rst setion is built in bout (beginning),the seond in mout (middle) and the last one in eout (end).The �rst setion de�nes aliases. Gappa uses these aliases for its outputsand in the formal proof instead of mahine generated names. It starts with thede�nitions of rnd rounding operator. It is a real funtion yielding rounded valuesaording to the target data format (ieee_64 - double preision in this ase) anda prede�ned rounding mode (ne - nearest with even tie breaking as spei�ed inIEEE 754 standard in this ase).Statements DGxxx_exat = expr; build the list of intended results andstatements on DGxxx the list of results atually omputed. When a roundingoperator appears left of the equal symbol (as used in DGxxx rnd= expr;), allthe arithmeti operations on the right side are rounded individually. We intro-dued dummy identi�ers in aliases DGxxx = int<ne>(DGxxx_dum); to expressthat DGxxx are integer numbers.



8 Mar Daumas and Pasal GiorgiListing 1.2. A C++ trae lass to instantiate some parameters, implementsingle-assignment behavior and ask Gappa to prove that no operation introduedany round-o� errorlass trae;ostream &operator <<( ostream &os , trae onst &a);lass trae {publi :stati int lastid;stati ostringstream bout , mout , eout ;int id;trae() {}void init (int p) {id = lastid ++;bout << *this<< " = int <ne >(" << *this << "_dum );" << endl ;mout << *this<< " in [0, " << p - 1 << "℄ ->" << endl ;}trae(har * oper , trae onst &a, trae onst &b) {id = lastid ++;bout << *this << " rnd= "<< a << oper << b << ";" << endl ;bout << *this << "_exat = "<< a << oper << b << ";" << endl ;eout << *this << " - "<< *this << "_exat in [0, 0℄ /\\" << endl ;eout << *this << " in ? /\\" << endl ;}void dump () {out << bout .str () << "{" << endl<< mout .str ()<< eout .str ()<< *this << " in ?" << endl<< "}" << endl ;}void bmes (har * mes , int n = 0){bout << mes ; if (n) bout << n; bout << endl ;}};ostream &operator <<( ostream &os ,trae onst &a){return os << "DG" << a.id;}trae operator +( trae onst &a, trae onst &b){return trae(" + ", a, b);}trae operator -( trae onst &a, trae onst &b){return trae(" - ", a, b);}trae operator *( trae onst &a, trae onst &b){return trae(" * ", a, b);}int trae:: lastid = 0;ostringstream trae::bout , trae:: mout , trae:: eout ;



Formal proof for delayed �nite �eld arithmeti 9Listing 1.3. Reordered Gappa input sript for a small example (4× 4 matrieson Z/101Z)�rnd = float < ieee_64 , ne >;# MatrixDG0 = int <ne >( DG0_dum );...DG15 = int <ne >( DG15_dum );# SolutionDG16 = int <ne >( DG16_dum );...DG19 = int <ne >( DG19_dum );# DTRSM 4DG20 rnd= DG5 * DG19 ;DG21 rnd= DG18 - DG20 ;DG22 rnd= DG3 * DG21 ;DG23 rnd= DG17 - DG22 ;DG24 rnd= DG4 * DG19 ;DG25 rnd= DG23 - DG24 ;DG26 rnd= DG1 * DG25 ;DG27 rnd= DG16 - DG26 ;DG28 rnd= DG2 * DG21 ;DG29 rnd= DG27 - DG28 ;DG30 rnd= DG3 * DG19 ;DG31 rnd= DG29 - DG30 ;DG20_exat = DG5 * DG19 ;...DG31_exat = DG29 - DG30 ;# DREMM 3DG32 = int <ne >( DG32_dum );DG33 = int <ne >( DG33_dum );DG34 = int <ne >( DG34_dum );{DG0 in [0, 100℄ ->...DG19 in [0, 100℄ ->DG32 in [0, 100℄ ->...DG34 in [0, 100℄ ->DG20 - DG20_exat in [0, 0℄ /\...DG31 - DG31_exat in [0, 0℄ /\DG20 in ? /\...DG31 in ? /\DG0 in ?}



10 Mar Daumas and Pasal GiorgiListing 1.4. Testvoid TEST (int n, int nmax , int p, int k) {int i;trae *A = new trae[n*n℄, *B = new trae[k*n℄;A->bmes (" �rnd = float < ieee_64 , ne >;");A->bmes ("# Matrix ");for (i = 0; i < n*n; i++) {A[i℄. init (p);}A->bmes ("# Solution ");for (i = 0; i < k*n; i++) {B[i℄. init (p);}LZ_TRSM (n, k, nmax , p, A, k, B, k);A->dump ();delete [℄A; delete [℄B;}The seond and third setions are written together between brakets ({ })and in this work, it is a large impliation (->) of a large onjuntion (/\) ofinterval enlosures of mathematial expressions.The seond setion ontains a set of hypotheses eah stating that a variableor an expression is within an interval. Note that p1 → p2 → p3 is logiallyequivalent to p1 ∧ p2 → p3 and this setion is built from the lines �nished byan impliation sign (->). Identi�ers without de�nition, suh as the DGxxx_dumvariables used in the �rst setion are assumed to be universally quanti�ed overthe set of real numbers the �rst time Gappa enounters them.The third setion ontains goals. It is a large onjuntion (/\). StatementsDGxxx - DGxxx_exat in [0, 0℄mean that we ask Gappa to prove that DGxxxand DGxxx_exat are idential. Statements DGxxx in ? are inserted for diagnos-tis as Gappa proposes enlosing intervals.The TEST funtion in Listing 1.4 presents memory alloation and parts of theCoq sript related to initial aliases and some omments.3.2 Insight into the Coq generated sriptThe generated Coq sript visible in Listing 1.5 ontains Variables, Defini-tions, Notations and Lemmas. Users do not need to be able to write suh a �lebut they an hek the work of Gappa by reading it or parsing it. Comments arebetween (* and *) signs. They were generated by Gappa.Lemma l134 is one of the tasks assigned to Gappa. It proves that propertyp134 is valid under a large number of assumptions (p3, p18, p43, p92...) thatis a subset of the hypotheses given in the seond setion of Gappa input sript.The lines between the statement of a lemma and the Qed. sign are proof sriptsintended for Coq only. All the properties are de�ned in the sript. The BNDprediate of p134 holds, when its �rst argument, an expression on real numbers,is an element of its seond argument, an interval de�ned by dyadi frationbounds.Proof of Lemma l134 requires a bound on DG31 - DG31_exat provided byLemma t696. Although enlosure (BND) is the only prediate available to users,



Formal proof for delayed �nite �eld arithmeti 11Listing 1.5. Exerpts of the 3548 line Coq sript generated for a small example(4 × 4 matries on Z/101Z)Require Import Gappa_library .Setion Generated_by_Gappa .Definition f1 := Float2 (25) (2).Definition f2 := Float2 (0) (0)....Variable _DG19_dum : R.Notation _DG19 := (( rounding_fixed roundNE (0)) (_DG19_dum )).Notation p3 := (BND _DG19 i1). (* BND(DG19 , [0, 100℄) *)...Definition i3 := makepairF f2 f2....Definition f15 := Float2 (1) ( -27).Definition f16 := Float2 (-1) ( -27).Definition i13 := makepairF f16 f15....Variable _DG16_dum : R.Notation _DG16 := (( rounding_fixed roundNE (0)) (_DG16_dum )).Notation p92 := (BND _DG16 i1). (* BND(DG16 , [0, 100℄) *)...Notation _DG31_exat := (( _DG29 - _DG30)%Notation _DG31 :=(( rounding_float roundNE (53) (1074)) (_DG31_exat ))....Notation r70 := (( _DG31 - _DG31_exat )%Notation p134 := (BND r70 i3).(* BND(DG31 - DG31_exat , [0, 0℄) *)Notation p135 := (BND r70 i13).(* BND(DG31 - DG31_exat , [ -7.45058 e-09, 7.45058e -09℄) *)...Notation p141 := (FIX r70 (0)). (* FIX(DG31 - DG31_exat , 0) *)...Lemma l133 : p141 . (* FIX(DG31 - DG31_exat , 0) *)assert (h0 : p142 ). apply l132 .assert (h1 : p143 ). apply l131 .apply t695 . exat h0. exat h1.Qed.Lemma t696 : p135 -> p141 -> p134 .intros h0 h1.apply bnd_of_bnd_fix with (1 := h0) (2 := h1) ; finalize .Qed.Lemma l134 : ... -> p92 -> p43 -> p18 -> p3 -> p134 .(* BND(DG31 - DG31_exat , [-0, 0℄) *)intros h0 h1 h2 h3 h4 h5 h6 h7 h8.assert (h9 : p135 ). apply l130 . exat h0. exat h1...assert (h10 : p141 ). apply l133 .apply t696 . exat h9. exat h10.Qed.End Generated_by_Gappa .



12 Mar Daumas and Pasal GiorgiGappa internally relies on more prediates to desribe properties on expressions.Prediate De�nition
BND(x, [a, b]) a ≤ x ≤ b
ABS(x, [a, b]) 0 ≤ a ≤ |x| ≤ b
FIX(x, e) ∃m ∈ Z, x = m · 2e
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