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Abstract

It is well-known that the basic modal logic of all topological spaces
is S4. However, the structure of basic modal and hybrid logics of
classes of spaces satisfying various separation axioms was until present
unclear. We prove that modal logics of T0, T1 and T2 topological
spaces coincide and are S4. We also examine basic hybrid logics of
these classes and prove their decidability; as part of this, we find out
that the hybrid logics of T1 and T2 spaces coincide.

1 Basic definitions

In this paper we are going to study modal logics that arise as sets of all for-
mulas valid on certain classes of topological spaces. Thus the first definition
in this paper is bound to be about how the modal formulas are interpreted
on topological spaces (topological semantics was first introduced by Tarski
[3]).

Definition 1 (Topological semantics). A topological space is a pair
(T, τ) where τ ⊆ P(T ) such that ∅, T ∈ τ and τ is closed under finite
intersections and arbitrary unions. Elements of τ are called opens, an open
containing a point x is called a neighborhood of the point x.

A topological model M is a tuple (T, V ) where T = (T, τ) is a topological
space and the valuation V : Prop → P(T ) sends propositional letters to
subsets of T .

Truth of a formula φ (of the basic modal language) at a point w in a
topological model M (denoted by M, w |= φ) is defined inductively:

M, w |= p iff x ∈ V (p)
M, w |= φ ∧ ψ iff M, w |= φ and M, w |= ψ
M, w |= ¬φ iff M, w 2 φ
M, w |= 2φ iff ∃O ∈ τ such that w ∈ O and ∀v ∈ O.(M, v |= φ)

The basic modal language can be extended with nominals and @ operator
(in this case we call it H(@)) and universal modality A (we denote the dual
modality E and call the language H(E)). Nominals are a special kind of
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propositional letters: it is required that their valuation is a singleton set.
The semantics of @ and E is given below:

M, w |= @iϕ iff ∃vM, v |= i and M, v |= ϕ
(where i is a nominal)

M, w |= Eϕ iff ∃vM, v |= ϕ

Relational and topological semantics are not completely unrelated; it is
possible to transform certain topological spaces into frames and vice versa
in a satisfiability-preserving fashion.

Proposition 1. A topological space is called Alexandroff if every point of
that space has a minimal neighborhood.

For any Alexandroff space (T, τ) there exists a binary relation R such
that for any valuation V and for any formula ϕ ∈ H(E), (T,R, V ), w |= ϕ
iff (T, τ, V ), w |= ϕ.

For any transitive reflexive frame (W,R) there exists a topology τ on W
such that for any valuation V and for any formula ϕ ∈ H(E), (W,R, V ), w |=
ϕ iff (W, τ, V ), w |= ϕ.

Proof. For any point x of an Alexandroff space put Rxy for all y ∈ Ox where
Ox is the minimal neighborhood of Ox. The frame one obtains is a reflexive
transitive frame.

For the second clause, the topology is defined as follows. Call a subset
O of the frame F downward closed if it follows from x ∈ O , Rxy that y ∈ O.
The topology τ consists of all downward closed sets and is an Alexandroff
topology.

In both cases it can be easily checked that the satisfiability of H(E)
formulas is preserved.

It is well-known that the (basic modal) logic of all topological spaces is
S4. In what follows, we are going to deal with three classes of topological
spaces, defined by the so-called separation axioms.

Definition 2 (Separation axioms). T0 for any two distinct points x, y
there is either an open neighborhood of x that does not contain y, or
an open neighborhood of y that does not contain x.

T1 any singleton set is closed

T2 any two distinct points x, y can be separated by two open neighbor-
hoods, i.e. there exist Ox ∋ x,Oy ∋ y such that Ox ∩Oy = ∅.

There are necessary and sufficient conditions (given in [2]) of whether a
class of spaces is definable in H(@) (and H(E)). Thus, axioms T0 and T1 are
definable in H(@), the formulas are, respectively, @i¬j → (@i2¬j∨@j2¬i)
and 3i → i. On the other hand, [2] show that T2 is not definable even in
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H(E). Basic modal language is even less expressible: none of the separation
axioms is definable in it. The situation with separation axioms is a bit
strange: although we know the boundaries of expressivity of modal and
hybrid languages, we know very little about the structure of the logics. Are
the logics of separation axioms distinct? Are they decidable? If yes, what
is the complexity? In this paper we will address the first two questions, and
we hope to use the techniques preseted here to get an answer for the third
one.

2 Basic modal logic

In this section we will denote by Log(K) a set of formulas in basic modal
language which are valid on all topological spaces in class K. We will prove
that Log(T0) = Log(T1) = Log(T2) = S4, our technique will be to build a
topobisimulation between a finite topological space and a space from each
respective class.

Definition 3 (Topobisimulation). Let (T, τ, V ) and (S, σ,W ) be two
topological models and consider a relation R ⊆ T × S. Denote

R(X) = {y | ∃x ∈ X, (x, y) ∈ R}
R−1(Y ) = {x | ∃y ∈ Y, (x, y) ∈ R}

for any subset X ⊆ T , Y ⊆ S.
The relation R is called a topobisimulation if

Prop if Rxy then for all p ∈ Prop, (T, τ), V, x |= p iff (S, σ),W, y |= p

Zig for any O ∈ τ , R(O) ∈ σ

Zag for any U ∈ σ, R−1(U) ∈ τ

A bisimulation is called total iff for any x ∈ T there is y ∈ S such that
Rxy and for any y ∈ S there is x ∈ T such that Rxy.

In topological semantics just like in the relational semantics, two points
connected by a topobilimilation satisfy the same formulas (if the topobisim-
ilation is total, this is true for the formulas with universal modality).

Definition 4 (Finite model property). A logic L has finite model prop-
erty with respect to a class of topological models K if K |= L and for any
ϕ /∈ L there exists a finite M ∈ K such that ϕ is satisfiable on M.

Proposition 2. The logic S4 has a finite model property.

Proof. The proof is Proposition 1 combined with the fact that S4 has a
finite model property with respect to transitive reflexive frames.
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Theorem 3. The logic of T0 spaces is S4.

Proof. The inclusion S4 ⊆ Log(T0) is obvious, so we only have to prove
Log(T0) ⊆ S4. Take an arbitrary topological space (T, τ) and define an
equivalence relation: x ! y iff for all O ∈ τ, x ∈ O iff y ∈ O. The quotient
set with the maximal topology that makes the natural projection continuous
(this topological space is known as Kolmogorov quotient of T ) is a T0 space.
The graph of the natural projection map is a topobisimulation. It follows
that every formula, that is not an S4 validity is not a T0 validity either.

Theorem 4. The logic of T1 spaces is S4.

Proof. By Proposition 2, S4 has finite (topological) model property, i.e. ev-
ery formula that is not valid on the class of all topological spaces can be
refuted on a finite topological model. We are going to build a topobisimula-
tion between a finite topological model and a model based on a topological
space with countable domain and T1 topology. It will follow that any S4
non-theorem can be refuted on a T1 space based model, hence Log(T1) ⊆ S4,
hence Log(T1) = S4.

Let (T, τ, V ) be a finite topological model, let us construct a topobisim-
ilar model (S, σ,W ) where (S, σ) is a T1 topological space.

We will identify T with the initial segment of natural numbers, so T =
{1, . . . , n}. First, let us introduce some notation:

Xk = {nx+ k | 0 ≤ x <∞}, 1 ≤ k ≤ n

Let σ0 be a cofinite topology on N, that is

σ0 = {O | N −O is finite}

and for any subset O ⊆ T denote

Ō = {Xi | i ∈ O}

Then define the topology σ on S = N to be generated by the set

β = σ0 ∪ {Ō | O ∈ τ}

β satisfies the finite intersection property, hence it indeed can serve as a
base for topology. The topology generated by β consists of sets from σ0 and
sets of the form Ō − F , where F is finite.

Define valuation to be

W (p) = V (p) for all p ∈ Prop

(S, σ) is a T1 space, because σ contains σ0, hence all complements of
singleton sets are open.
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Define a relation R ⊂ T × S as follows:

R = {(k, l) | l ∈ Xk}

Let us check that R is a topobisimulation. First, notice that for any
O ⊆ T , R(O) = Ō and therefore is open by the definition of topology on R.

Second, notice that sets Xk are dense in (S, σ0), as well as sets of the
form Xk−F , where F is finite. It follows that any open set U ∈ σ either has
a non-empty intersection with every Xk, or is of the form U = Ō−F where
F is finite. In the first case, R−1(U) = T , in the second case R−1(U) = O
and in both cases we get an open set.

It follows from the construction of valuations, that points connected by
R agree on propositional letters.

The main idea of the proof is that we could construct a space which is a
disjoint union of dense subsets and then add necessary opens to the topology
to get a space topobisimilar to T . We can exploit this idea in a more general
setting, leading us to the following

Theorem 5. The logic of T2 spaces is S4.

Proof. We will use essentially the same idea as in the proof of the Theorem 4:
we will construct a bisimulation between a finite model and a T2 model. In
order to do this we will use a constriction by L. Feng and O. Masaveu. In
the paper [1] they prove that for any cardinal α there exists a T2 space which
is a disjoint union of α dense subsets (such a space is called α-resolvable).
We will apply this statement for a finite α = n, so let (S, σ0) be such a space
and S =

⋃n
k=1Xk where Xk are disjoint dense subsets from the theorem of

Feng and Masaveu.

Now define Ō, β, σ, the valuation W and the relation R ⊂ T × S the
same way as in the proof of the previous theorem.

(S, σ) stays a T2 space (because we have only added more opens to it).
For any O ⊆ T , R(O) = Ō and is open by the definition of topology on R.

In order to prove Zag condition for R, we are going to prove that for
any U which is a finite intersection of elements of β, R−1(U) is open. Since
any open of σ is a union of sets of this form, Zag will follow.

Without loss of generality we can suppose that U = I ∩ Ō for I ∈ σ0 and
some open O ∈ τ . Since I ∈ σ0 and Ō has a non-empty intersection with
any set from σ0, R

−1(U) = R−1(Ō) = O, which is open. Prop is immediate
by construction of valuation.

In fact, nothing in the proof depends on the T2 condition, except the
existence of n-resolvable sets. That leads us to the following more general
result.
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Theorem 6. Let K be a class of topological spaces that contains an n-
resolvable space for all finite n and for any space (T, τ) ∈ K, it is true that
(T, τ ′) ∈ K for all τ ′ ⊃ τ (i.e. K is closed under refinement of topology).
Then Log(K) = S4.

Proof. In this theorem we extract the key properties of the class T2 used
in the proof of the Theorem 5. Indeed, we need an n-resolvable space to
start our construction, then we add new opens to this space in order to
obtain a space bisimilar to the given finite topological space. If the class of
topological spaces in question is closed under refinement of topology, we can
do it the same way as we have done in the Theorem 5.

Remark 1. Note that the proofs of Theorems 3, 4 and 5 still work for the
basic modal language enriched with universal modality, because the bisimu-
lations we construct are all total.

3 Basic hybrid logic

In this section we will denote by Log(K) a set of formulas in the hybrid
language H(@) (with nominals and @) which are valid on all topological
spaces in the class K.

In the subsequent subsections we will prove decidability of logics of dif-
ferent separation axioms. Our main tool will be the notion of topological
filtration, which allows to present the information relevant for the satisfia-
bility of a formula in a finite structure.

Definition 5 (Topological filtration). Let Σ be a subformula-closed set
of formulas and M = (T, τ, V ) be a topological model. Define an equivalence
relation !Σ on T as follows:

w !Σ v iff ∀ϕ ∈ Σ M, w |= ϕ iff M, v |= ϕ

A filtration of M through Σ is a model N = (S, σ,W ), defined as follows.
Let S = T/ !Σ and let us denote by [s] an equivalence class of !Σ with
a representative s. For a formula ϕ ∈ Σ define

[[ϕ]]N = {[x] |M,x |= ϕ}

and W (p) = [[p]]N. This is well-defined, because points from the same equiv-
alence class satisfy the same formulas from Σ.

Let π be a natural projection map t 7→ [t]. Define σ to be the finest
topology that makes π continuous.

Note that if Σ = Cl(ϕ) (all subformulas of a single formula ϕ), then any
filtration by Σ is finite (there is only finite number of subsets of Cl(ϕ)).
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3.1 T1 spaces

The class T1 does not have a finite model property: for example, the formula
i→ 2i can only be falsified on an infinite model with T1 topology. In order
to prove decidability of Log(T1) we will introduce a special kind of finite
structures that represent infinite models — quasi-models. Quasi-models
definition is designed in such a way that you can get a quasi-model out
of any model by taking a filtration of it. At the same time any quasi-
model can be obtained like this. That means that by exhausting the class
of all possible quasi-models for a formula we exhaust the class of all possible
models a formula can be satisfied on. Since there is a bound on a number
of possible quasi-models for a formula, we get decidability.

Definition 6 (Hintikka set). Let Σ be a set of formulas closed under
subformulas and single negations. A set A ⊆ Σ is called a Hintikka set if it
is maximal subset satisfying the following conditions:

1. ⊥ /∈ A

2. if ¬ϕ ∈ Σ then ϕ ∈ A iff ¬ϕ /∈ A

3. if ϕ ∧ ψ ∈ Σ then ϕ ∧ ψ ∈ A iff ϕ ∈ A and ψ ∈ A

Definition 7 (Quasi-model). Let ϕ be a formula and Cl(ϕ) be its subfor-
mula closure. A tuple (T, τ, λ), where (T, τ) is a finite topological space and
λ is a function from T to Cl(ϕ) is called a quasi-model for ϕ if the following
holds:

1. λ(t) is a Hintikka set for any t ∈ T

2. at least for one t ∈ T , ϕ ∈ λ(t)

3. if O ∈ τ and there is a formula 2ψ ∈ Σ such that ∀t ∈ O ψ ∈ λ(t)
then ∀t ∈ O 2ψ ∈ λ(t)

4. if i ∈ λ(t) where i is a nominal, then T − {t} ∈ τ (T1 condition for
quasi-models)

Here is a property of filtration that we will need for the main theorem

Lemma 7. For any formula ϕ ∈ Σ, [[2ϕ]]N is open.

Proof. Suppose [[2ϕ]]N is not open. Then let σ′ be generated by σ∪ [[2ϕ]]N.
Then we have for O = π−1([[2ϕ]]N) that ∀x ∈ O M, x |= 2ϕ hence O is open
which means that σ′ makes π continuous. That contradicts the definition of
σ.

Theorem 8. A formula ϕ is satisfiable on a T1 space iff there exists a
topological quasi-model for it.
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Proof. The left-to-right direction can be proved using topological filtrations.
Suppose we have a topological model M = (T, τ, V ), where (T, τ) is a T1-
space and M, v |= ϕ, let Σ = Cl(ϕ) and let N = (S, σ,W ) be the filtration
of M through Σ. Then define a quasi-model Q = (S, σ, λ), where λ([s]) =
{ψ ∈ Cl(ϕ) | M, s |= ψ}. It can be easily checked that λ([x]) is a Hintikka
set for any [x] ∈ T . Next, ϕ ∈ λ([v]). The T1 condition for quasi-models
follows from Lemma 7. Let us finally show that the condition 3 holds.
Suppose O ∈ σ, 2ψ ∈ Σ and ∀s ∈ O ψ ∈ λ(s). Then U = π−1(O) is open
and ∀t ∈ U M, t |= ψ, hence ∀t ∈ U M, t |= 2ψ and by construction of
quasi-model ∀s ∈ O 2ψ ∈ λ(s).

To prove right-to-left direction we will construct a T1 model M = (S, σ,W )
which satisfies ϕ from a given quasi-model (T, τ, λ). The model will have N

as support. This is a reasonable choice, because any satisfiable hybrid for-
mula is satisfiable on a countable or finite model, as we are going to prove.
We can always allocate a finite open subspace to satisfy ϕ on by imposing
a certain topology on N, and in case ϕ can only be satisfied on an infinite
model, we just have to add enough opens to cofinite topology on N.

Just like in the previous section we identify T with the set of natural
numbers {1, . . . , n}. Suppose there are m points t1, . . . , tm ∈ T such that
there is a nominal in λ(tk) for 1 ≤ k ≤ m. If m = n, then every point is
“named” by a nominal and should be represented by a singleton. In this
case the model construction process described below will produce a model
with a finite discrete submodel.

Denote Xi = {k} for i = tk, 1 ≤ k ≤ m and let Xi for i ∈ T − t1, . . . , tm
form a partition of N−{1, . . . ,m} such that every Xi is an infinite coinfinite
set. Let σ0 be a collection of cofinite subsets of N and for any subset O ⊆ T
denote

Ō =
⋃

i∈O

Xi

Then define the topology on N to be generated by the following set:

σ = σ0 ∪ {Ō | O ∈ τ}

The valuation is defined the following way

W (p) =
⋃

p∈λ(k)

Xk for all p ∈ Prop ∪ Nom

The definition looks similar to the definition in Section 2 (indeed, the
only real difference is in the definition of Xk); however, the proof works
differently because of nominals.

For any formula ψ let us write W (ψ) for {v ∈ S | M, v |= ψ} and V (ψ)
for {v ∈ T | ψ ∈ λ(v)}. We will now prove the following
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Claim 8.1. For any ψ ∈ Cl(ϕ), W (ψ) = V (ψ).

Proof. The proof proceeds by induction on formula structure.

The statement for propositional letters and nominals follows from the
construction of M. The Boolean connectives case as well as universal modal-
ity are easy to verify too.

Now, suppose that ψ = 2χ ∈ Cl(ϕ) and the statement is true for χ.
W (2χ) = IW (χ) is the largest open contained in W (χ). There are two
possibilities here.

If W (χ) is cofinite, then it is open. Then W (2χ) = W (χ) = V (ψ). Note
that by construction of topology σ, if Ō is open then O is open. And since
V (ψ) is open (by condition 3 in the definition of a quasi-model), V (ψ) =
V (2ψ), which gives us the necessary statement.

If W (χ) is coinfinite (either finite, or infinite), then the only open sets
that are contained in this set (if any) are of the form Ō−F , where O ∈ τ and
F is finite. So the largest open contained in W (χ) is of the form Ō, where
O is the largest open contained in V (χ), i.e. O = IV (χ). In other words
W (2χ) = IW (χ) = IV (χ). By condition 3 in the definition of quasi-model
IV (χ) = V (2χ).

A direct consequence of this claim is that if ϕ ∈ λ(k) then M, v |= ϕ for
all v ∈ Xk, which finishes the proof of the right-to-left direction.

Note that the size of a quasi-model for ϕ is bounded by 2|Cl(ϕ)| which
allows us to deduce

Theorem 9. Log(T1) is decidable.

3.2 Log(T1) = Log(T2)

In the Theorem 5 we used the construction of the Theorem 4 and replaced
the naturals with cofinite topology with an n-resolvable T2 space whose
existence is guaranteed by the theorem of Feng and Masaveu. In a similar
fashion we are going to reuse the notion of the (T1) quasi-model and modify
the construction of the Theorem 8 in order to construct T2 models out of
the (T1) quasi-models.

Theorem 10. A formula ϕ is satisfiable on a T2 space iff there exists a
topological quasi-model for it.

Proof. Since all T2 spaces are T1, the same filtration argument as in Theo-
rem 8 applies here.

Now suppose we are given a quasi-model M = (T, τ, λ) for the formula ϕ.
Let (S, σ0) be an n−m-resolvable T2 space, where n = |T | and m is the num-
ber of points in the quasi-model, named by a nominal. Let X ′

1, . . . ,X
′
n−m

be the dense subsets of S which form the partition of S. Note that if n > 1
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then these sets have empty interiors, because if one of them doesn’t then no
other can be dense. Let Xn−m+1, . . . ,Xn be arbitrary singleton subsets of
S. Finally, denote

Xi = X ′
i −

n⋃

j=n−m+1

Xj, for 1 ≤ i ≤ 1, n −m

Since S is a T1 space, X1, . . . ,Xn−m are still dense in S.

As usual, denote

Ō =
⋃

i∈O

Xi

and consider a new topology σ on S generated by

σ0 ∪ {Ō | O ∈ τ}

and the valuation

W (p) =
⋃

p∈λ(k)

Xk for all p ∈ Prop ∪ Nom

It is left to prove that this construction preserves satisfiability of sub-
formulas of ϕ. We use induction on formula structure just like in the proof
of Claim 8.1. Boolean connectives and universal modality do not pose any
problem, so we will only consider in detail the case when the formula is of
the form 2χ.

We will use notation V (ψ) and W (ψ) in the same way as in the proof of
Theorem 8. Suppose that ψ = 2χ and W (χ) = V (χ).

First note that X1, . . . ,Xn have an empty interior in σ0. This is obvi-
ous for Xn−m+1, . . . ,Xn which are singleton sets, X1, . . . ,Xn−m have empty
interiors since X ′

1, . . . ,X
′
n−m have empty interiors. This fact together with

the induction hypothesis W (χ) =
⋃

i∈AXi implies that the only opens W (χ)
contains are of the form Ō ∩ F where O ∈ τ,O ⊆ A,F ∈ σ0. Thus informa-
tion given by the topology of the quasi-model is enough to find W (2χ).

If W (χ) is cofinite then W (χ) = W (2χ) = V (2χ), since W (χ) is open
and condition 3 in the definition of a quasi-model holds. This is the only
place in the present proof where we used the “T1 condition” from the defi-
nition of the quasi-model; we have to require it because cofinite opens were
already present in σ0 and we inherited them in σ which is constructed after
the quasi-model.

10



In case W (χ) is not cofinite,

W (2χ) = I(
⋃

i∈AXi) =

=
⋃

O∈τ,O⊆A,F∈σ0

(Ō ∩ F ) =

=
⋃

O∈τ,O⊆A

Ō

= I(V (2χ))

which finishes the proof.

Since every T2 space is a T1 space, we get the following corollary

Theorem 11. The logic of T2 spaces coincides with the logic of T1 spaces
(and hence, is decidable).

3.3 T0 spaces

We will next deal with the simplest and the most natural class of topological
spaces, T0 spaces.

Proposition 12. An Alexandroff space corresponding to a partial order by
the Proposition 1 is T0 and the frame that corresponds to a T0 Alexandroff
space is a partial order.

Proof. Let T be a T0 Alexandroff space. Take two points x, y ∈ T and
suppose Rxy and Ryx. That means that x is in the minimal neighbourhood
of x and that y is in the minimal neighborhood of x which contradicts the
fact that T is a T0 space. It follows that F is antisymmetric, hence a partial
order.

Now let F be a partial order frame and let τ be the corresponding Alexan-
droff topology. Take two distinct points x, y ∈ F and consider their corre-
sponding pointwise generated subframes (that is, minimal neighborhoods)
Ox and Oy. Since F is antisymmetric, either x /∈ Oy or y /∈ Oy, so τ is a T0

topology.

By the Proposition above, every T0 validity is a partial order validity.
The converse is not true.

Consider the countable topological space (N, σ) with cofinite topology.
Construct a topological space (T, τ) as follows: let T = {∗} ∪ N and τ =
{U = {∗} ∪ O | O ∈ σ}. This is a T0 space. Now, introduce a valuation
that names ∗ with a nominal i and consider a formula ϕ = 3(¬i∧3i). This
formula is satisfied at ∗, but it is not satisfiable on any partial order. Hence
Log(T0) is a strict subset of the logic of partial order.

In order to understand the logic of T0 spaces we will use again the tech-
nique of quasi-models. Although the counterexample we have just mentioned
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tells us that Log(T0) is more complicated than the logic of partial orders, it
will serve us as the source of ideas on how one might build a T0 model out
of a quasi-model. We will need a different notion of a quasi-model than one
for T1 and T2 spaces (otherwise Log(T0) would coincide with Log(T1) which
is impossible).

The change to the definition will only affect one clause, namely the “T1

condition for quasi-models”. It is replaced with the following one:

(T0 condition for quasi-models) for every pair of points x, y named
by nominals, there exists an open neighborhood Ox of x such that
y /∈ Ox or there exists an open neighborhood Oy of y such that x /∈ Oy.

Once again we will describe a way to construct a topological space (this
time a T1 space) that satisfies a given formula given a quasi-model for that
formula. We will have as a consequence a

Theorem 13. The Log(T0) is decidable.

Proof. What we really prove here is that T0 satisfiability is equivalent to
satisfiability an a quasi-model.

A filtration of a T0 space through Cl(ϕ) gives a T0 quasi-model of ϕ, this
can be verified directly, so we will not go into the details here.

The other direction of the proof goes as follows. Consider a T0 quasi-
model M = (T, τ, λ). We will identify T with natural numbers 1, . . . , n and
we will use such a numbering that 1, . . . ,m are named by a nominal, i.e. for
1 ≤ km, i ∈ λ(k) for some nominal i. We will construct a topological model
(S, σ,W ) with a support {1, . . . ,m}∪N and topology and valuation defined
below. We will suppose further that n 6= m since otherwise the quasi-model
is a real model for ϕ already.

Partition S into sets X1, . . . ,Xn: let Xk = {k} for 1 ≤ k ≤ m and
let Xm, . . . ,Xn be the sets of the form {k + j(n − m) | 0 ≤ j < ∞} for
m ≤ k ≤ n}.

As usual, denote

Ō =
⋃

i∈O

Xi

for O ⊆ T . Define the topology σ to be generated by the following
collection of sets

{Ō − F | O ∈ τ, F ⊆ N finite }

Valuation is also defined in a usual way

W (p) =
⋃

p∈λ(k)

Xk for all p ∈ Prop ∪ Nom
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Note that similarly to the Theorems 8 and 10, the only opens Ā contains
(for A ⊂ T ) are of the form Ō − F where O ∈ τ,O ⊆ A, F is finite. This is
what makes the same inductive proof as in the aforementioned theorems go
through.

We will only mention that the model thus constructed is T0. Any point x
from N can be separated from any other point by a set S−{x}. Two points
named by nominal can be separated by an open due to the T0 condition for
quasi-models.

Remark 2. What happens if we add the universal modality to the language?
The only part of proofs of Theorems 13, 8 and 10 that depends on the lan-
guage is when we prove that a formula is satisfied at a point of a quasi-model
iff it is satisfied at a corresponding point of the model we have constructed.
This is proved by induction on formula structure, and it is easy to see that
if we add a clause that handles universal modality, the statement will still
hold. Thus, the aforementined theorems also apply to H(E).
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