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ABSTRACT

Aims. To understand the dynamics of stellar interiors, we study the effect of rotation on turbulence.
Methods. We consider turbulence induced by an arbitrary forcing and derive turbulence amplitude and turbulent transport coefficients
(turbulent viscosity and diffusivity), first by using a quasi-linear theory and then by using a multi-scale renormalisation analysis.
Results. With an isotropic forcing, the quasi-linear theory gives that the turbulent transport coefficients, both parallel and perpendicular to the
rotation vector, have the asymptotic scalingΩ−1 for rapid rotation (i.e. when the rotation rateΩ is larger than the inverse of the correlation
time of the forcing and the diffusion time), while the renormalisation analysis suggests aweaker dependence onΩ, with Ω−1/2 scaling.
The turbulence amplitude is found to scale asΩ0 − Ω−1 in the rapid rotation limit depending on the property of the forcing. In the case of
an anisotropic forcing with inhibited motion in the vertical direction, as should be relevant in a strongly stratified medium, we find that
non-diffusive fluxes of angular momentum scale asΩ−2 − Ω−1 for rapid rotation, depending on the temporal correlation of the forcing. We
discuss the implications of our result for the dynamics of stellar interiors.
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1. Introduction

Rotation and turbulence are ubiquitous features of many as-
trophysical bodies and play a crucial role in the dynamics of
these bodies. For instance, turbulence is very often invoked as a
means to increase the transport of angular momentum [e.g. the
accretion rate in disks (Balbus & Hawley 1998)] or the mix-
ing of light elements in stars [e.g. to explain the surface de-
pletion (see Pinsonneault 1997, and references therein)].Since
the rotation rate of stars varies with their mass (spectral types)
and age, it is important to develop a general theory of turbulent
transport which is valid for arbitrary rotation rate and other stel-
lar parameters (such as molecular viscosity, particle diffusivity,
etc).

In the solar context, many authors have investigated the
structure of turbulence in rotating bodies to explain the oc-
currence of differential rotation in the convective zone. The
main feature of this type of turbulence is the appearance of
non-diffusive terms in the transport of angular momentum,
which prevents a solid body rotation from being a solution of
the Reynolds equation (Lebedinsky 1941; Kippenhahn 1963).
Starting from the Navier-Stokes equation, it is possible toshow
that these fluxes arise when there is a cause of anisotropy in the
system, due to anisotropic background turbulence (see Rüdiger
1989, and references therein) or inhomogeneities such as an
underlying stratification (Kichatinov 1987). To explain the ob-
served differential rotation of the sun, it is also of prime impor-
tance to understand the influence of rotation on the turbulent

transport coefficients such as the turbulent diffusivity of par-
ticles and the turbulent conductivity of heat. Kichatinov et al.
(1994) have shown that for an isotropic original turbulencewith
long correlation time, all these coefficients scale asΩ−1 (where
Ω is the rotation rate of the sun) in the large rotation limit.

In our recent publications, we have studied the dynamics
of the Sun by taking into account the presence of a strong
shear (Kim 2005; Leprovost & Kim 2006) and the interaction
of this sheared turbulence with different types of waves that
can be excited in the Sun due to magnetic fields (Leprovost
& Kim 2007a; Kim & Leprovost 2007a), stratification (Kim &
Leprovost 2007b) or global rotation (Leprovost & Kim 2007b).
The main purpose of these studies was to understand the dy-
namics of the thin radial shear layer in the Sun, namely the
solar tachocline (Spiegel & Zahn 1992), where a sharp transi-
tion between latitudinal differential rotation in the convective
envelope and nearly uniform rotation in the radiative interior
takes place.

In this paper, we consider the opposite limit where the dif-
ferential rotation is negligible compared to the global rotation.
This is relevant for the convection zone and also for rapidly
rotating stars which are more massive than the Sun (Küker &
Rüdiger 2005). Specifically, we investigate the effect of rota-
tion on the properties of turbulence; i.e. its intensity andits
transport. First, using a quasi-linear theory of turbulence with
an isotropic arbitrary forcing, we show that all the turbulent
transport coefficients, both parallel and perpendicular to the ro-
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tation vector, have the asymptotic scalingΩ−1 when the rota-
tion rate is sufficiently large. The turbulence amplitude is how-
ever found to scale asΩ0 − Ω−1 in the rapid rotation limit de-
pending on the property of the forcing. We also consider the
alternative case of an anisotropic turbulence with inhibited mo-
tion in the vertical direction, as should be relevant, for exam-
ple, in a strongly stratified medium. In this case, we find that
the Reynolds stress does not vanish (unlike in the isotropiccase
where it vanishes) and that the transport of angular momentum
scales asΩ−2−Ω−1 in the rapid rotation limit. Secondly, we per-
form a multi-scale renormalisation group analysis to improve
on the quasi-linear theory. The result suggests that the trans-
port scales asΩ−1/2, with a weaker dependence onΩ compared
to that found by the quasi-linear theory.

The rest of the paper is organised as follows: in Sect. 2,
we solve the quasi-linear equations for the fluctuating velocity
and density of particles in a rotating frame with an arbitrary
external forcing. We then calculate the turbulent intensity and
turbulent transport in the case of a homogeneous forcing with
arbitrary temporal correlations in Sect. 3. In Sect. 4 and 5,we
present results in the case of an isotropic and anisotropic forc-
ing, respectively. Section 6 is devoted to the multi-scale renor-
malisation group analysis. Finally, we summarise and discuss
our results in Sect. 7 and provide the implications for the tur-
bulence in stellar interiors in Sect. 8.

2. Model (governing equations)

Our starting point is the Navier-Stokes equation with a forcing
term f combined with an advection-diffusion equation for the
transport of chemical species, in a rotating frame with angular
velocity Ω̃:

∂tv + v · ∇v = −∇p + ν∇2v + f − 2Ω̃ × v , (1)

∇ · v = 0 ,

∂tN + v · ∇N = D∇2N ,

whereν is the viscosity of the fluid andD the diffusivity of
particle. Note that, in the incompressible case consideredhere,
the heat transport can be described by an advection-diffusion
equation (e.g. see Chandrasekhar 1981). Thus, our result for
the turbulent diffusivity also holds for the turbulent conductiv-
ity, provided thatD is replaced by the thermal conductivity.
In the following, we letΩ = 2Ω̃ and assume (without loss
of generality) that the rotation is around thex-axis with no
large-scale velocity field (note that the combined effect of ro-
tation and large-scale shear is investigated in Leprovost &Kim
2007b). We then express the velocity field and the concentra-
tion as the sum of a large-scale field and small-scale fluctua-
tions: v = U0 + u = u and N = N0 + n. In the quasi-linear
theory (Moffatt 1978), Eq. (1) can be linearised for the fluc-
tuating fields and then Fourier-transformed to yield equations
for the Fourier component̃X(k, t). To consider arbitrary Prandtl
numberPr = ν/D, we introduce the following new variables
X̂ = exp[νk2t]X̃ and X̆ = exp[Dk2t]X̃ to absorb the viscos-
ity and diffusivity terms, respectively. Eliminating the pressure
variable, the equations for the velocity field and concentration

can be written:

∂2
t ûx + ω

2
0ûx =

a
γ + a2

[

∂t
ĥ1(t)

a
−Ωĥ2(t)

]

, (2)

∂tûz = −
βa
γ
∂tûx +

Ωa
γ

ûx +
ĥ2(t)
γ
,

ûy = −(aûx + βûz) ,

∂tn̆ = −ŭ · ∇N0 ,

wherea = kx/ky, β = kz/ky, γ = 1+β2 andω2
0 = Ω

2a2/(γ+a2);
ĥ1(t) = γ f̂x(t) − a f̂y(t) − βa f̂z(t) andĥ2(t) = −β f̂y(t) + f̂z(t). The
homogeneous solution of the first equation can easily be found
in terms of trigonometric functions. Using these solutionsand
the method of variation of constants, the solutions to the first
three equations of Eq. (2) can then be derived:

ûx =

∫ t

0
dt′

{ ĥ1(t′)
γ + a2

cos[ω0(t′ − t)] +
θĥ2(t′)
√

γ + a2
sin[ω0(t′ − t)]

}

,

ûy =

∫ t

0
dt′

{ ĥ1(t′)a
γ(γ + a2)

(

− cos[ω0(t′ − t)] (3)

+
θβ

√

γ + a2

a
sin[ω0(t′ − t)]

)

+
ĥ2(t′)a

γ
√

γ + a2
×

(

−θ sin[ω0(t′ − t)] −
√

γ + a2β

a
cos[ω0(t′ − t)]

)}

,

ûz = −
∫ t

0
dt′

{ ĥ1(t′)a
γ(γ + a2)

(

β cos[ω0(t′ − t)]

+
θ
√

γ + a2

a
sin[ω0(t′ − t)]

)

+
ĥ2(t′)a

γ
√

γ + a2
×

(

θβ sin[ω0(t′ − t)] −
√

γ + a2

a
cos[ω0(t′ − t)]

)}

,

whereθ is the sign of (Ωa).
In the following sections, we use Eq. (3) to calculate both

the turbulet amplitude and transport (of chemicals or heat). To
this end, we prescribe the correlation function of the forcing to
be spatially homogeneous with a temporal correlationC(τ):

〈ĥi(k1, t1)ĥ j(k2, t2)〉 = (2π)3δ(k1 + k2) C(| t1 − t2|) φi j(k2) , (4)

for i and j = 1 or 2. The functionsφi j are the power spectra of
the forcing.

3. Turbulent amplitude and transport

3.1. Turbulent amplitude

Using Eqs. (3) and (4), it is straightforward to obtain the inten-
sity of turbulence as:

〈u2
x〉 =

1
(2π)3

∫

d3k
{

Ax
11
φ11(k)

(γ + a2)2
(5)

+Ax
12

2φ12(k)
(γ + a2)3/2

+ Ax
22
φ22(k)

(γ + a2)

}

,

〈u2
y〉 =

1
(2π)3

∫

d3k
{

Ay
11

a2φ11(k)
γ2(γ + a2)2

+Ay
12

2a2φ12(k)
γ2(γ + a2)3/2

+ Ay
22

a2φ22(k)
γ2(γ + a2)

}

.
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Here, the functionsAi
jk(k, ω0) are defined in Eq. (A.1) of

Appendix A: they depend only onk andΩ0 and involve the
temporal correlation function of the forcingC(τ) only through
the functionsκc andσc, defined by:

κc =

∫ +∞

0
e−νk

2τ cos(ω0τ) C(τ) dτ , (6)

σc =

∫ +∞

0
e−νk

2τ sin(ω0τ) C(τ) dτ .

The turbulent amplitude in thez direction 〈u2
z 〉 can easily be

obtained from〈u2
y〉, due to the symmetry of the problem, by

making the following replacements:

β → β−1 , a→ a β−1 , γ→ γ β−2 , (7)

φ11 → φ11β
−4 , φ12→ φ12β

−3 , φ22→ φ22β
−2 .

3.2. Transport of angular momentum

From Eqs. (3) and (4), we can also calculate the non-diagonal
part of the correlation tensors〈uiu j〉 to obtain the transport of
angular momentum by turbulence:

〈uxuy〉 =
1

(2π)3

∫

d3k
{

Mx
11

aφ11(k)
γ(γ + a2)2

(8)

+Mx
12

2a φ12(k)
γ(γ + a2)3/2

+ Mx
22

aφ22(k)
γ(γ + a2)

}

,

〈uyuz〉 =
1

(2π)3

∫

d3k
{

Mz
11

a2φ11(k)
γ2(γ + a2)2

+Mz
12

2a2φ12(k)
γ2(γ + a2)3/2

+ Mz
22

a2φ22(k)
γ2(γ + a2)

}

.

Here, the functionsMx
i j and Mz

i j are given in Eq. (A.1) of ap-
pendix A and depend only onk,Ω0 and the functionsκc andσc

defined in Eq. (6).

3.3. Transport of particles

Integrating the last equation of Eq. (3), we obtain the density
of chemical species:

n̆i = (−∂iN0)
∫ t

0
ŭi(t′) dt′ . (9)

Note that the velocity to be integrated in Eq. (9) differs by an
exponential factor from that given by Eq. (3). However it is
more convenient to express the turbulent diffusivity of chemi-
cal speciesDi j

T , defined by〈uin〉 = −Di j
T∂ jN0, in terms ofûi.

Specifically, we can obtain the following:

Di j
T =

1
(2π)6

∫

d3k1

∫

d3k2e−(Dk2
1+νk

2
2)t × (10)

∫ t

0
dt′ e(D−ν)k2

1t′〈û j(k1, t
′)ûi(k2, t)〉 .

Using Eqs. (3)-(4) and following a calculation similar to that in
Sect. 3.1, we can calculate all the components of the turbulent
diffusivity Di j

T . The results turn out to depend on the temporal
correlation functionC(τ) through a new function:

ζc =

∫ +∞

0
e−Dk2τC(τ) dτ . (11)

These results in a general form are not shown here for the
sake of brevity and shall be presented in the case of isotropic
and anisotropic forcing in Sect. 4 and 5, respectively.

4. Isotropic forcing

When the forcingf is isotropic, the correlation function of the
forcing (with no helicity) can be written as:

〈 fi(k, t) f j(k′, t′)〉 = (2π)3 C(|t−t′|) F(k) (δi j−kik j/k
2) δ(k+k′) .(12)

The functionsφi j in Eq. (4) are related toF(k) in (12) by:

φ11 = γ(γ + a2)F(k) , φ12 = 0 and φ22 = γF(k) . (13)

Using Eq. (13) in Eqs. (5), (8) and (10), we can obtain the tur-
bulence amplitude and transport as follows:

〈u2
x〉 =

1
(2π)3

∫

d3k
γF(k)

(γ + a2)
κc

νk2
, (14)

〈u2
y〉 =

1
(2π)3

∫

d3k
a2F(k)
γ(γ + a2)















γ(β2 + a2)
νk2a2

κc +
ω0

ν2k4 + ω2
0

σc















,

〈uxuy〉 = −
1

(2π)3

∫

d3k
aF(k)

(γ + a2)
κc

νk2
,

〈uyuz〉 = −
1

(2π)3

∫

d3k
F(k)

(γ + a2)
β

νk2
κc ,

Dxx
T =

1
(2π)3

∫

d3k
γF(k)

(γ + a2)
I(k, ω0) ,

Dyy
T =

1
(2π)3

∫

d3k
F(k)(β2 + a2)

(γ + a2)
I(k, ω0) .

Here, the functionsχc, κc andσc [defined in Eqs. (6) and (11)]
depend only on the modulus of the wave number; The function
I(k, ω0) is defined as:

I(k, ω0) =
1

(D − ν)2k4 + ω2
0

[D − ν
ν
κc (15)

−
(D2 − ν2)k4 − ω2

0

(D + ν)2k4 + ω2
0

(κc + ζc) +
2Dk2ω0

(D + ν)2k4 + ω2
0

σc

]

.

By performing the integration in they-direction and changing
the colatitude variable toω0 = |Ω cosθ|, we obtain the follow-
ing result:

〈u2
x〉 =

2
(2π)2|Ω|

∫ +∞

0
dk k2F(k)

∫ |Ω|

0
dω0













1−
ω2

0

Ω2













κc(k, ω0)
νk2

,

〈u2
y〉 =

1
(2π)2|Ω|

∫ +∞

0
dk k2F(k)

∫ |Ω|

0
dω0 × (16)



























1+
ω2

0

Ω2













κc(k, ω0)
νk2

+
ω2

0

Ω2

ω0

ν2k4 + ω2
0

σc(k, ω0)















,

Dxx
T =

2
(2π)2|Ω|

∫ +∞

0
dk k2F(k)

∫ |Ω|

0
dω0













1−
ω2

0

Ω2













I(k, ω0) ,

Dyy
T =

1
(2π)2|Ω|

∫ +∞

0
dk k2F(k)

∫ |Ω|

0
dω0













1+
ω2

0

Ω2













I(k, ω0) ,

and vanishing transport of angular momentum:〈uxuy〉 =
〈uxuy〉 = 0. We now examine the dependence of the turbulence
amplitude and transport of particles in Eq. (16) on the correla-
tion time of the forcingC(τ).
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4.1. Infinitely correlated turbulence

WhenC(τ) = 1, the correlation functions in Eqs. (6) and (11)
take the following forms:

ζc =
1

Dk2
, κc =

νk2

ν2k4 + ω2
0

and σc =
ω0

ν2k4 + ω2
0

. (17)

Using Eq. (17) in Eq. (16) and performing the integration on
theω0 variable, we obtain the following equations:

〈u2
x〉 =

2
(2π)2

∫ +∞

0
dk

F(k)
ν2k2

1

Ω2
∗

(

−1+
Ω2
∗ + 1
Ω∗

arctanΩ∗

)

,

〈u2
y〉 =

1
(2π)2

∫ +∞

0
dk

F(k)
ν2k2

1

Ω2
∗
× (18)

(

2+
1

2(1+ Ω2
∗)
+

2Ω2
∗ − 5

2Ω∗
arctanΩ∗

)

,

Dxx
T =

2
(2π)2

∫ +∞

0
dk

F(k)
Dν2k4

1

Ω2
∗

(

−1+
Ω2
∗ + 1
Ω∗

arctanΩ∗

)

,

Dyy
T =

1
(2π)2

∫ +∞

0
dk

F(k)
Dν2k4

1

Ω2
∗

(

1+
Ω2
∗ − 1
Ω∗

arctanΩ∗

)

,

whereΩ∗ = Ω∗(k) = |Ω|/(νk2). In the limit Ω∗ → ∞, the
turbulent transport and intensity, both for the parallel and per-
pendicular components, all tend to zero asΩ−1. These agree
with Kichatinov et al. (1994). The effect of rotation on turbu-
lence amplitude appears withΩ∗, which becomes large on large
scales. In other words, turbulence quenching is more severeon
large scales, leading to effectively strong turbulence on small
scales. This is consistent with the reduction of scale of motion
as evidenced in numerical simulations (Brummell et al. 1998).

Interestingly, the turbulent transport of particles is propor-
tional to D−1, suggesting that the turbulent transport of heat
scales asκ−1 with the molecular heat diffusivity κ. Thus, in the
Sun whereκ ≫ D, the transport of particles is expected to
be faster than that of heat by a factorκ/D ∼ 107/102 ∼ 105.
However, this holds only for an incompressible fluid, as the
equation for the transport of heat is not the same as that of par-
ticles for a compressible fluid (Spiegel & Veronis 1960). The
relevance of this result for the solar context may thus be ques-
tionnable.

4.2. δ-correlated turbulence

We now consider a short correlated turbulence modelled by
C(τ) = τ f δ(τ). In this case, the temporal correlations in Eqs.
(6) and (11) become:

ζc = κc =
τ f

2
and σc = 0 , (19)

leading to the following turbulent intensity and transport:

〈u2
x〉 = 〈u2

y〉 =
2

3(2π)2

∫ ∞

0

F(k)τ f

ν
dk , (20)

Dxx
T =

1
(2π)2

∫ ∞

0

F(k)τ f

ν2k2

1

Ω2
∗
×

[

−(1+ b) +
Ω2
∗ + (1+ b)2

2Ω∗
arctan

(

Ω∗
2

)]

dk ,

Dyy
T =

1
2(2π)2

∫ ∞

0

F(k)τ f

ν2k2

1

Ω2
∗
×

[

1+ b +
Ω2
∗ − (1+ b)2

2Ω∗
arctan

(

Ω∗
2

)]

dk .

Here,b = 1/Pr. Eq. (20) shows that, in the case of a short
correlated forcing, only the turbulent transport is suppressed
(by a factorΩ−1) whereas the turbulent intensity is of the same
order as that without rotation. This is because, in this case, in-
ertial waves only have an effect on the phase of the velocity
field and thus do not modify its amplitude. Alternatively, this
is because the flow driven by a forcing with a short correlation
timeτ f < Ω

−1 has no coherent motion to be affected by inertial
waves (or rotation). This is to be compared with the result ob-
tained in the case of an infinitely correlated forcing (Sect.4.1)
where the turbulence amplitude was reduced asΩ−1 due to ro-
tation. Furthermore, the dependence of the turbulent diffusivity
on the molecular diffusivity is not as simple as in the infinitely
correlated case. However, in the large rotation limit (Ω∗ ≫ 1),
we can easily see from Eq. (20) that the turbulent diffusivity
depends neither onPr nor onD. Consequently, the transport of
heat and particle is the same for rapid rotation.

4.3. Finite correlation time with exponential correlation
function

In Sect. 4.1 and 4.2, we considered two extreme limits where
the correlation time was infinite or zero, respectively. Here, we
discuss a more realistic case where the turbulence has a finite
correlation timeτ f by using an exponential correlation function
C(τ) = exp[−2τ/τ f ]. In this case, the functions in Eqs. (6) and
(11) can be simplified as:

κc =
νk2 + 2/τ f

(νk2 + 2/τ f )2 + ω2
0

, (21)

σc =
ω0

(νk2 + 2/τ f )2 + ω2
0

,

ζc =
1

Dk2 + 2/τ f
.

Putting Eq. (21) in Eq. (16), we can calculate the turbulent in-
tensity and transport as previously. We omit, however, the gen-
eral form of the results which are too complex, and only pro-
vide a result that is valid in the limitΩ → ∞. To this end, we
can simply take the limitΩ → ∞ in Eq. (16) and obtain the
following result:

〈u2
x〉 ∼

2
(2π)2|Ω|

∫ +∞

0
dk k2F(k)

∫ ∞

0
dω0
κc(k, ω0)
νk2

, (22)

〈u2
y〉 ∼

1
(2π)2|Ω|

∫ +∞

0
dk k2F(k)

∫ ∞

0
dω0
κc(k, ω0)
νk2

,

Dxx
T ∼

2
(2π)2|Ω|

∫ +∞

0
dk k2F(k)

∫ ∞

0
dω0I(k, ω0) ,

Dyy
T ∼

1
(2π)2|Ω|

∫ +∞

0
dk k2F(k)

∫ ∞

0
dω0I(k, ω0) .

We note that, in order to obtain Eq. (22), the limitΩ → ∞
was taken inside the integral as the resulting integrals areall
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convergent. Eq. (22) shows that both turbulent amplitude and
transport scale asΩ−1 for large rotation rate. This is similar to
the case of the infinite correlation time case. Furthermore,Eq.
(22) shows that the ratio between the parallel and perpendicular
transport of particles (or heat) is given by:

〈u2
x〉
〈u2

y〉
=

Dxx
T

Dyy
T

= 2 for Ω→ ∞ , (23)

again similar to the case ofC(τ) = 1. We note that the large
rotation limitΩ → ∞ taken above requires that not onlyΩ ≫
νk2 but alsoΩ ≫ τ−1

f . In other words, the correlation time

of the forcing should be larger thanΩ−1. In the solar context,
Ω ∼ 3× 10−6s. Thusτ f must be larger than a few days. When
Ω < τ−1

f , it can easily be shown that the results become similar
to those in the case ofδ-correlated forcing studied in Sect. 4.2
(i.e. 〈u2〉 ∼ Ω0 andDT ∼ Ω−1).

4.4. Power law correlation

In view of the highly intermittent nature of stellar activity, it
is interesting to consider the case with a correlation function
of the forcing as a power-law. For simplicity, we consider a
correlation function given by:

C(τ) =
(τ f

τ

)µ

, (24)

with 0 < µ < 1 (note that it is also possible to consider a func-
tion with exponentµ > 1 by introducing a cutoff frequency).
To calculate the various correlation functions, we need thefol-
lowing integral:

I =
∫ +∞

0
e(iω0−νk2)ττ−µdτ =

( i
νk2

)1−µ ∫ +∞

0
t−µe−it−ω∗0t dt , (25)

where the last equation is obtained using steepest descent
method. Using Watson’s lemma (Bender & Orszag 1975), the
asymptotic behaviour of this integral forω∗0 = ω0/νk2 ≫ 1 can
be found as:

I ∼ Γ(1− µ)
(

i
ω0

)1−µ
. (26)

Thus the correlation functions in Eqs. (6) and (11) become:

ζc =
Γ(1− µ)

Dk2
τ
µ

f∗ , (27)

κc ∼
Γ(1− µ)τµf∗
νk2

ω
µ−1
0∗ cos

[

(1− µ)π
2

]

,

σc ∼
Γ(1− µ)τµf∗
νk2

ω
µ−1
0∗ sin

[

(1− µ)π
2

]

,

whereτ f∗ = τ f νk2 andω0∗ = ω0/νk2 are the correlation time
and the oscillation frequency of the noise scaled by the diffu-
sion time, respectively. Putting Eq. (27) in Eq. (16), we then ob-
tain the turbulence amplitude and turbulent transport of chem-
icals for an isotropic forcing with a power-law correlation:

〈u2
x〉 =

2
(2π)2

∫ +∞

0
dk

F(k)τµf∗
ν2k2Ω∗

cos
[

(1− µ)π
2

] 2Ωµ∗
µ(µ + 2)

, (28)

〈u2
y〉 =

1
(2π)2

∫ +∞

0
dk

F(k)τµf∗
ν2k2Ω∗

cos
[

(1− µ)π
2

] 2(µ + 1)Ωµ∗
µ(µ + 2)

,

Dxx
T =

2
(2π)2

∫ +∞

0
dk

F(k)τµf∗
Dν2k4Ω∗

T ,

Dyy
T =

1
(2π)2

∫ +∞

0
dk

F(k)τµf∗
Dν2k4Ω∗

T ,

in the rapid rotation limitΩ∗ = |Ω|/(νk2) ≫ 1. T is a con-
stant which is independent ofΩ. From Eq. (28), we can see that
the turbulence intensity scales as|Ω|µ−1 for rapid rotation. This
shows that the scaling of the turbulent intensity depends sen-
sitively on the exponent of the power law. Note that the result
of infinitely correlated turbulence is recovered forµ = 0. In
comparison, the turbulent diffusivity in both directions scales
as |Ω|−1 independent of the power exponentµ. Furthermore,
we can see that the ratio between the turbulence in thex- and
y-direction depends only on the power exponent:

〈u2
x〉
〈u2

y〉
∼ 2
µ + 1

. (29)

Consequently, the turbulence is always more vigorous in thex-
direction (along the rotation axis) than in they-direction. We
recover the factor 2 forµ = 0, corresponding to the exponen-
tially correlated case, see Eq. (23). As the power exponent is
increased, the turbulence becomes more isotropic. Note that the
ratio between the transport of species in thex- andy-direction
is always 2, as in the case of an exponential correlation func-
tion.

To summarise, for an isotropic forcing and rapid rotation,
we showed that the turbulent diffusivity is reduced asΩ−1, ir-
respective of the correlation time of the forcing, with the trans-
port in the direction parallel to the rotation vector being twice
as fast as than in the direction perpendicular to the rotation.
This would lead to a warmer pole than equator (Kichatinov
& Rüdiger 1995). In comparison, the turbulent intensity is
found to be reduced with different scaling withΩ depending
on the properties of the correlation function of the forcing.
Specifically, in the case of a finite correlation time, the tur-
bulence intensity scales asΩ−1 for rapid rotation, while it is
independent of the rotation rate for a short-correlated forcing
(Sect. 4.2). Furthermore, for a temporal correlation function
given by a power-law, turbulence amplitude scales asΩn with
−1 < n < 0.

5. Anisotropic forcing

We now consider the case where the forcingf is anisotropic
as should be relevant for the turbulence in the convection zone
(for instance, due to the underlying stratification). We arepar-
ticularly interested in the Reynolds stress as the combination
of anisotropy and rotation can lead to non-diffusive fluxes of
angular momentum. In the case whereg is a unit vector in the
direction of anisotropy, the correlation function of the forcing
can be written (Rüdiger 1989):

〈 fi(k, t) f j(k′, t′)〉 = (2π)3 C(|t − t′|) δ(k + k′) G(k) × (30)
[

δi j −
kikk

k2
− (g · k)2

k2
δi j − gig j +

g · k
k2

(gik j + g jki)

]

.
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This forcing in Eq. (30) is highly anisotropic with only a non-
vanishing component perpendicular tog:

〈(f · g)2〉 = 0 , (31)

〈(f × g)2〉 = 1
2π2

∫ ∞

0
G(k)k2dk .

In the following, we assumeg to be in the vertical direction.
In general, one can consider a less anisotropic forcing by com-
bining the isotopic part of the forcing (12) and anisotropicpart
(30).

5.1. Rotation parallel to the vertical direction

When the rotation vector is parallel to the vertical direction i.e.
g ‖ Ω (as in the case of the turbulence near the pole), Eq. (30)
translates to:

φ11 = φ12 = 0 and φ22 =
γ2

γ + a2
G(k) . (32)

Using Eq. (32) in Eqs. (5) and (8), we can show that the turbu-
lence amplitude becomes

〈u2
x〉 =

2
(2π)2|Ω|

∫ ∞

0
dk k2G(k)

∫ |Ω|

0
dω0













1−
ω2

0

Ω2













2

×
























1
2νk2

− νk2

2(ν2k4 + ω2
0)













κc +
ω0

2(ν2k4 + ω2
0)
σc













,

〈u2
y〉 =

1
(2π)2|Ω|

∫ ∞

0
dk k2G(k)

∫ |Ω|

0
dω0













1−
ω2

0

Ω2













× (33)

























1+
ω2

0

Ω2













κc

2νk2
+
νk2κc − ω0σc

2(ν2k4 + ω2
0)













,

while the transport of angular momentum vanishes. Here again,
we can see by using Eq. (21) that all the integrals in Eq. (33)
converge in the limitΩ → ∞. Thus, turbulence amplitudes are
reduced asΩ−1 for large rotation rate. We do not provide here
the results for the turbulent diffusivities as they are very similar
to those derived in the isotopic case. Thus, in the rapid rotation
limit, turbulent diffusivities scale asΩ−1 for all the different
types of correlation function of the forcing that were considered
previously.

5.2. Rotation perpendicular to the vertical direction

Near the equator, the rotation vector is perpendicular to the
vertical direction. Since the rotation is assumed to be in the
x-direction, the vertical direction for anisotropy can be chosen
to be in thez-direction without loss of generality. Eq. (30) then
translates to:

φ11 = (γ + a2)G(k) , φ12 = aβG(k) (34)

and φ22 =
a2β2

γ + a2
G(k) .

In this case, the turbulent amplitude and diffusivities can
be shown to be very similar to those derived in the isotopic
case. Consequently, the scalings are the same as those derived

in Sect. 4. However, in this case, the transport of angular mo-
mentum does not vanish as discussed below. Putting Eq. (34)
into Eq. (8) and keeping only the even terms inβ and a (as
the odd terms vanish after angular integration), straightforward
but cumbersome calculations lead to the following expressions
for the correlation function of they andz components of the
velocity:

〈uyuz〉 = −
1

2(2π)3

∫

d3k
θa(1+ a2)G(k)

(γ + a2)3/2

ω0κc + νk2σc

ν2k4 + ω2
0

, (35)

while the other correlation functions vanish. Performing the in-
tegration over the angular variables, Eq. (35) can be simplified
as:

〈uyuz〉 = −
χ

2(2π)2Ω2

∫ ∞

0
dk k2G(k)

∫ |Ω|

0
dω0 × (36)

ω0













1+
ω2

0

Ω2













ω0κc + νk2σc

ν2k4 + ω2
0

,

whereχ is the sign ofΩ. The Reynolds stress in Eq. (35)
depends on the direction of the rotation, representing non-
diffusive momentum transport, i.e.,Λ effect (Rüdiger 1989).
This effect favours the creation of velocity gradient rather than
smoothing it out and can thus be responsible for the differential
rotation of stars.

We now examine the behaviour of Eq. (35) for different
temporal correlation functions. In the case of an infinitelycor-
related forcing, Eq. (36) can be shown to become:

〈uyuz〉 = −
χ

2(2π)2

∫ ∞

0
dk

G(k)

ν2k2Ω3
∗
× (37)

[

3+ Ω2
∗

1+ Ω2
∗
+
Ω2
∗ − 3

Ω∗
arctanΩ∗

]

.

Eq. (37) shows that the non-diffusive fluxes of angular momen-
tum scale asΩ−2 in the large rotation limit. This agrees with
Kichatinov (1986). Similarly, we can show that for a finite cor-
relation time (with exponential form), the limitΩ∗ → ∞ can
be taken inside the integral of Eq. (36) and consequently, the
non-diffusive fluxes of angular momentum scale also asΩ−2 in
the large rotation limit.

In comparison, when the forcing isδ-correlated, Eq. (36)
becomes:

〈uyuz〉 = −
χ

2(2π)2

∫ ∞

0
dk
τ f G(k)

6νΩ4
∗
× (38)

[

Ω∗(4Ω
2
∗ − 3)+ 3(1− Ω2

∗) arctanΩ∗
]

,

which shows that the non-diffusive fluxes of angular momen-
tum scale asΩ−1 in the rapid rotation limit.

Finally, for a power-law correlation function, by putting Eq.
(27) into Eq. (36), we obtain the non-diffusive fluxes of angular
momentum as:

〈uyuz〉 = −
χ

2(2π)2

∫ ∞

0
dk
τ
µ

f∗G(k)

νk2Ω2
∗
Γ(1− µ) × (39)

Ω
µ
∗ cos

[

(1− µ)π/2]

2(µ + 2) cos
[

(1+ µ)π/2
]

(

cos
[

(1+ µ)
π

2

]

− 1
µ

)

,
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in the rapid rotation limit. In this limit, theΛ-effect scales as
Ωµ−2. Thus, for a power-law correlation function, theΛ-effect
scales asΩ−n with 1 < n < 2.

In summary, we show that non-diffusive fluxes of angular
momentum do not vanish only when the rotation is perpendic-
ular to the inhomogeneity (such as stratification in the radial
direction or shear in the azimuthal direction). This is in agree-
ment with previous results. Furthermore, we show that these
non-diffusive fluxes scale asΩ−2 − Ω−1, in the rapid rotation
limit, depending on the property of the temporal correlation
function of the forcing.

6. Multi-scale renormalisation group analysis

The results presented in the previous sections are derived us-
ing the quasi-linear theory. This is strictly valid only fortwo-
scale turbulence, with a spatial gap between a large-scale for
the mean-flow and a small scale for the fluctuations, and for
weak turbulence. Therefore, the applicability of this approxi-
mation is limited. In this section, we utilise a renormalisation
group technique (see Moffatt 1981, and references therein for
details) to consider a more realistic situation of a strong turbu-
lence with a no-clear scale separation between turbulence and
mean fields. This method is based on the computation of the
turbulent diffusivity iteratively by considering a range of scales
l′ns with:

ln > ln−1 > . . . > l0 , (40)

and l0 is the scale at which the molecular diffusion becomes
dominant. The effective turbulent diffusivity Dn+1 for scalen+1
is then calculated by using the value of the turbulent diffusiv-
ity at the preceding step, i.e.,Dn via quasi-linear theory. Since
the turbulent diffusivity scales asD−1 [see Eq. (18)], we can
calculateD1 in terms ofD0 as:

D1 =
1

D0

∫ 1/l0

1/l1

P(k, ν,Ω) dk , (41)

whereP(k, ν,Ω) is a function depending only on modulus of
the wave number, molecular viscosity, and rotation. Note that
the integration range is over the scalel such thatl0 < l < l1.
Repeating this procedure iteratively, one can compute the tur-
bulent diffusivity at scalen + 1 as follows:

Dn+1 =
1

D0 + Dn

∫ 1/ln

1/ln+1

P(k, ν,Ω) dk . (42)

If we take the limitn → ∞, we obtain a continuous range of
scale and turbulent diffusivity. Thus, writingD(k) as the turbu-
lent diffusivity acting on scales smaller thank−1, Eq. (42) can
be rewritten

dD(k) =
1

D0 + D(k)
P(k) dk . (43)

The turbulent diffusivity DT is obtained by integrating over all
scales in the inertial range, starting fromn = 0 with the value
of molecular diffusivity D0 = D, with the result:

DT ∼
(

1
D

∫ ∞

0
P(k, ν,Ω) dk

)1/2

. (44)

Eq. (44) shows that if the quasi-linear theory gives a turbu-
lent diffusivity asΩ−n, then the renormalisation analysis pre-
dicts a scalingΩ−n/2. Consequently, as the quasi-linear theory
predicted a scaling asΩ−1 (irrespective of the form of tempo-
ral correlations), the turbulent transport of particles (or heat)
scales asΩ−1/2 in the large rotation limit. Interestingly, this re-
sult has a weaker dependence onΩ compared to that according
to quasi-linear theory. FurthermoreDxx

T /D
zz
T =
√

2 in the rapid
rotation limit, with a weaker anisotropy compared to the quasi-
linear result [see Eq. (23)].

Finally, we note that quasi-linear or multi-scale renor-
malisation group analysis cannot capture a strong anisotropy
in the rapid rotation limit with a tendency towards two-
dimensionalisation (Cambon et al. 1997). In order to capture
the highly anisotropic nature of rotating turbulence, one needs
to use more sophisticated closure, such as wave-turbulence
which leads to anisotropic spectra (Galtier 2003). In the ex-
treme limit of rapid rotation, this rotation-induced anisotropy
could be captured by assuming geostrophic balance in the equi-
librium state (Pedlovsky 1987).

7. Summary and discussion

We studied the structure of turbulence in a rotating medium
with an arbitrary external forcing. Using the quasi-linearthe-
ory, we first performed a thorough study of the turbulence in-
tensity and transport (of chemical species or heat) in the case
of an isotropic forcing by considering different types of tem-
poral correlation functions. We also examined the transport of
angular momentum in the case of an anisotropic forcing.

Specifically, we showed that for an isotropic forcing, the
transport parallel and perpendicular to the rotation vector has
the same scaling with the rotation frequencyΩ: they are both
reduced by a factorΩ−1 compared to the case without rotation
irrespective of the temporal correlation function of the forcing.
Furthermore, the transport in the direction parallel to therota-
tion is twice as fast than the one in the perpendicular direction
[see Eq. (23)]. This result was shown to be robust independent
of the specific form of temporal correlationC(τ) (exponential
and power law) or correlation time (finite, short or infinite).
Note that this result was shown by Kichatinov et al. (1994) in
the case of an infinitely correlated forcing.

In comparison, the scaling of the turbulence intensity de-
pends on the property of the forcing. For exponential corre-
lation function with infinite memory, all the components of
the velocity amplitude scale asΩ−1 while their intensity in
the direction parallel to the rotation is twice that in the per-
pendicular direction (similar to the transport). However,for δ-
correlated turbulence, the turbulence amplitude becomes inde-
pendent of the rotation rate. Thus, in this case, inertial waves
affect only the cross-phase of the velocity field and not its am-
plitude. Furthermore, in the case of a finite correlation time
with a power-law, the turbulence intensity scales asΩn with
−1 < n < 0 while the ratio of the turbulence amplitude in the
direction parallel to that perpendicular to the rotation can be
any number between 1 and 2 depending on the exponent of the
power-law.
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In the case where the driving force is highly anisotropic,
it was shown to give rise to non-diffusive fluxes when the
rotation is perpendicular to the anisotropy. In the large rota-
tion limit, the transport of angular momentum scales asΩ−2

for a forcing with a finite correlation time. However, for aδ-
correlated turbulence, we found that the (quenching) effect of
rotation was reduced with non-diffusive fluxes now scaling as
Ω−1. Furthermore, for a power-law correlation function, the
momentum flux was found to scale asΩp with −2 < p < −1.

Finally, we performed a multi-scale renormalisation anal-
ysis which permitted us to go beyond the quasi-linear theory
in the calculation of the turbulent diffusivity. We found that,
in comparison with the quasi-linear theory result of a turbu-
lent diffusivity proportional toΩ−1, the renormalisation theory
predicts a scalingΩ−1/2. Consequently, we expect the turbulent
diffusivity to depend weakly onΩ. It also gave us an anisotropy
in transport weaker than the quasi-linear prediction, the parallel
component being

√
2 faster than that of the perpendicular.

We should however note that the scaling of our results can
be modified in the case of a bounded domain of finite size.
In the calculation of all the turbulent transport coefficients, we
obtained a result proportional to the following type of integral:

I(k,Ω) =
∫

H(k)

ν2k4 + ω2
0

d3k , (45)

whereω0 = (Ω · k)/k is the projection of the unit vector in the
direction of the wave number on the rotation axis. When the do-
main of integration is unbounded, the integration over the an-
gular variable makes this integral proportional toΩ−1, when the
rotation rateΩ is sufficiently large [e.g. Eq. (18)]. This is be-
cause this integral involves some contribution of order 1 (when
Ω · k = 0) and others of orderΩ−2. However, in a realistic situ-
ation, the domain of integration (in Fourier space) is bounded.
That is, there is a minimal wavenumber (corresponding to a
maximum length, for instance the size of the box) in the direc-
tion of the rotation, for example,km = min(kx). The aforemen-
tioned scaling ofΩ−1 is valid only whenν2k6 ≫ Ω2k2

m. In the
opposite case (ν2k6 ≪ Ω2k2

m), the termω2
0 in Eq. (45) is always

dominant, giving the scaling ofΩ−2 for large rotation rate. In
this case, the multi-scale analysis would give a scaling ofΩ−1

instead ofΩ−1/2.

8. Implications for stellar convection zone

We discuss here some of the important implications of our re-
sults for the Sun and other stars. For parameters typical of the
Sun,Ω ∼ 2.3 × 10−6 s−1 and ν ∼ 102 cm2s−1, the effect of
a finite-size domain discussed in Sect. 7 can be ignored if the
characteristic length scale is larger than (ν/Ω)1/2 ∼ 1.7×104cm.
This is likely to be the case in the solar convection zone as
convective motions can extend to a distance of approximately
4×109cm. In this case, the quasi-linear theory predicts that the
turbulent diffusivity scales asΩ−1 for rapid rotation while the
turbulence amplitude scales asΩ0−Ω−1 depending on the prop-
erty of the forcing. In comparison, the renormalisation analysis
predicts a turbulent diffusivity scaling asΩ−1/2. This result thus
suggests that the effect of rotation on particle or heat transport
is weaker than previously thought (Kichatinov et al. 1994).If

the effect of rotation had been much stronger in reducing trans-
port, it could have inhibited the mixing of light elements inthe
convection zone, thereby leading to a weak mixing as required
(Barnes et al. 1999). Our results have confirmed that this can-
not possibly be true and that rotation cannot play an important
role in reducing the mixing of light elements in the solar con-
vection zone to explain the observed (rather modest) depletion
of light elements on the Sun (Schatzman & Baglin 1991).

Traditional stellar modelling does not involve any
anisotropy in the turbulent diffusivity of particles (or equiva-
lently in the turbulent conductivity of temperature) due toro-
tation. We have shown here that such an anisotropy can be in-
duced by rotation. This is however not a significant effect as
the transport in the direction parallel to the rotation is only
twice as fast as that in the perpendicular direction, according to
the quasi-linear theory. This anisotropy is quite robust against
the temporal correlations used and has been shown to give
rise to a warmer pole than the equator (Kichatinov & Rüdiger
1995). This anisotropy is however shown to be weaker accord-
ing to the multi-scale renormalisation analysis, the ratiobeing
only

√
2. Consequently, rotation may not be sufficient for in-

ducing anisotropic transport in stars, for instance, in order to
cause a sufficient latitudinal temperature gradient in the con-
vective envelopes as required by numerical models (Kichatinov
& Rüdiger 1995; Küker & Rüdiger 2005). As we have shown
in our previous studies, an anisotropic transport can easily be
induced by a strong shear layer (such as the solar tachocline,
see Kim 2005; Leprovost & Kim 2006), magnetic fields (Kim
2006; Leprovost & Kim 2007a; Kim & Leprovost 2007a) or
stratification (Kim & Leprovost 2007b). In these works, shear
flows are also shown to quench turbulent transport significantly
leading to weak mixing.

Finally, we note that our results depend on the magnitude
of Ω, the diffusion rateνk2 (or Dk2) and the characteristic fre-
quency of the forcing 1/τ f . Obviously, stars of different spec-
tral types have different values forΩ, ν, D andτ f . It is thus
important to understand the origin ofτ f and to perform a sys-
tematic study on the development of turbulence theory as a
function of masses and ages. This will be addressed in future
studies.
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Appendix A: Turbulence amplitude and transport

In this appendix, we provide the form ofAi
jk(k, ω0) and

Mi
jk(k, ω0) used in Eqs. (5) and (8).

Ax
11 =













1
2νk2

+
νk2

2(ν2k4 + ω2
0)













κc −
ω0

2(ν2k4 + ω2
0)
σc , (A.1)

Ax
12 = −θ













ω0

2(ν2k4 + ω2
0)
κc +

νk2

2(ν2k4 + ω2
0)
σc













,

Ax
22 =













1
2νk2

− νk2

2(ν2k4 + ω2
0)













κc +
ω0

2(ν2k4 + ω2
0)
σc ,

Ay
11 =

(

γ(β2 + a2)
2νk2a2

+
−γ(β2 + a2) + 2a2

a2

νk2

2(ν2k4 + ω2
0)
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+
2θβ

√

γ + a2

a
νk2

2(ν2k4 + ω2
0)

)

κc

+















γ(β2 + a2)
a2

ω0

2(ν2k4 + ω2
0)
+
θβ

√

γ + a2

a
νk2

ν2k4 + ω2
0















σc ,

Ay
12 =

(

θ
γ(β2 + a2) − 2a2

a2

ω0

2(ν2k4 + ω2
0)

+
2β

√

γ + a2

a
νk2

2(ν2k4 + ω2
0)

)

κc

−
(

θ
γ(β2 + a2) − 2a2

a2

νk2

2(ν2k4 + ω2
0)

−
2β

√

γ + a2

a
ω0

2(ν2k4 + ω2
0)

)

σc ,

Ay
22 =

(

γ(β2 + a2)
2νk2a2

+
γ(β2 + a2) − 2a2

a2

νk2

2(ν2k4 + ω2
0)

−
2θβ

√

γ + a2

a
νk2

2(ν2k4 + ω2
0)

)

κc

+

(−γ(β2 + a2) + 2a2

a2

ω0

2(ν2k4 + ω2
0)

−
θβ

√

γ + a2

a
νk2

ν2k4 + ω2
0

)

σc ,

Mx
11 =















− 1
2νk2

− νk2

2(ν2k4 + ω2
0)
−
βθ

√

γ + a2

a
ω0

2(ν2k4 + ω2
0)















κc

+















ω0

2(ν2k4 + ω2
0)
−
βθ

√

γ + a2

a
νk2

2(ν2k4 + ω2
0)















σc ,

Mx
12 =















−β
√

γ + a2

a
+ θ

ω0

2(ν2k4 + ω2
0)















κc + θ
νk2

2(ν2k4 + ω2
0)
σc ,

Mx
22 =















− 1
2νk2

+
νk2

2(ν2k4 + ω2
0)
+
βθ

√

γ + a2

a
ω0

2(ν2k4 + ω2
0)















κc

+















− ω0

2(ν2k4 + ω2
0)
+
βθ

√

γ + a2

a
νk2

2(ν2k4 + ω2
0)















σc ,

Mz
11 =

(

− βγ

2a2νk2
+
β(γ + 2a2)νk2

2a2(ν2k4 + ω2
0)

−
(1− β2)θ

√

γ + a2

a
ω0

2(ν2k4 + ω2
0)

)

κc

−
(

β
(γ + 2a2)ω0

2a2(ν2k4 + ω2
0)

+
(1− β2)θ

√

γ + a2

a
νk2

2(ν2k4 + ω2
0)

)

σc ,

Mz
12 =

(

(β2 − 1)

√

γ + a2

a
νk2

2(ν2k4 + ω2
0)

−θβγ + 2a2

a2

ω0

2(ν2k4 + ω2
0)

)

κc

+

(

−θβγ + 2a2

a2

νk2

2(ν2k4 + ω2
0)

−(β2 − 1)

√

γ + a2

a
ω0

2(ν2k4 + ω2
0)

)

σc ,

Mz
22 =

(

− βγ

2a2νk2
− β(γ + 2a2)νk2

2a2(ν2k4 + ω2
0)

+
(1− β2)θ

√

γ + a2

a
ω0

2(ν2k4 + ω2
0)

)

κc

+

(

β
(γ + 2a2)ω0

2a2(ν2k4 + ω2
0)

+
(1− β2)θ

√

γ + a2

a
νk2

2(ν2k4 + ω2
0)

)

σc .

Here again, the functionsκc, σc andζc characterising the in-
fluence of the temporal correlation of the forcing on the turbu-
lence are defined by Eqs. (6) and (11).
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