N
N

N

HAL

open science

Dynamics random walks on Heisenberg groups
Nadine Guillotin-Plantard, René Schott

» To cite this version:

Nadine Guillotin-Plantard, René Schott. Dynamics random walks on Heisenberg groups. Journal of

Theoretical Probability, 2006, 19, pp.377-395.

hal-00135062

HAL Id: hal-00135062
https://hal.science/hal-00135062
Submitted on 6 Mar 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00135062
https://hal.archives-ouvertes.fr

Dynamic Random Walks on Heisenberg groups
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Abstract

We prove a Guivarc’h law of large numbers and a central limit theorem for dynamic
random walks on Heisenberg groups. The limiting distribution is explicitely given. To our
knowledge this is the first study of dynamic random walks on non-commutative Lie groups.

1 Introduction

Random walks on Lie groups have been extensively studied over the last decades ([11, 12, 15]).
Among these groups Heisenberg groups play a special role. These groups have their origin in
quantum mechanics where they can be interpreted as the Lie algebras generated by the location
operator, the momentum operator, and the identity operator. They are simply connected nilpo-
tent Lie groups of rank 2 and one-dimensional center. Heisenberg groups are often considered
as the simplest non-commutative Lie groups. The geometry of these groups has been investi-
gated by A. Koranyi ([13, 14]). Limit theorems for random walks on Heisenberg groups have
been proved by P. Crepel, B. Roynette ([4]) and D. Neuenschwander ([15]) in connection with
the resolution of Kesten’s conjecture on the classification of recurrent and transient groups. A
central limit theorem for nilpotent Lie groups has been proved by P. Crepel and A. Raugi ([3]).
The novelty of this paper is in the dynamic model of random walks which we define on Heisen-
berg groups. The theory of dynamic random walks has been done by the first author in a
commutative setting ([6, 7, 8, 9]). This paper is a first step/attempt in extending this theory to
non-commutative algebraic structures.
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The organization is as follows: Section 2 provides some introductory material on Heisenberg
groups and dynamic random walks. Section 3 is devoted to the proof of a strong law of large
numbers and a central limit theorem. The limiting distribution is explicitely calculated. Our
strong law of large numbers extends Guivarc’h’s result [10] to dynamic random walks on Heisen-
berg groups.

2 Generalities on Heisenberg groups and dynamic random walks

The continuous Heisenberg group Hy is the group with underlying manifold R4+ and group
operation

2d—1
X Y= (371 Y1, @2 Y2, @od +Y2a, 21+ 22+ 5 D (wiyiv — $i+1’yi))>
i-1

2d+1 2d+1
where X = (z1,...,%94,21) € R + and Y = (y1,...,%24,22) € R +

H, is a nilpotent Lie group of rank 2 and with one-dimensional center. In this paper we
identify the Heisenberg group H, with its Lie algebra #,.

For simplicity we focus on H; but all results of this paper remain true for Hy. Let us
remember that another representation H; is as a group of upper triangular (3 x 3)-matrices with
1’s on the diagonal:

1 =z
01 ,L,y,2 € R
00

W

If x, y, z are integers (in the ring Z) then we get the discrete Heisenberg group which is known
to be the simplest non-abelian nilpotent group.
Let g = (z,y,2) € Hy and

g 1= 1= +4°)* + 2]/

Let 6,(g9) = (rz,ry,r%2) where r > 0. The mapping d, is called dilation of ratio r on H;. The
mapping g —| ¢ | from H; into R is an homogeneous norm. This means that:

i) | g |= 0 if and only if g = 0,

i) [ g[=[-g],

iii)| 0r(9) |=7 g |-

Remark.

Let V' be a compact neighborhood of the identity in H;. The mapping defined by | g |=inf{n €
N, g € V™} is also an homogeneous norm.

It is known [10] that all homogeneous norms on H; are equivalent.

B(0,r) = {g € H1;| g |[<r} (r > 0) is called a Kordnyi ball. It replaces the traditional euclidean
ball in the geometry developed by A. Kordnyi ([13, 14]).



We introduce now our model of dynamic random walks on Hj.

Let (X, Yy, Zn)nZl be a sequence of independent random variables with values in H; defined on
a probability space (2, F,P). Let (E, A, u,T) be a dynamical system where (F,.A, u) is a prob-
ability space and T is a transformation defined on E preserving the measure y. Let f;,1 =1,2,3
be functions defined on E with values in [0, }]. Let z € E and (ej)1<;<3 be the unit coordinate
vectors of R?. For each i > 1, the distribution of the random vector M; := (X;,Y;, Z;) is given
by

fi(Tz) if z=e;
P(M; =z) =< 3— fi(T'z) if z=—e¢;
0 otherwise

We are interested in the right dynamic random walk
Sn = (Xl,Yi, Zl) . (XQ,YQ,ZQ) et (Xn,Yn, Zn),n Z 1.

We prove in the next sections a strong law of large numbers and a central limit theorem for
(Sn)nZI-

3 Limit theorems

3.1 Law of large numbers

Y. Guivarc’h [10] proved a strong law of large numbers for random walks on Lie groups. We
prove a similar result but for dynamic random walks on Heisenberg groups.

In this section, we assume that the dynamical system (E,A,u,T) is ergodic i.e. there exists
an unique invariant measure y. The functions f;,¢ = 1,2,3 are all with integral 1/6. Let

d (0 S—”) =18, |, d will be called Korényi distance.

n

Theorem 3.1 For y—almost every x € E, as n — o0,

d(O, %) -0 P—a.s..

Proof:
From the definition of the Koranyi distance,

(1) @ N2 g® 5\
o05) = (4 (55) +(5))
The two first coordinates of S, are given by

S = X1 + Xy + ...+ X,



and
S =Y+ Yy +... 4 Y,

i From Birkhoff’s theorem, the sequence

E(S) _ 1 2”:( f1(T*z) — 1)
n 3

n k=1

converges for p-almost every z € E to [p(2f1 — %) dp = 0. With the same arguments, the
sequence

E(S5))

n

- Ly eprs - b
k=1

is proved to converge for p-almost every z € E to [(2f2 — %) dp = 0. Thus, from Kolmogorov’s

(1) (2)
theorem, the sequences (SZ )n and (S#)n converge P-almost surely to 0 for p-almost every
T€EB.
The third component of the dynamic random walk on H; is given by

1
S&) =D+ Zot ot Tyt G (XY (X + X))V 4o+ (X + X )Yy

-Y; X9 — (Yi —|—Yv2)X3 — .. — (Y1 ++Yn—1)Xn}

For p-almost every x € F, the sequence
1
E(Zl-l-Zz-f—...-l-Zn)

converges P-almost surely to 0 so we are only interested in the asymptotic behavior of the

sequence
T, 1

n2  2n2
where
TV(LI) — lerg + (Xl + XQ)Y3 +...4+ (X1 +...+ anl)Yn

T = ViXo+ (Vi +Y2) Xz + ...+ (Yi4 ... + Y1) X
Let us prove that TT(LI) /n? converges almost surely to 0. Since the Y's can only take values 0

(1)
and +1, we can bound |1z, -| by
n

1

(i(z‘— 1)\Yil> ‘

=2

;@'—nmu—l\;&\-

We conclude by using Toeplitz’s Theorem (see for instance Theorem 2.34 in [5]) since the se-
quence 2?21 X /n converges P-almost surely to 0 for y-almost every x € E as n goes to infinity.

By inverting the random variables X;’s and Y;’s, we evidently get that T /n? converges P-
almost surely to 0 for y-almost every x € E as n goes to infinity. Consequently, T},/n? converges
P-almost surely to 0 for y-almost every = € E as n goes to infinity as well as the third component
of the dynamic random walk. So the theorem is proved.
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3.2 Central limit theorem

In order to prove a central limit theorem for the dynamic random walk on the Heisenberg group
H; we need to add assumptions on the functions f;,7 = 1,2,3. Let C denote the class of functions
f € L' (E, p) satisfying the following condition

)~ [, Sinte)| o v3).

We denote by A = (a;j)1<i j<3 the matrix with coefficients

sup
weE

wi = g [L0-97@)dutz)
@i = ai=g [ (=365 @)duta),

Let us assume that f;, fif; € C for every 4,5 = 1,2,3 and [ f; du = %. For every = € E, the
two first coordinates of S, converge P-almost surely to 0 (see the proof of Theorem 3.1). In the
third component given by

1
Z1—|—Z2+...+Zn+§{X1Y2+(X1+X2)Y3+...+(X1+...+Xn_1)Yn

“YiXs — (Vi + Ya) X3 — oo — (Yi 4.+ Y1) Xn),

for every z € E, the sequence
1
E(ZI+Z2+"'+Z")

also converges P-almost surely to 0 so we are only interested in the asymptotic distribution of
the sequence

1
T, = §{X1Y2+(X1+X2)Y3+ . +(X1+ . .—f—Xn,l)Yn—YlXQ—(Yl-f-YQ)Xg—. . .—(Y1+. . +Yn71)Xn}

We assume that the matrix C defined by (a;;)1<i j<2 is diagonal, namely

with a1y = 4[5 — [p f7 dp] and age = 4[5 — [ f3 dp).
Since our random variables (X;);>1 and (Y;);>1 are not centered, we need to make the following
assumption (A):

ki1 . 1 . 1
> Y (falTe) = ) (2(TVa) = ¢)

1=2j=1

= o(k).

sup
zeE




Theorem 3.2 For every x € E, for every t > 0, the sequence

(%)
n /n>1

converges in distribution to the random variable
IS 2 b 1
A = 5 { [ Bas® - [ BRas]
where By = (Bgl),B,gz)) s a two-dimensional Brownian motion with zero mean and Covariance
matriz Ct. The density of A(t) is given by

1
t\/ai1a22 cosh (t\/;ru“—am)

di()

The random variable A(t) is usually called the Lévy stochastic area. In our context A(t) is
driven by dynamic random walks, therefore we will call A(t), by analogy, the dynamic Lévy
stochastic area.

Remarks:
1- The hypotheses on the functions fi, fo and fifo imply that the assumption (A) is satisfied
as soon as for every 4,5 > 1, for every z € F,

1

Ji(Ti) - )

(') ~ ) (Fu(T2) — ) = (foT) &
i.e., for instance, in the following cases:

a)- f1 = fo (but not necessarily equal to 1/6).

b)- f1 or fa equal to 1/6.

) fa=3—fi.

Moreover, this assumption is necessary. Given a dynamical system (E, A, u,T), the fact that
the functions fi, fo, fi f2 belong to the class C, [ fi1 du = [ fo dp = 1/6 and [ fife dp = 1/36
does not imply that the assumption (A) is necessarily verified. For instance, take the rotation
T on the one-dimensional torus T® with rational angle equal to 1/4 and the particular functions
fi= %1[0’%] + %1[%,1] and fo = %1[0,%}. The functions fi, fo and fifo are clearly integrable,
[ fidz=[fodx=1/6 and [ fifs dz = 1/36 and they belong to the class C associated to the
dynamical system. A calculation also gives that for every z € Tl,

k i—1

3 Y () — Ua(TI0) = g) ~ oy b= oo

=2 j=1

So assumption (A) is not satisfied and for these exotic cases, Theorem (3.2) holds by adding a
drift to the limit process.
2- Given a dynamical system (E, A, u, T), the class C is quite difficult to determine. However, for



particular cases, it is possible to find a large sub-class of C. We refer to papers [6, 7, 8] where this
question has been studied in details. When T is an irrational rotation on the one-dimensional
torus Tl, it was proved that every function with bounded variation belongs to the class C. For
example, we can choose fi(z) = 1/6 and fa(z) = 1/3 cos?(2mx) which takes its values in [0, 1/3].
The hypothesis (A) is clearly satisfied thanks to remark 1. The integral of fs is equal to 1/6
S0 a12 = agy = 0. After simple computations, a;; = 1/3 and age = 5/18. In this particular
example, the density of the limit distribution A(¢) in Theorem 3.2 is then given by

1 T
di(z) = t\/mcosh (t\/m>’ z € R.

3.2.1 A preliminary result

In order to prove Theorem 3.2, we shall need a central limit theorem for the dynamic Z?-random
walk (S5, S8) 1

Proposition 3.1 For every © € E, the sequence of random wvectors ﬁ(S,(Ll), 722)), n > 1

converges in distribution, as n — 400, to the centered Gaussian random variable Gy with
Covariance matriz C.

Proof:
Let us introduce the characteristic function ¢, of

n
—Z(Xk:ayk)a nZ 1.

By independence of the random vectors (X, Yy), k > 1,

o = fLm(on (2512

= JI QP (u1,us)

k=1

where )

QW) (uy, ug) = 1 + Zcos \/—J_ + 24 Z(fj(Tkg;) — %) sin(%)

A direct calculation gives

:|w

2 2 2
Q@R = g+ 30— 20)+ O ) + 5 3 (65,(Te) — 1)

J=1 J=1



Uiug

¥ §<6f1<Tkx> —1)(6£(1*7) ~ 1) + O ~?)
= 1——Zu —I——Zu (6f;(T*z) — 1)
+ 26h (Tka;) _1)(6 fg(Tkx) — D))urup + O(n~?)

In
and then

ba(w)] = J]1QP(w)
k=1

= exp(—% < u,Cu > +o(1))

The imaginary part of the characteristic function can be rewritten as

2 k . Wi
- . j:1(6fj(T x) — l)sm(ﬁ)
kl;[lexp (2 arctan ( (1 n Z§:1 COS(%)) ))

:exp( ZZ 6f;(TFx) \/%+0(1)>:1+0(1)

k=1j=1

using the fact that fi, fo belong to the class C and for every j = 1,2, the integral of f; is equal
to 1/6.

3.2.2 Proof of the central limit theorem 3.2

We only prove Theorem 3.2 for the particular value ¢ equal to 1. The proof can easily be adapted
to get the result for every ¢ > 0. The proof of the theorem is decomposed into four parts.

a) Straightforward calculations give us

2T, = [Nék) 4+ ...+ Nnk—l] [Nék 1 N(k) 1
+ [Mék)( gk) - Q(()k)) +. M(k (Q szk_)Q)]
- [QO (M 1 Mék)) +...+ Q’VL*Q(M'](LIC*)I — M(k)g)]

n—

where
N = Xpp i1 Yphro + (Xpk1 + Xpkr0)Yphts + -« & (Xpht1 + -« + Xopr 1)) Yipr )i
Nzgk) = Yprr1 Xpkt2 + (Vprs1 + Yora2) Xpkas + oo+ (Yprrr + - + Ypre—1) Xpr1)k
M}Sk) =X;+...+ X(p+1)k



Qz()k) =Y1 —|—___—|—Yv(p+1)k_

The choice of this decomposition can appear artificial but it will be justified in the sequel.

b) Let = € E fixed. ;From Proposition 3.1, for every p > 0, the sequence of random vectors

(p+1)k
k)
Wik . f S (XY, k>1
j=pk+1
converges in distribution, as k& — +o00, to the centered Gaussian random vector Gy with co-

variance matrix C. Since the random vectors (Wék))pzo are independent, we deduce that

(Wo(k),Wl(k), .. .,WT(L]i)l) converges in distribution, as kK — +o0, to the centered Gaussian ran-
dom vector (Gy,G1,...,Gy—1) where the G;’s are independent copies of Gy. Since C is di-
agonal, each random vector GG; can be decomposed in two independent centered Gaussian

random variables Ggl) and GgZ) with variance a1 and a9 respectively. So it implies that

(Wo(k),Wl(k), .. .,WT(L]i)l) converges in distribution, as £k — 400, to the centered Gaussian ran-
dom vector (G(()l),G(()2),G(1) G(Q),...,GS)I,G() ). Now, W(k) (M, ,S ) Mlgﬁ)l,Q,(,k)—Qgi)l)/\/E

(with the convention M" (k) = Q(_kl) = 0). The convergence in distribution being preserved by
linear transformation we get that

1
W(M(gk)’Ml(k)’ n— JQ 1 7"'7Q$1k_)1)

converges in distribution, as k — 400, to the centered Gaussian random vector (G(()l), G(()l) +
¢,....6\"0+...+6W,, 60,60 +6P,... 6P +...+G?)). Then,

1[M"“>( B Q)+ MB, @), — W)
- [@ P — Py + .+ QW™ — MP,)]

converges in distribution, as k¥ — +o00, to the random variable

GMGP + (G + e + .+ @G ..+ G062
_ [G(()Q)Ggl) —l—(G(()Q) —I—G?))Gé) (G(Q) G(Q) )G(l) ]

c) Let us now prove that
Var (Nék) ot N,(L’i)l) = O(nk?) (1)
and

Var (Nék) +...+ ]\77(;?1) = O(nk?). (2)

The above result is quite evident in the classical case studied in [11] where the random
variables X; and Y; are centered and uncorrelated but due to the temporal inhomogeneity of
our model it is not at all the case and we need the following lemma.



Lemma 3.1 Uniformly in p > 0,

Var (N{F) = O(k?) 3)
and

Var (N®)) = O(k?) (4)
Proof:

Let us recall that 1 l
(k) — Z Yokti+1 ( Z ka+i) .
=1 i=1

For every random variable X such that E(]X|) < +o0, we define X = X — E(X). The random
variable N;,gk) can be rewritten

N{F) = 51 (k) + o (k) + Ss(k) — Sa(k)

where

l

ko1
(k) = Zka+l+1(Z 7;ch—|—z')

k=1 !

Sa(k) = D E(YVpktis1) (Z pk—i—z)
=1 i=1
k=1

I
Y3(k) = ZYMHHI(Z]E pk+z)
=1

k-1 I
Su(k) = Y E(YVpktit1) (Z]E pk+z)
=1 =1

Using that the random variables X; and 1_’} are independent when ¢ # j and centered, a direct
computation gives

Var (21(k)) < CK?

where C' > 0 is a constant independent of p. Furthermore, the random variable ¥5(k) can be
rewritten as

k-1 k=1
k)= Xkt ( > E(ka-l-i-l-l))
=1 i=l

thus
k-1 k-1
Var (2(8) = 3 (0 E(Vesisa)) Var (e
=1 =l
k—1 -1 9
= 4 (Z Fo(TPH ) )) Var (Xpe+1)

=1 =l

10



Since the function fy belongs to the class C and [ fo du = 1/6, there exists a constant C which
does not depend on p and k such that for every [ > 1,

| § (fa(TPh+ttig) - 1)\ < ovk.
i=1

6
Then,
k—1 k-1 ) N
Var (S5(k)) < CZ‘Z(fg(Tpk““x)—g)‘ = O(k?).
=1 j5=1

The variance of the third sum ¥3(k) is estimated in the same manner using the fact that the
function f; belongs to the class C and [ fi du =1/6. So, we get

Var (Z3(k)) = O(K?).

The variance of the last sum is evidently zero.
The following inequality holds for square integrable random variables X and Y

Var (X +Y) <2(Var (X) + Var (Y)).
So, by applying twice this inequality, we get
4
Var (N{F)) < 43" Var (;(k)) = O(k?)
i=1
uniformly in p. The estimation (4) is obtained in the same manner by inverting the X's and the
Y's.

i From Lemma 3.1 we can now establish (1) as follows: the random variables N]S’“) and Nzg,k )
are independent when p # p’, so we have

Var(VP 4+ NB) = S var(N®) < onk?
p=0

using Lemma 3.1, so (1) is proved and (2) can be obtained by inverting the X’s and the Y’s.

Let € > 0,
(o SN — BN - SR B > <)
nk =0 p=0
< Pl S ) > o)+ (] S - B > o
=0 =

Cnk? C

e2n2k?2  g2n

11



Consequently,
1 n_l k f n-1 i o
P(z| SING ~ BV ~ S INH —EWP)]| 2 €) -0
p=0 p=0
as n goes to infinity, uniformly in k. Using that |¢?’ — 1| < |0] A 2, we obtain

n—1 n—1
E<|exp{¢%<m>-E(N;m]-zm,w—w,sk»o}—1\) g
p=0

< a+2p(ﬁ‘rfw’§k>— Z[N NP> €) =0
p=0

as n goes to infinity, uniformly in k.
Let us remark that for every 0 € R,

(o) e [15m (7@ - )+ + 2@, — )

2nk
— QPO M) = ..~ QP — M) + S EVE) )]
p=0
n—1 —1
< B(ow {15 (S04 B0 - S0 - )} -1

converging to 0 as n goes to infinity, uniformly in %.
Let € > 0, we can choose ng such that for every k,

‘E(ew%’%) _E(exp [i2n0k{M<§k)(Q§k)—ng))+- M Q%) - Q)
- QP ) - - 0 a2+ S ) - B <

The characteristic function of the random variable

GGP + (@ +6M)EP + .+ (6P +... + 6P )G
GG + (@ +6)EY + ..+ (@0 +...+ 6P )aN )

can be written as

1
I,(0) := ) /RQ" eI @Y) dry L. dr,dy, ...dy,

(2%,/&11&22 n

where g, is the function defined for every x = (z1,...,%5),y = (y1,---,yn) € R" by

10
gn(z,y) = %[551312 +(@r+z)ys+...+ (@1 4+ ...+ 2T 1)Yn
- Y1%9 — (y1 +y)rz —...—(y1+...+yn_1)zn]
RE 2 1 5 2

12



Now from Lemma 37 in [11], we know that

im L/ eI (Tv/a11,yy/a22) dzdy =
n—-+oo (27)" JR2n

1
cosh(‘gv a“(m)

uniformly in 6 on a compact set of R. So we also impose ng to be large enough so as to have

1

cosh(a"a“a”) =€

INOR

uniformly in 6 on a compact set.
Under the assumption (A), it is possible to control the drift coming from the non-centered

random variables N,gk) and N,Sk).

Lemma 3.2 Under hypothesis (A),

% OZ_% [E(N) — B(NE)] = o(k). (6)

Proof:
From the definition of the law of the random variables X; and Y;, the above sum can be explicitly
calculated and bounded as follows:

|—20[E o) 5]

< Lo | DY ICAED - Hear - b - eamty - Henw - by

wEEllzl

Using Abel’s summation by parts,

k1 k k
3 AT - AT - 3) = S AT - )Y AT - )
1=11:=1 =1 =1
k 1 -1
— AT - ) S eAT) - )
=2 i=1
Then,
k1
> S I@hA(T) - DEAT) - 3) - A(T') - DEHT') - )]
1=11:=1
k -1 1 k 1 k 1
= 23 CH(T) - ) S RATE) - )~ S CATE) - 5) Y CHT) - )
=2 =1 =1 =1
k
+ YA - LT - 3)
=1

13



In the right hand side the second sum divided by k goes to 0 uniformly in z since f; and fo
belong to the class C and [ f; du = 1/6,i = 1,2. The third one divided by % also goes to 0
uniformly in z € E since [ fifo du = 1/36. So, as soon as (A) is satisfied, (6) holds.

iFrom item b) and the previous lemma, the characteristic function of the random variable

1
o M7 (@1 = Q) -+ M (Qu) s — Qo)
no—1
QPP — My — .. —Q® ,(®) | — M) ) + Z [E(N) —E(NO)]}

converges, as k goes to infinity, to I,,(6). Hence there exists ko such that for every k > ky,

‘E( nOk) - cosh(eliv‘gl‘m) < 3¢ (7)

d) Let p = nok + ¢,0 < g < ng, k > ko (remark that p > ngky) and define
Vn((l)c) = Tnok+q — Thok

1
= 5{(X1 +...4+ Xnok)Yn0k+1 4+ ...+ (X1 + ...+ Xnok—l—q—l)ynok—i—q
— (Y1 + ...+ Ynok)Xn0k+1 — .. — (Y1 + ...+ Yn0k+q—1)Xnok+q}

i From Tchebychev’s inequality, for every € > 0,

B(

Now, using the same techniques than the ones developed in the proof of Lemma 3.1, it can be
proved that

VrE(I)C) B E(Vno

k
‘ > < Var(Vygo))
’I’L()k:

= T 2,,212
e*ngk

Va,r(V,%“)) = O(n3k).
Assumption (A) implies (see the proof of Lemma 3.2) that
(k)
lim % =0.
k—+o00 n()k

Then, we deduce that
. Vitg

k — 400

Straightforward calculations lead to

T nok
(%) ~B(F))

0 nok Tan+ V,Eg) .BTan
‘]E(e nok+q nok n0k+q) _ ]E(eZ nok )‘

14



-0 _mnok Tan V,Eg) V(kQ)
< ‘E(ezen0k+q nok +n0k+q) _ ]E( Za nok +n0k+q>‘
(k)

(B ()
T, V(k)
< Bl ) (e )
Now, we have (since |¢? — 1| <2 A |6]) for k large enough
(k)
E(|em% 1) <e+ 219(\”?)‘2%2\ >¢) <3e.
From (7), for k large enough, )
‘E(eiaﬁﬁk&) ~1] <3 (8)
On a compact set of R (for 6), for p large enough,
Tngk

< \E(e’”%) ~E(F)

=) e

< 9,

so Theorem 3.2 is proved.

3.3 Concluding remarks

As stated in the introduction, this paper is a first attempt in extending the theory of dynamic
random walks developed by the first author to non-commutative algebraic structures. More
results on limit theorems on Heisenberg groups are expected. The law of the iterated logarithm
is presently under investigation.
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