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Proof 
he
king for delayed �nite �eld arithmeti
using �oating point operators⋆Mar
 Daumas1 and Pas
al Giorgi2
1 lirmm (umr 5506 
nrs�um2) visiting eliaus (ea 3679 upvd)

2 eliaus (ea 3679 upvd)Abstra
t Formal proof 
he
kers su
h as Coq, PVS and HOL light are
apable of validating proofs on �nite �eld arithmeti
s and their imple-mentations but they require extensive training from potential users. Wepropose here to use a tool named Gappa that 
an be learned in a matterof minutes to hide te
hni
alities of su
h formal proof 
he
kers. We presenthow we over
ame one limitation of Gappa for the delayed solution of atriangular system over a �nite �eld using �oating point arithmeti
. Wedid not produ
e a 
erti�
ate of validity of the delayed algorithm indepen-dent of all the parameters but we 
ontributed to the trust that readersand users may have in this algorithm by spanning a large number of do-mains for the inputs. As they are easily implemented we hope that su
hpra
ti
es may be
ome routinely used during software design and tests.1 Introdu
tionIntrodu
ing a new algorithm is a di�
ult task. Authors have to persuade readersthat their algorithm is 
orre
t and e�
ient. Su
h goals are usually attained byproviding pen-and-paper proofs of 
orre
tion more or less interla
ed with thedes
ription of the algorithm. Authors may also provide results of tests to guar-antee 
orre
tion and e�
ien
y on random 
ases and on known or new hard 
ases.Alas, this pro
ess is known to fail on mundane as well as notorious o

urren
es[1,2℄.Developing a proof of 
orre
tion in a formal proof 
he
ker using higher orderlogi
 su
h as Coq [3,4℄, PVS [5℄ or HOL Light [6℄ would be a ni
e alternativebut su
h a task usually represents a large amount of work outside the �elds ofexpertise of most authors.The delayed solver used here is intended to work on a n×n unitary triangularmatrix on Z/pZ �nite �eld. The key improvement 
ompared to state of theart lies in the fa
t that delayed algorithms use �oating point units to performoperations with no rounding error and delay 
omputations of remainders as mu
has possible. Gappa is able to guarantee that no rounding error o

urred whateverthe value of the input matrix but it 
annot operate independently from n and pas these parameters 
hange the 
ontrol �ow.
⋆ This work has been partially founded by PICS 2533 of the CNRS and proje
t EVA-Flo of the ANR.
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 Daumas and Pas
al GiorgiWe tested exhaustively small values and randomly large values of n and p.We have set up a C++ 
lass in a matter of a few days and validation with Gappawas also performed in a matter of days. We feel that su
h external validationis wel
ome spe
ially to persons that la
k extensive training in �oating pointarithmeti
 as su
h training is not ne
essary to develop innovative algorithms for�nite �eld arithmeti
. Similar methodology has proved to be su�
ient to meetthe highest Common Criteria Evaluated Assuran
e Level (EAL 7) [7,8℄ and itmay now be applied to delayed �nite �eld arithmeti
.We present in Se
tion 2 the ba
kground and one algorithm of delayed solu-tions of a triangular system over a �nite �eld. We 
ontinue in Se
tion 3 by theba
kground and tools of formal proof 
he
king in
luding Gappa and ex
erpts ofour C++ tra
e 
lass. We 
on
lude this work in Se
tion 4.2 Finite �eld arithmeti
 and appli
ation to linear algebraFinite �eld arithmeti
 plays a 
ru
ial role in nowadays appli
ations. One of themost extensively studied appli
ation of �nite �elds is 
ryptography with major
on
erns on se
urity and e�
ien
y (see [9℄ for an introdu
tion on 
ryptography).Another key appli
ation of �nite �eld arithmeti
 arises with exa
t linear alge-bra 
omputation where modular te
hniques (e.g. CRT or P-adi
 lifting) allowsome 
ontrol on expression swell with high performan
es [10,11,12℄. Arithmeti
implementations used in 
ryptography di�er from the ones used in linear alge-bra. While 
ryptographi
 appli
ations need �nite �elds of large 
ardinality (e.g.1024-2048 bits for RSA [13℄, 300 bits for ECC [14℄) for se
urity purpose, exa
tlinear algebra restrains to ma
hine word size prime �eld (e.g. 32 or 64 bits) inorder to bene�t from ma
hine arithmeti
 units.A 
lassi
al way to perform one arithmeti
 operation in a prime �eld, here werefer to integers modulo a prime number, is to �rst perform the operation onintegers and se
ond redu
e the result to the destination �eld. Let x, y ∈ Z/pZand ∗ ∈ {+,×}. One may 
ompute z = x∗ y ∈ Z/pZ by 
omputing t = x∗ y ∈ Zand a modular redu
tion z = t mod p.In the rest of this se
tion, we present basi
 fa
ts on word size prime �eldarithmeti
s and how to e�
iently integrate them into an exa
t linear algebraappli
ation: solutions of triangular systems.2.1 Word-size prime �eld arithmeti
When one deals with �xed pre
ision prime �eld arithmeti
, two majors issuesarise: performan
es and 
ardinality limitation. The latter issue 
an have a non-negligible impa
t on the former one. As was just said, the 
lassi
al way to performarithmeti
 operations over a prime �eld is to perform operations on integersand redu
e intermediate results. Therefore, (p − 1)2 must be representable to
orre
tly perform multipli
ations over Z/pZ. This limitation slightly in
rease toperform an AXPY operation (a multipli
ation followed by an addition) with onlyone redu
tion step. This implies that p × (p − 1) must be representable.
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 3Using word-size ma
hine integers and 
lassi
 arithmeti
 we obtain the follow-ing 
ardinality limitation: p < 216 on 32 bit ar
hite
tures and p < 232 on 64 bitar
hite
tures with unsigned types. These bounds are redu
ed by one bit withsigned types su
h as long.Note that even on 32 bit ar
hite
tures, one 
an obtain 64 bit integers by usinglong long data. Full use of long long may redu
e performan
es drasti
ally asthe redu
tion phase involves a 64 bit division. Integer multipli
ations have noimpa
t on performan
es sin
e most of 32 bit pro
essors provide a multiplier
32bits× 32bits → 64bits (see the imul instru
tion on Intel ar
hite
tures [15℄).Another alternative to in
rease 
ardinality of word-size prime �elds is to use�oating point numbers. A

ording to the IEEE 754 standard [16,17℄, mantissasof double pre
ision �oating point numbers 
an store 53 bit integers (in
luding theimpli
it bit). Therefore, we 
an perform prime �eld arithmeti
 with 
ardinalityup to 226 using double. Note that, the redu
tion is easily obtained by the fmodfun
tion available in standard libraries. This approa
h is quite interesting inpra
ti
e sin
e �oating point multipli
ations and divisions are faster than theirinteger 
ounterparts on most ar
hite
ture (Compaq Alpha, AMD, Pentium IV,Itanium, Sun Solaris, et
.) with the ex
eption of the Pentium III [18, Table 3.1℄.One 
an get even larger prime �elds by mixing integers and �oating pointnumbers. The idea is then to use an approximation of the quotient with �oatingpoint and Barret's method to 
ompute the remainder [9, 
hapter 14℄ as demon-strated in NTL library [19℄. It leads to prime �elds with 
ardinality up to 229 on32 bit ar
hite
tures and up to 252 on 64 bit ar
hite
tures.Prime �eld implementations above bene�t from the arithmeti
 units of pro-
essors but performan
es depend on the target ar
hite
ture (see [20,21℄ for de-tailed 
omparisons). On sele
ted 
lasses of algorithms, delayed prime �eld arith-meti
 sustains better performan
es. The idea is to perform several integer oper-ations before redu
tion into the �eld. It has been very fruitful for exa
t linearalgebra [11℄. We perform a dot-produ
t or a matrix multipli
ation with a delayedredu
tion when (p−1)2×n < 2β, where n is the dimension of matri
es or ve
tors,
p de�nes the prime �eld Z/pZ and β represents the pre
ision of integers. Delayedexa
t linear algebra 
omputations also bene�t from optimized numeri
al BLAS(e.g. ATLAS [22℄, GOTO [23℄) libraries for exa
t 
omputations as shown in [11℄and they often rea
h maximal FPU throughput for operations over a �nite �eld.Beside basi
s linear algebra operations su
h as matrix-ve
tor produ
ts andmatrix multipli
ations, delayed arithmeti
 over a prime �eld is valuable when ex-pressions swell largely su
h as solving systems of linear equations. This approa
hworks perfe
tly for unitary triangular system (only ones along the diagonal) de-spite the exponential growth of the intermediate variables.2.2 Triangular system solving with delayed prime �eld arithmeti
A key appli
ation in exa
t linear algebra is the resolution of triangular sys-tems over �nite �elds. The resolution of su
h systems is a 
lassi
al problem oflinear algebra and it is one of the main operations in blo
k Gaussian elimi-nation when right hand side is given as a matrix [24℄. Resolution of triangular
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al Giorgisystems with matrix as right hand side redu
es to matrix multipli
ation and pro-vides the best known 
omplexity for this problem. The 
omplexity is going from
O(n3) �nite �eld operations with 
lassi
al algorithm to O (̃n2.81) using Strassen-Winograd variant and rea
hes the best asymptoti
 known value of O (̃n2.37) withCoppersmith-Winograd [25℄. The following algorithm a
hieves this redu
tion.Algorithm LZ_TRSM(A, B)Input: A ∈ Z/pZ

N×N , B ∈ Z/pZ
N×K .Output: X ∈ Z/pZ

N×K su
h that AX = B.if N=1 then
X := A−1

1,1 × B.else (splitting matri
es into ⌊N

2
⌋ and ⌈N

2
⌉ blo
ks)

A X B
︷ ︸︸ ︷
[

A1 A2

A3

]
︷ ︸︸ ︷
[

X1

X2

]

=

︷ ︸︸ ︷
[

B1

B2

]

X2 :=LZ_TRSM(A3, B2).
B1 := B1 − A2X2.
X1 :=LZ_TRSM(A1, B1).return X.A delayed prime �eld arithmeti
 version of this algorithm 
an be 
onstru
tedby simply doing a delayed matrix multipli
ation on the operation B1 := B1 −

A2X2. One 
an easily see that modular redu
tions will be performed at ea
hlevel of the redu
tion. However, it appears that enough bits are available to
ombine a few re
ursion steps without redu
tion. This has been the purposeof the implementation based on BLAS triangular solver fun
tion (i.e. dtrsmroutine) proposed in a previous work from one of the authors (see [11, �3.2℄).Bounds on the 
oe�
ient growth during ba
kward substitution allow to guar-antee that numeri
al results are exa
t. In [11℄, an optimal bound on integer
oe�
ients has been proposed. For the sake of 
ompleteness we re
all it here.Corollary 21 [11, 
orollary 3.3℄: Let A ∈ Z
n×n be a unit diagonal upper tri-angular matrix, and b ∈ Z

n, with |A|, |b| ≤ p − 1. Then x ∈ Z
n the solution ofthe system Ax = b is su
h that

|x| ≤
p − 1

2

[
pn−1 + (p − 2)n−1

]
,and this bound is optimal.We 
onstru
t an improved version for the delayed prime �eld arithmeti
 ofalgorithm LZ_TRSM by repla
ing the last levels of the re
ursion by 
alls to dtrsmnumeri
al solver a

ording to the above 
orollary. Re
ursion is stopped for the
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 5maximal integer nmax su
h that
p − 1

2

[
pnmax−1 + (p − 2)nmax−1

]
< 253. (1)3 Formal proof 
he
king and GappaGappa [26,27℄ has been 
reated to generate formal 
erti�
ates of 
orre
tion forprograms that use �oating point arithmeti
 [28,29,30,31℄. As it was developed weextended it to simple bounds in general 
al
ulus. It will in the future be able tointera
t with Why [32℄, a tool to 
ertify programs written in a generi
 language(C and Java 
an be 
onverted to this language), and Flu
tuat [33,34℄, a tool thatproposes loop invariants.Gappa manipulates arithmeti
 expressions on real and rational numbers andtheir evaluations on 
omputers. Exa
t and rounded expressions are boundedusing interval arithmeti
 [35℄, forward error analysis and properties of dyadi
fra
tions. For delayed �nite �eld arithmeti
, we have to build a list of expres-sions that were intended to be 
omputed with no round-o� error and a list ofexpressions that were a
tually 
omputed possibly with round-o� errors. Gappagenerates proofs that these two lists are identi
al.To the authors' best knowledge, Gappa is the �rst tool that 
an 
onvert thesimple task performed here into a formal proof validated by an automati
 proof
he
ker. Su
h behavior has previously been quoted as invisible formal methods[36℄ in the sense that Gappa delivers formal 
erti�
ates to users that are notexpe
ted to ever write any pie
e of proof in any formal proof system.3.1 A C++ tra
e 
lass to generate input s
ripts to GappaGappa produ
es a Coq �le, for example Listing 1.5, for a given input s
ript,in this 
ase Listing 1.2. The Coq �le 
ontains properties and proofs. Validity ofproofs 
an automati
ally be 
he
ked by Coq. The C++ tra
e 
lass of Listing 1.1is responsible to produ
e Listing 1.2.The later �le 
ontains three se
tions ea
h asso
iated with a stati
 ostring-stream variable in our C++ 
lass. The �rst se
tion is built in bout (beginning),the se
ond in mout (middle) and the last one in eout (end).The �rst se
tion de�nes aliases. Gappa uses these aliases for its outputsand in the formal proof instead of ma
hine generated names. It starts with thede�nitions of rnd rounding operator. It is a real fun
tion yielding rounded valuesa

ording to the target data format (ieee_64 - double pre
ision in this 
ase) anda prede�ned rounding mode (ne - nearest with even tie breaking as spe
i�ed inIEEE 754 standard in this 
ase).Statements DGxxx_exa
t = expr; build the list of intended results andstatements on DGxxx the list of results a
tually 
omputed. When a roundingoperator appears left of the equal symbol (as used in DGxxx rnd= expr;), allthe arithmeti
 operations on the right side are rounded individually. We intro-du
ed dummy identi�ers in aliases DGxxx = int<ne>(DGxxx_dum); to expressthat DGxxx are integer numbers.
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al GiorgiListing 1.1. A C++ tra
e 
lass to implement single-assignement behavior andask Gappa to prove that no operation introdu
ed any round-o� error
lass tra
e;ostream &operator <<( ostream &os , tra
e 
onst &a);
lass tra
e {publi
 :stati
 int lastid;stati
 ostringstream bout , mout , eout ;int id;tra
e() {}void init (int p) {id = lastid ++;bout << *this<< " = int <ne >(" << *this << "_dum );" << endl ;mout << *this<< " in [0, " << p - 1 << "℄ ->" << endl ;}tra
e(
har * oper , tra
e 
onst &a, tra
e 
onst &b) {id = lastid ++;bout << *this << " rnd= "<< a << oper << b << ";" << endl ;bout << *this << "_exa
t = "<< a << oper << b << ";" << endl ;eout << *this << " - "<< *this << "_exa
t in [0, 0℄ /\\" << endl ;eout << *this << " in ? /\\" << endl ;}void dump () {
out << bout .str () << "{" << endl<< mout .str ()<< eout .str ()<< *this << " in ?" << endl<< "}" << endl ;}void bmes (
har * mes , int n = 0){bout << mes ; if (n) bout << n; bout << endl ;}};ostream &operator <<( ostream &os ,tra
e 
onst &a){return os << "DG" << a.id;}tra
e operator +( tra
e 
onst &a, tra
e 
onst &b){return tra
e(" + ", a, b);}tra
e operator -( tra
e 
onst &a, tra
e 
onst &b){return tra
e(" - ", a, b);}tra
e operator *( tra
e 
onst &a, tra
e 
onst &b){return tra
e(" * ", a, b);}int tra
e:: lastid = 0;ostringstream tra
e::bout , tra
e:: mout , tra
e:: eout ;
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he
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 7Listing 1.2. Reordered Gappa input s
ript for a small example (4× 4 matri
eson Z/101Z)�rnd = float < ieee_64 , ne >;# MatrixDG0 = int <ne >( DG0_dum );...DG15 = int <ne >( DG15_dum );# SolutionDG16 = int <ne >( DG16_dum );...DG19 = int <ne >( DG19_dum );# DTRSM 4DG20 rnd= DG5 * DG19 ;DG21 rnd= DG18 - DG20 ;DG22 rnd= DG3 * DG21 ;DG23 rnd= DG17 - DG22 ;DG24 rnd= DG4 * DG19 ;DG25 rnd= DG23 - DG24 ;DG26 rnd= DG1 * DG25 ;DG27 rnd= DG16 - DG26 ;DG28 rnd= DG2 * DG21 ;DG29 rnd= DG27 - DG28 ;DG30 rnd= DG3 * DG19 ;DG31 rnd= DG29 - DG30 ;DG20_exa
t = DG5 * DG19 ;...DG31_exa
t = DG29 - DG30 ;# DREMM 3DG32 = int <ne >( DG32_dum );DG33 = int <ne >( DG33_dum );DG34 = int <ne >( DG34_dum );{DG0 in [0, 100℄ ->...DG19 in [0, 100℄ ->DG32 in [0, 100℄ ->...DG34 in [0, 100℄ ->DG20 - DG20_exa
t in [0, 0℄ /\...DG31 - DG31_exa
t in [0, 0℄ /\DG20 in ? /\...DG31 in ? /\DG0 in ?}
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 Daumas and Pas
al GiorgiThe se
ond and third se
tions are written together between bra
kets ({ })and in this work, it is a large impli
ation (->) of a large 
onjun
tion (/\) ofinterval en
losures of mathemati
al expressions.The se
ond se
tion 
ontains a set of hypotheses ea
h stating that a variableor an expression is within an interval. Note that p1 → p2 → p3 is logi
allyequivalent to p1 ∧ p2 → p3 and this se
tion is build from the lines �nished byan impli
ation sign (->). Identi�ers without de�nition, su
h as the DGxxx_dumvariables used in the �rst se
tion are assumed to be universally quanti�ed overthe set of real numbers the �rst time Gappa en
ounters them.The third se
tion 
ontains goals. It is a large 
onjun
tion (/\). StatementsDGxxx - DGxxx_exa
t in [0, 0℄mean that we ask Gappa to prove that DGxxxand DGxxx_exa
t are identi
al. Statements DGxxx in ? are inserted for diagnos-ti
s as Gappa proposes en
losing intervals.Listing 1.3 is the dire
t trans
ription of the algorithm presented in Se
tion 2to solve unitary triangular systems. We used naming 
onventions of BLAS andLAPa
k for the fun
tion and the parameter names. For the sake of simpli
itysome parameters have be omitted and fun
tion names were slightly modi�ed.The DREMM fun
tion 
omputes the remainder modulo p of all the 
omponentsof a matrix. As visible from the proof of Corollary 21, we do not use the exa
tvalue of these remainders but only the fa
t that they are between 0 and p − 1.The TEST fun
tion in Listing 1.4 presents memory allo
ation and parts of theCoq s
ript related to initial aliases and some 
omments.3.2 Insight into the Coq generated s
riptThe generated Coq s
ript visible in Listing 1.5 
ontains Variables, Defini-tions, Notations and Lemmas. Users do not need to be able to write su
h a �lebut they 
an 
he
k the work of Gappa by reading it or parsing it. Comments arebetween (* and *) signs. They were generated by Gappa.Lemma l134 is one of the tasks assigned to Gappa. It proves that propertyp134 is valid under a large number of assumptions (p3, p18, p43, p92...) thatis a subset of the hypotheses given in the se
ond se
tion of Gappa input s
ript.The lines between the statement of a lemma and the Qed. sign are proof s
riptsintended for Coq only. All the properties are de�ned in the s
ript. The BNDpredi
ate of p134 holds, when its �rst argument, an expression on real numbers,is an element of its se
ond argument, an interval de�ned by dyadi
 fra
tionbounds.Proof of Lemma l134 requires a bound on DG31 - DG31_exa
t provided byLemma t696. Although en
losure (BND) is the only predi
ate available to users,Gappa internally relies on more predi
ates to des
ribe properties on expressions.Predi
ate De�nition
BND(x, [a, b]) a ≤ x ≤ b
ABS(x, [a, b]) 0 ≤ a ≤ |x| ≤ b
FIX(x, e) ∃m ∈ Z, x = m · 2e

FLT(x, p) ∃m, e ∈ Z, x = m · 2e ∧ |m| < 2p
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he
king for delayed �nite �eld arithmeti
 9Listing 1.3. Delayed solution of a unitary triangular system over a �nit �eld// Solutions to a small unitary triangular systemvoid DTRSM (int N, int K,tra
e *A, int LDA ,tra
e *X, int LDX) {A->bmes ("# DTRSM ", N);for (int i = N - 2; i >= 0; i--)for (int j = i+1 ; j < N; j++)for (int k = 0; k < K; k++)X[i*LDX+k℄ = X[i*LDX+k℄ - A[i*LDA+j℄ * X[j*LDX+k℄;}// Remainder of a matrix modulo pvoid DREMM (int N, int K, int p,tra
e *X, int LDX) {X->bmes ("# DREMM ", N);for (int i = 0; i < N; i++)for (int k = 0; k < K; k++)X[i*LDX+k℄. init(p);}// Matrix -matrix multipli
ation Y <- Y - AXvoid DGEMM_NEG (int N, int M, int K,tra
e *A, int LDA ,tra
e *X, int LDX ,tra
e *Y, int LDY) {A->bmes ("# DGEMM ", N);for (int i = 0; i < N; i++)for (int j = 0 ; j < M; j++)for (int k = 0; k < K; k++)Y[i*LDY+k℄ = Y[i*LDY+k℄ - A[i*LDA+j℄ * X[j*LDX+k℄;}// Indu
tive solutions to a unitary triangular systemvoid LZ_TRSM (int N, int K, int nmax , int p,tra
e *A, int LDA ,tra
e *B, int LDB) {if (N <= nmax ) {DTRSM (N, K, A, LDA , B, LDB);DREMM (N-1, K, p, B, LDB);} else {int P = N/2, G = N - P;LZ_TRSM (G, K, nmax , p, A+P*( LDA +1), LDA , B+P*LDB , LDB);DGEMM_NEG (P, G, K, A+P, LDA , B+P*LDB , LDB , B, LDB );DREMM (P, K, p, B, LDB);LZ_TRSM (P, K, nmax , p, A, LDA , B, LDB);}}



10 Mar
 Daumas and Pas
al GiorgiListing 1.4. Testvoid TEST (int n, int nmax , int p, int k) {int i;tra
e *A = new tra
e[n*n℄, *B = new tra
e[k*n℄;A->bmes (" �rnd = float < ieee_64 , ne >;");A->bmes ("# Matrix ");for (i = 0; i < n*n; i++) {A[i℄. init (p);}A->bmes ("# Solution ");for (i = 0; i < k*n; i++) {B[i℄. init (p);}LZ_TRSM (n, k, nmax , p, A, k, B, k);A->dump ();delete [℄A; delete [℄B;}The proof of Lemma t696 uses bnd_of_bnd_fix of Gappa support librarywith the apply ta
ti
. Automati
 validation of the hypotheses is triggered by thefinalize ta
ti
 that 
he
ks that the 
urrent goal 
an be redu
ed to true = true.More insights to Gappa are presented in [27℄.4 Perspe
tives and 
on
luding remarksThe authors had two goal in writing this report. Our �rst goal was to show thatGappa 
an be used to partially validate theorems for �nite �eld arithmeti
. Ourse
ond goal was to present Gappa on an example in su�
ient details so that thisreport is a �rst tutorial on how to use Gappa, how to read �les generated byGappa and how Gappa works internally.http://lipforge.ens-lyon.fr/www/gappa/This paper addresses the problem of formally 
erti�
ate expression swellwithin delayed �nite �eld arithmeti
. In parti
ular, proofs have been validatedfor the �rst prime numbers and for random prime numbers on the problem ofsolving unitary triangular system. Our approa
h 
an be easily reprodu
ed toother exa
t linear appli
ations over �nite �elds. More pre
isely, the FFLAS-FFPACK proje
t has been su

essful on using delayed prime �eld arithmeti
 forlinear algebra appli
ations.http://ljk.imag.fr/membres/Jean-Guillaume.Dumas/FFLAS/More validation work will 
ontinue to 
ontribute to the trust of su
h libraries.We will also perform validation of symmetri
 representations of prime �eld inthe future.Gappa is also 
apable of validating bounds used for Winograd-Strassen ma-trix multipli
ation [37℄ by rewriting expressions. This feature not demonstratedhere is useful in proving that Winograd-Strassen algorithm is 
orre
t. Gappatransfers the validation of additional formulas to a strategy of Coq that is ableto validate it 
omponent by 
omponent in this 
ase.
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erpts of the 3548 line Coq s
ript generated for a small example(4 × 4 matri
es on Z/101Z)Require Import Gappa_library .Se
tion Generated_by_Gappa .Definition f1 := Float2 (25) (2).Definition f2 := Float2 (0) (0)....Variable _DG19_dum : R.Notation _DG19 := (( rounding_fixed roundNE (0)) (_DG19_dum )).Notation p3 := (BND _DG19 i1). (* BND(DG19 , [0, 100℄) *)...Definition i3 := makepairF f2 f2....Definition f15 := Float2 (1) ( -27).Definition f16 := Float2 (-1) ( -27).Definition i13 := makepairF f16 f15....Variable _DG16_dum : R.Notation _DG16 := (( rounding_fixed roundNE (0)) (_DG16_dum )).Notation p92 := (BND _DG16 i1). (* BND(DG16 , [0, 100℄) *)...Notation _DG31_exa
t := (( _DG29 - _DG30)%R).Notation _DG31 :=(( rounding_float roundNE (53) (1074)) (_DG31_exa
t ))....Notation r70 := (( _DG31 - _DG31_exa
t )%R).Notation p134 := (BND r70 i3).(* BND(DG31 - DG31_exa
t , [0, 0℄) *)Notation p135 := (BND r70 i13).(* BND(DG31 - DG31_exa
t , [ -7.45058 e-09, 7.45058e -09℄) *)...Notation p141 := (FIX r70 (0)). (* FIX(DG31 - DG31_exa
t , 0) *)...Lemma l133 : p141 . (* FIX(DG31 - DG31_exa
t , 0) *)assert (h0 : p142 ). apply l132 .assert (h1 : p143 ). apply l131 .apply t695 . exa
t h0. exa
t h1.Qed.Lemma t696 : p135 -> p141 -> p134 .intros h0 h1.apply bnd_of_bnd_fix with (1 := h0) (2 := h1) ; finalize .Qed.Lemma l134 : ... -> p92 -> p43 -> p18 -> p3 -> p134 .(* BND(DG31 - DG31_exa
t , [-0, 0℄) *)intros h0 h1 h2 h3 h4 h5 h6 h7 h8.assert (h9 : p135 ). apply l130 . exa
t h0. exa
t h1...assert (h10 : p141 ). apply l133 .apply t696 . exa
t h9. exa
t h10.Qed.End Generated_by_Gappa .
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