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ABSTRACT

Aims. To understand the dynamics of stellar interiors, we studydffect of rotation on turbulence.

Methods. We consider turbulence induced by an arbitrary forcing aadvd turbulence amplitude and turbulent transportfiecients

(turbulent viscosity and flusivity), first by using a quasi-linear theory and then byhgsa multi-scale renormalisation analysis.

Results. With an isotropic forcing, the quasi-linear theory giveattthe turbulent transport cigients, both parallel and perpendicular to the
=) rotation vector, have the asymptotic scal@g' for rapid rotation (i.e. when the rotation rageis larger than the inverse of the correlation
Otime of the forcing and the ffusion time), while the renormalisation analysis suggesteeaker dependence dp, with Q%2 scaling.
o~ The turbulence amplitude is found to scaleGfs— Q! in the rapid rotation limit depending on the property of tbecfng. In the case of

an anisotropic forcing with inhibited motion in the vertiatirection, as should be relevant in a strongly stratifieddimm, we find that

O non-difusive fluxes of angular momentum scalecg — Q! for rapid rotation, depending on the temporal correlatibthe forcing. We
@) discuss the implications of our result for the dynamics eflat interiors.

N
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1. Introduction transport cofficients such as the turbulentfidisivity of par-
- . o ticles and the turbulent conductivity of hept. Kichatindwaé
9 Rotation and tqrbulence are Ublqu.ItOUS fe.atures of many #9g4) have shown that for an isotropic original turbulent
) trophysical bodies and play a crucial role in the dynamics Fng correlation time, all these cigients scale a@! (where

L . . . .
Q these bodies. For instance, turbulence is very often ibak@ ) js the rotation rate of the sun) in the large rotation limit.

means to increase the transport of angular momentum [@g. th o ] )
accretion rate in diskd (Balbus & Hawj¢y 1998)] or the mix- N our recent publications, we have studied the dynamics

O ing of light elements in stars [e.g. to explain the surface dgf the Sun by taking into account the presence of a strong
00 pletion (sed Pinsonned{ilt 1997, and references thersinjje Shear [(<irh[2005[ Leprovost & Kihi 20p6) and the interaction
00 the rotation rate of stars varies with their mass (speqgrmg) ©f this sheared turbulence withftérent types of waves that
<t and age, it is important to develop a general theory of tirtul &N be excited in the Sun due to magnetic fleIQS (Le.provost
O transport which is valid for arbitrary rotation rate andethtel- & Kim ;[Kim & Leprovod{2007a), stratification (Kim &

v |ar parameters (such as molecular viscosity, partidfeisivity, L-€Provos b) or global rotatiop (Leprovost & K{m 20D7b)
Oetc). The main purpose of these studies was to understand the dy-

1 In the solar context, many authors have investigated tﬂglm'cts Ohf thl_e th'g r_adlall ;hzear Ialyegrzm thhe sun, ?\ametly th?
“= structure of turbulence in rotating bodies to explain the ogoar tachoc ine{ (Spiege af|n 1992), where a sharp transi

_C—currence of dferential rotation in the convective zone. Th&" between latitudinal @erentlal r.otat-lon n the.cc.)nvg_ctlve
main feature of this type of turbulence is the appearancee({t/ebpe and nearly uniform rotation in the radiative iioter
non-difusive terms in the transport of angular momenturﬁ'j,l es place.
which prevents a solid body rotation from being a solution of In this paper, we consider the opposite limit where the dif-
the Reynolds equation (Lebedingky 1941; Kippenhiahn|1968rential rotation is negligible compared to the globahtmn.
Starting from the Navier-Stokes equation, it is possibltow This is relevant for the convection zone and also for rapidly
that these fluxes arise when there is a cause of anisotropg inrotating stars which are more massive than the Sun (Kuker &
system, due to anisotropic background turbulencd Riidiger|200p). Specifically, we investigate théeet of rota-
1989, and references therein) or inhomogeneities such agian on the properties of turbulence; i.e. its intensity aisd
underlying stratification[(Kichatinflv 19B7). To explairethb- transport. First, using a quasi-linear theory of turbuéewith
served diferential rotation of the sun, it is also of prime imporan isotropic arbitrary forcing, we show that all the turlmile
tance to understand the influence of rotation on the turbuléransport cofficients, both parallel and perpendicular to the ro-
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tation vector, have the asymptotic scali2g® when the rota- can be written:
tion rate is s#iciently large. The turbulence amplitude is how-

ever found to scale a@° — Q1 in the rapid rotation limit de- 920y + w3lx = a 5 6tw - Qhy(®)], 2)
pending on the property of the forcing. We also consider the y+a aA

alternative case of an anisotropic turbulence with inkibito- 80, = _IB_aatﬁx + %Ox + @ ’

tion in the vertical direction, as should be relevant, foarmx Y Y Y

ple, in a strongly stratified medium. In this case, we find thatly, = —(alx + 80;) ,

the Reynolds stress does notvanish (unlike inthe isotcae 51 = —{j. VN, ,

where it vanishes) and that the transport of angular momentu

scales a®2—-Q- in the rapid rotation limit. Secondly, we per-Wherea = ky/ky, 8 = k;/ky, y = 1+ 5% andwg = Q%a%/(y +&);
form a multi-scale renormalisation group analysis to invero hi(t) = y fx(t) — afy(t) — gaf,(t) andhy(t) = —gfy(t) + f;(t). The

on the quasi-linear theory. The result suggests that tims-trahomogeneous solution of the first equation can easily bedfoun
port scales a@ %2, with a weaker dependence @rcompared in terms of trigonometric functions. Using these solutiansl

to that found by the quasi-linear theory. the method of variation of constants, the solutions to trs# fir
The rest of the paper is organised as follows: in Sgct. iree equations of E({](2) can then be derived:
we solve the quasi-linear equations for the fluctuating ciglo t - £ 1
: o ; ; A o a(t) , oha(t’) . )
and density of particles in a rotating frame with an arbitratiy = dt { a2 cosko(t’ — t)] + —— sinfwo(t’ — t)]} ,
external forcing. We then calculate the turbulent intgnaitd 0 Y vy ta

turbulent transport in the case of a homogeneous forcing wit v h(t)a vt 3

arbitrary temporal correlations in Seff. 3. In S¢bt. 4 Bnaes, Y = ) {y(y T a2) (_ cosfuo(t’ - )] (3)

present results in the case of an isotropic and anisotropic f +913‘/7Ta2
a

ing, respectively. Sectiof} 6 is devoted to the multi-scafeor- + _Ne(t)a X

sinfwo(t’ — t)])

malisation group analysis. Finally, we summarise and discu Yy + @
our results in Secf] 7 and provide the implications for the tu _ [y + a8
bulence in stellar interiors in Seg}. 8. (—9 sinfwo(t’ - )] — ———— cosfwo(t’ - )] )} ;
t ﬁ ’
_ _ 0 = - f at {L)i(ﬁ cosuo(t’ — 1)]
2. Model (governing equations) 0 Yy + &)
Oy +a2 . ha(t')a
Our starting point is the Navier-Stokes equation with aifayc +7/T sin[wo(t’ — t)]) + L)z X
termf combined with an advectionfiusion equation for the YNy ta
transport of chemical species, in a rotating frame with dgu ) , \y + a2 ,
velocity & (6 sinfwot - 0] - 2= cospuo(t - 01}

~ hered is the sign of Qa).
VHV-VW = —-Vp+wWav+f -2Q x v 1) W ; .
v+ Prvvive Vs @) In the following sections, we use Ec[| (3) to calculate both
V.v=0, the turbulet amplitude and transport (of chemicals or hdat)
N +v-VN = DV°N, this end, we prescribe the correlation function of the fogdo

be spatially homogeneous with a temporal correla@6t):
wherev is the viscosity of the fluid an® the difusivity of

particle. Note that, in the incompressible case consideeee, (hi(ka, ti)hj(kz, t2)) = (27)°6(ky + k2) C(I 11 — t2]) ¢ij(k2) . (4)
the heat transport can be described by an advectifasn for j andj = 1 or 2. The functiong; are the power spectra of
equation (e.g. seg Chandrasehar 1981). Thus, our resultifg forcing.

the turbulent ditusivity also holds for the turbulent conductiv-

ity, provided thatD is replaced by the thermal conductivity. )

In the following, we let@ = 26 and assume (without loss3: Turbulent amplitude and transport

of generality) that the rotation is around theaxis with no 3 1 Tyrbulent amplitude

large-scale velocity field (note that the combingldet of ro-

tation and |arge_scale shear is investigat USing Eqsm3) anC{k4), |t iS Stl’aightforwal‘d to Obtain them
P007b). We then express the velocity field and the concentfdy of turbulence as:

tion as the sum of a large-scale field and small-scale fluctua: 1 Kk
2 3 [ ax _$11(K)
tions:v = Ug + u = uandN = Np + n. In the quasi-linear (Ux) = [PoE d k{”\nm (5)
theory [1978), Eq.[{1) can be linearised for the fluc- 2 612(K) ba(K)
tuating fields and then Fourier-transformed to yield equresti +AL, 122 32 3o 2 > } )
for the Fourier compone®(k, t). To consider arbitrary Prandtl (r+a )2 (r+@)
numberP; = v/D, we introduce the following new variables 2, _ 1 f 3 { y  a¢u(K)
X = expk2t]X and X = exp[Dk]X to absorb the viscos-  *~  (21)3 y2(y + a?)?
ity and diffusivity terms, respectively. Eliminating the pressure y  28% $1a(K) y @¢20(k)
variable, the equations for the velocity field and conceiuna 1202(y + a2)3/2 2320y + a2)} :
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Here, the functionsAijk(k,wo) are defined in Eq.[(A]1) of  These results in a general form are not shown here for the
Appendixﬂ: they depend only ok and Qg and involve the sake of brevity and shall be presented in the case of isa@tropi
temporal correlation function of the forcir€(r) only through and anisotropic forcing in Setﬂ. 4 aﬁd 5, respectively.

the functionsc; ando, defined by:

e 4. Isotropic forcing
Ke = f e "7 cosgor) C(r) dr , (6)
0 When the forcing is isotropic, the correlation function of the
o = fm e sin(wor) C(7) dr . forcing (with no helicity) can be written as:
0

(i, (k' 1)) = (20)° C(t=t')) F(K) (5i—kik; /K?) 6(k+K") .(12)

. . N 5 .
The turbulent amplitude in the direction(us) can easily be yThe functionss; in Eq. E‘) are related 5 (K) in (@) by:

obtained from(uf,), due to the symmetry of the problem, b

making the following replacements: pri=yly+adF(K , ¢12=0 and ¢n=yF(K) . (13)
B — B, a—ap?t, y - yB2, (7) Using Eq. [1B) in Eqs][[5)[](8) anfi (10), we can obtain the tur-
11— duf, b12 — 12873, b2 — G222 . bulence amplitude and transport as follows:
1 YR «c
(udy = f dk —, (14)
3.2. Transport of angular momentum g (27)° (v + @) vk
. 1 a?F(k) | y(B%+a?) w
From Egs. [13) and}4), we can also calculate the non-diagonajug) = 3 fde'k 5 55 Ko+ 0 S0cp s
part of the correlation tensotsiu;) to obtain the transport of (27) Yy +&) vka v2k* + wy
angular momentum by turbulence: ) = — f 3, aF(K) «c
<uu>—if3{ x _3fulk) ®8) - (2n)? (y+ad)vid’
PR "y(y + a2 wuy = -1 fdsk Flo B
7 (2n)? (y+a2) k2™

< 2apia(k) « ap2a(k)
Mizy e T Mg az)} ’

po = L f kT8 7k wo) |

1 a%p11(K) (2n) (y +a%)
(UyUy) = d3ki M2, — ==
v (2n)3f { 1320 1 a2)? o7 = ¢ 271r)3 f d3kF(2/('[jz;)a2)I(k,wo).

. 282 ¢12(K) . @%2a(K) }
12020y 1 a2)32 | 22)2(y 1 a2) | - :ere, t0r|1e ftmctiorr:,irc, char;drrcf[dhefined in Eqsk.)|]6? arr:dgjll)]_
Here, the functionad* and MZ are given in Eq.[(AJ1) of ap- epend only on the modulus of the wave number; The function

pendixE and dependjonly quQo and the functions. ando I(k, wo) is defined as:

defined in Eq. [(6). Tk _ 1 [D -V 15
( 2] wO) (D — V)2k4 N wg v Kc ( )
3.3. Transport of particles (D? —v)k* — w§ (s )+ 2DK2wg i ]
h 2k 4 2 Vet ee 2k4 4 20 ¢
Integrating the last equation of Etﬁj (3), we obtain the dgnsi (D + )%kt + wy (D + )%t + wy
of chemical species: By performing the integration in thg-direction and changing
t the colatitude variable tag = |Q cosd|, we obtain the follow-
i = (-9iNo) f Gi(t) dt’ . (9) ing result:
0
Note that the velocity to be integrated in E| dis b 2 2 " k2 - @} | ke(k. wo)
y grated in EfJ. (9)Felis by an (2) = = dkIPF(K) | dwo|1- 20| FES 2
exponential factor from that given by Eq] (3). However it is (2m)219 Jo 0 Q vk
more convenient to express the turbulerfwdiivity of chemi- 1 +eo ) 1
cal specieD?, defined by(uiny = —D}d;No, in terms ofu. (uy) = (2020 j(; dk k°F (k) o dawo X (16)
Specifically, we can obtain the following: 2 2
1 14 20| kelkwo) W0 __wo 0
DI‘IJ — (271,)6 fdskl fdskge_(Dk§+Vk§)t % (10) Q02 vk2 02 v2k4 + w% c\K, o s
t 2 XX 2 e 2 < w%
| R @ tata OF = Gl J, WKFW | deo|l-gp )Tk wo).
0

Using Egs.[(3){{4) and following a calculation similar tatin ~ py _ _ 1 fm dk K2F (K) le dw (1 + w_é)](k wo)
Sect[3]1, we can calculate all the components of the tunbule ' (27)2Ql Jo o 7T az)
diffusivity D}. The results turn out to depend on the temporghq vanishing transport of angular momentu(miu,) =
correlation functiorC(r) through a new function: (uxuy) = 0. We now examine the dependence of the turbulence
T DKer amplitude and transport of particles in Ef.](16) on the darfre
fe= fo e Cr)dr. (1) tion time of the forcingC(7).
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4.1. Infinitely correlated turbulence oy _ 1L f CFRme 1
. . . T 2(2r)? vk Q2
WhenC(r) = 1, the correlation functions in Eq$] (6) afd](11) ) )
take the following forms: 1+b+ Q;-(1+Db) arcta Q, dk .
2Q, 2
_ 1 _ sz d _ wo 17 i
fe=p@  Kke= T and o= v (17) Here,b = 1/Pr. Eq. {2) shows that, in the case of a short
correlated forcing, only the turbulent transport is supped
Using Eq. [1F) in Eq.[(16) and performing the integration ofpy a factorQ=*) whereas the turbulent intensity is of the same
the wy variable, we obtain the following equations: order as that without rotation. This is because, in this dase
. 5 ertial waves only have anffect on the phase of the velocity
W) = 2 . f dk Fz(kz) iz (_1+ Q+1 arctarﬂ*) ’ field and thus do not modify its amplitude. Alternativelyisth
(21)? Jo v2k? Q2 Q. is because the flow driven by a forcing with a short corretatio
) 1 e F(K) 1 timer¢ < Q™ has no coherent motion to béected by inertial
(uy) = (2n)2 f v2kZ 2 X (18)  waves (or rotation). This is to be compared with the result ob
2 tained in the case of an infinitely correlated forcing (Sgc})
1 205-5 .
+ > + G arctanQ, | , where the turbulence amplitude was reduceasdue to ro-
2(1+) * tation. Furthermore, the dependence of the turbuldtusivity
ox - 2 [TgFR 1/, QZ+1 arctars on the molecular diusivity is not as simple as in the infinitely
T 7 (2n)2 Dv2k4 2 Q. correlated case. However, in the large rotation lirit ¢ 1),
1 +00 F(k) 1 02_1 we can easily see from Eq. {20) that the turbuletiiudivity
D¥y = (27)2 f Dvakd 02 (1 *Q arctar) ) depends neither o, nor onD. Consequently, the transport of

heat and particle is the same for rapid rotation.
whereQ, = Q.(k) = |Q|/(vK?). In the limit Q, — oo, the
turbulent transport and intensity, both for the paralled per-
pendicular components, all tend to zero@s'. These agree
with Kichatinov et a). [[1994). Thefeect of rotation on turbu-
lence amplitude appears wigh,, which becomes large on largeln Sect[4.]l anfl 4,2, we considered two extreme limits where
scales. In other words, turbulence quenching is more severehe correlation time was infinite or zero, respectively.&jave
large scales, leading tdfectively strong turbulence on smalldiscuss a more realistic case where the turbulence hasea finit
scales. This is consistent with the reduction of scale ofanot correlation timer by using an exponential correlation function
as evidenced in numerical simulatiofis (Brummell éf al. §998C(r) = exp[-27/1]. In this case, the functions in Eq§] (6) and
Interestingly, the turbulent transport of particles isgoo (@) can be simplified as:
tional to D71, suggesting that the turbulent transport of heat

4.3. Finite correlation time with exponential correlation
function

scales ag~! with the molecular heat fusivity . Thus, in the Ke = K +2/7 (21)
Sun wherex > D, the transport of particles is expected to (K2 +2/74)? +w§ ’

be faster than that of heat by a facigiD ~ 107/10? ~ 10°. 3 wo

However, this holds only for an incompressible fluid, as the® ~ R +2/11)2 + w3’

equation for the transport of heat is not the same as thatref pa 1

ticles for a compressible fluid (Spiegel & Verdiis 1960). Thée = DIZ+ 2/7;

relevance of this result for the solar context may thus begque

tionnable. Putting Eq. [21) in Eq[(]6), we can calculate the turbulent i
tensity and transport as previously. We omit, however, #re g
eral form of the results which are too complex, and only pro-
vide a result that is valid in the lim2 — oo. To this end, we
We now consider a short correlated turbulence modelled bgn simply take the limif2 — oo in Eq. {16) and obtain the
C(7) = 714(7). In this case, the temporal correlations in Eqépllowing result:

4.2. 6-correlated turbulence

d(il) b :
(6) and [1]) become . , Kc(k wo)
7 g ~ (2n)2|Q| “ kiR [ dao . (@
§C=KC=E and O-(;:O, (19)
. . N W) ~ —— f dk K2F (K) f dwOKC(k’“’O)
leading to the following turbulent intensity and transport y (zﬂ)2|Q| 0 0 k2
2 0 F(k)Tf DXX i f-H)c dk k2F K f"cd
2\ _ 2y — ~ wo I (K, wo) ,
o = (4= 3(2n)2f0 y de (20) 7T @nFal Jy (9 ), deotlowo)
1 (“FM1 DY = fmdkkszfwd Ik
XX _ — ~ ) , W) .
by = (27r)2f0 v2k2z 2 % T (2729 Jo () 0 o Lk wo)
Q2+ (1+b)? . We note that, in order to obtain Ed. {22), the limit
—(1+b)+&arcta Q. dk . o . d.] ). . - ®
2Q, was taken inside the integral as the resulting integralsaatire
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convergent. Eq.[(22) shows that both turbulent amplitudk an, 1 [+ . F(7;, 1|2t 1)

transport scale @@ for large rotation rate. This is similar to{%) = 292 Jo k20, COS[( _“)5] Wi+2)

the case of the infinite correlation time case. Furthernitge, 5 oo F (k)7

@) shows that the ratio between the parallel and perpatadic DY f dk *
0

transport of particles (or heat) is given by: (2r)? Dv2kiQ, '
G DY = - f g LT
@) - D_gy 2l amen @3) T (@pJo T DA

in the rapid rotation limitQ, = |Q|/(vk?) > 1. T is a con-
again similar to the case @(r) = 1. We note that the large stant which is independent f From Eq. [2B), we can see that
rotation limitQ — oo taken above requires that not o>  the turbulence intensity scales|4'~* for rapid rotation. This
vk? but alsoQ > 771 In other words, the correlation timeshows that the scaling of the turbulent intensity depends se
of the forcing should be larger thad . In the solar context, sitively on the exponent of the power law. Note that the resul
Q ~ 3x 10°%s. Thust¢ must be larger than a few days. Whewf infinitely correlated turbulence is recovered for= 0. In

Q < 771, it can easily be shown that the results become simile@mparison, the turbulentféiisivity in both directions scales
to those in the case @fcorrelated forcing studied in Seft. .2as1Q|™* independent of the power expongntFurthermore,
(i.e.(u?y ~ Q% andDr ~ Q7Y). we can see that the ratio between the turbulence inxttaad
y-direction depends only on the power exponent:

4.4. Power law correlation (ud) 2 (29)
. o . T T

In view of the highly intermittent nature of stellar actiyitit Y _ _ _

is interesting to consider the case with a correlation fionct Consequently, the turbulence is always more vigorous irxthe

of the forcing as a power-law. For simplicity, we consider @irection (along the rotation axis) than in tiadirection. We

correlation function given by: recover the factor 2 for = 0, corresponding to the exponen-
p tially correlated case, see E¢|:|(23). As the power exporgent i
C(r) = (T_f) , (24) increased, the turbulence becomes more isotropic. Natéha
T

ratio between the transport of species in h@andy-direction
with 0 < u < 1 (note that it is also possible to consider a funds always 2, as in the case of an exponential correlation-func
tion with exponenj: > 1 by introducing a cutf frequency). tion.
To calculate the various correlation functions, we needdhe ~ To summarise, for an isotropic forcing and rapid rotation,
lowing integral: we showed that the turbulentfilisivity is reduced a2, ir-
. e respgctive of the_correlation time of the forcing, with trwns
| = f vt gy = ('_) f et g (25) POrtin the direction parallel to the rotation vector beingce
0 vk2 0 ’ as fast as than in the direction perpendicular to the ratatio

This would lead to a warmer pole than equator (Kichatinov

where the last equation is obtained using steepest des . . . L
method. Using Watson's lemmp (Bender & Ordfag 1975), ttge tdiger [199F). In comparison, the turbulent intensity is

) . . — > ound to be reduced with fierent scaling with2 depending
asymptotic behaviour of this integral fag, = wo/vk™ > 1 can on the properties of the correlation function of the forcing

foun : o . . . :
be found as Specifically, in the case of a finite correlation time, the tur
i\ bulence intensity scales & for rapid rotation, while it is
P~ T -4 wo (26) independent of the rotation rate for a short-correlatediffior

) S (Sect.[4]). Furthermore, for a temporal correlation figmct
Thus the correlation functions in Eqf] (6) afid (11) become: given by a power-law, turbulence amplitude scale©&svith

1—*(1_#) -1<n<0.

le = S i 27)
r(l_“)#*w,kl cos[(l )ﬂ] 5. Anisotropic forcing

ke vk2 0« ol We now consider the case where the forcfnig anisotropic
(1 - u)r, as should be relevant for the turbulence in the convectioe zo

oc ~ Tw'é;l sin[(l —#)%] , (for instance, due to the underlying stratification). We pae-
ticularly interested in the Reynolds stress as the comibimat

wherert, = 71vk? andwp. = wo/vk® are the correlation time of anisotropy and rotation can lead to norasive fluxes of

and the oscillation frequency of the noise scaled by tifieidi angular momentum. In the case wheris a unit vector in the

sion time, respectively. Putting E{. [27) in E[](16), wetbe- direction of anisotropy, the correlation function of thedimg

tain the turbulence amplitude and turbulent transport efith can be written[(RUdiger 1989):

icals for an isotropic forcing with a power-law correlation Rk, DT (K, 1)) = (0P C(1t - V) (K + k') G(K) (30)

2 > FR, 20" : - Kk)? -k
W) = Wfo o gy OO (L3 | s - (28) o e O g+ 8 ks k)|
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This forcing in Eq. [(3P) is highly anisotropic with only a nonin Sect[}#. However, in this case, the transport of angular mo

vanishing component perpendiculargo mentum does not vanish as discussed below. Putting[Eq. (34)
5 into Eq. (§) and keeping only the even termsgirand a (as
((f-9 =0, (31)  the odd terms vanish after angular integration), stragyitard
1 but cumbersome calculations lead to the following expogssi
f zz—kakzdk. ) : g exp
((F> 9% 22 (k) for the correlation function of thg andz components of the
velocity:

In the following, we assumg to be in the vertical direction.

In general, one can consider a less anisotropic forcing by-co 1 3, 0a(1 + a?)G(K) woke + vk2ore
bining the isotopic part of the forcing (12) and anisotrgpéct (U2 = " 2208 f y+@%2 2K+ o

@9.

. (39)

while the other correlation functions vanish. Performimegj in-
5.1. Rotation parallel to the vertical direction fgra“o” over the angular variables, E[g] (35) can be sfiegli
When the rotation vector is parallel to the vertical direnti.e.

00 Q|
gl Q (as in the case of the turbulence near the pole),. QQuy = TR 2:292 f dk k2G(k)f dwo X (36)
translates to: (27) 0 0

02

2
( ‘“0) woke + V2o
wo _—

2 1420
b=d12=0 and dm= —L—G(K). (32) " V2K + 02

Y+ a?
bg_here)( is the sign ofQ. The Reynolds stress in Ed. |35)
epends on the direction of the rotation, representing non-

diffusive momentum transport, i.e\, effect (Rudigdf 1949).

Using Eq. ) in Eqs[[S) anﬂl(S), we can show that the tur
lence amplitude becomes

2 0 1Q W2 \? This dfect favours the creation of velocity gradient rather than
(W) = (27T)2|Q|f dksz(k)f dwo(l— Q—g] X smoothing it out and can thus be responsible for tiiedintial
0 , 0 rotation of stars.
{( 1 )KC N @, We now examine the behaviour of E{.](35) foffdient
20k2 202K + wd) 2(%k* + w} ’ temporal correlation functions. In the case of an infinitdy-
, 1 o0 X o] wg related forcing, Eq.@ﬁ) can be shown to become:
= —— kk°G(k 1-—
W = G J, W [ a1 i) @ i = [ S -
1 W) ke vKke — wooe YT 2(2002 Jo v2k2Q3
Q22 T 20k 1 0?) | 3+02 Q-3
0 + arctanm, | .
1+ 02 Q,

while the transport of angular momentum vanishes. Herenagai
we can see by using Ed:[21) that all the integrals in E (33Y. ) shows that the nonftiisive fluxes of angular momen-
converge in the limi2 — oo. Thus, turbulence amplitudes ardum scale a€2~2 in the large rotation limit. This agrees with
reduced ag2™* for large rotation rate. We do not provide her{ichatinoy (198p). Similarly, we can show that for a finite-co
the results for the turbulentfiisivities as they are very similarrelation time (with exponential form), the limf, — oo can

to those derived in the isotopic case. Thus, in the rapidioota be taken inside the integral of E<D36) and consequenty, th
limit, turbulent difusivities scale a€)~! for all the diferent non-ditusive fluxes of angular momentum scale als®a%in
types of correlation function of the forcing that were calesed the large rotation limit.

previously. In comparison, when the forcing &correlated, Eq.@G)
becomes:
5.2. Rotation perpendicular to the vertical direction © 16K
perp RIS g— f (4) y (38)
2(27)? Jo 6vQy;

Near the equator, the rotation vector is perpendicular & th ) )
vertical direction. Since the rotation is assumed to be @& th [Q*(4Q* -3)+3(1- Q*)afCtaYQ*] ,

x-direction, the vertical direction for anisotropy can be@san

to be in thez-direction without loss of generality. Ed]SO) theﬁ("h'Ch shows ET"_’H the non-ﬁiuswe_ qu>_<e_s of angular momen-
translates to: tum scale a§2™" in the rapid rotation limit.

Finally, for a power-law correlation function, by putting E

p11=(y+aGK) , ¢12=2aB8G(K) (34) &17) into Eq. [3F), we obtain the nonffisive fluxes of angular
a2p? momentum as:
and = G(K) .
$22 I K P "  G(K) i )
(uu>=——f ——T (1w x
In this case, the turbulent amplitude andfativities can 2(2n)% Jo vk2Q?

be shown to be very similar to those derived in the isotopic & cos[(1 - w)n/2] ] 1
case. Consequently, the scalings are the same as thosedderiv 2(u + 2) cos[(1 + p)/2] COS[(l * '“)5] B /7 ’
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in the rapid rotation limit. In this limit, the\-effect scales as Eq. ) shows that if the quasi-linear theory gives a turbu-
Q“~2_ Thus, for a power-law correlation function, theeffect lent diffusivity asQ™", then the renormalisation analysis pre-
scales a® "with 1 < n< 2. dicts a scaling2™"/2. Consequently, as the quasi-linear theory
In summary, we show that nonstisive fluxes of angular predicted a scaling @ (irrespective of the form of tempo-
momentum do not vanish only when the rotation is perpendi@l correlations), the turbulent transport of particles ljeat)
ular to the inhomogeneity (such as stratification in theahdiscales a§~/2 in the large rotation limit. Interestingly, this re-
direction or shear in the azimuthal direction). This is imesg sult has a weaker dependence®oompared to that according
ment with previous results. Furthermore, we show that theequasi-linear theory. FurthermoBg®/D¥ = V2 in the rapid
non-difusive fluxes scale 82 — Q1, in the rapid rotation rotation limit, with a weaker anisotropy compared to thesiua
limit, depending on the property of the temporal correlatidinear result [see Eq|IIZ3)].
function of the forcing. Finally, we note that quasi-linear or multi-scale renor-
malisation group analysis cannot capture a strong anigptro
in the rapid rotation limit with a tendency towards two-
dimensionalisation| (Cambon et|al. 1P97). In order to captur
The results presented in the previous sections are dersedtte highly anisotropic nature of rotating turbulence, oreds
ing the quasi-linear theory. This is strictly valid only favo- to use more sophisticated closure, such as wave-turbulence
scale turbulence, with a spatial gap between a large-soale\ihich leads to anisotropic spectra (Galfier 4003). In the ex
the mean-flow and a small scale for the fluctuations, and figeme limit of rapid rotation, this rotation-induced artispy
weak turbulence. Therefore, the applicability of this ap@r could be captured by assuming geostrophic balance in thie equ
mation is limited. In this section, we utilise a renormaiisa librium state [Pedlovsky 1987).
group technique (sde Miatt[198], and references therein for

details) to consider a more realistic situation of a stramgu-

lence with a no-clear scale separation between turbulemte & Summary and discussion

mean fields. This method is based on the computation of the

turbulent difusivity iteratively by considering a range of scale¥Ve studied the structure of turbulence in a rotating medium

6. Multi-scale renormalisation group analysis

I swith: with an arbitrary external forcing. Using the quasi-linéae-
ory, we first performed a thorough study of the turbulence in-
ln>ln-1>...> 1o, (40) tensity and transport (of chemical species or heat) in tise ca

andlo is the scale at which the molecularfidision becomes ©f @n isotropic forcing by consideringférent types of tem-

dominant. The fective turbulent dfusivity Dy, 1 for scalen+1 poral correlation funpﬂons. We also exam|ned Fhe trqrtsm)?or
is then calculated by using the value of the turbuleffudiv- angular r.n-omentum in the case of an anl_sotropl.c forcmg.

ity at the preceding step, i.€D, via quasi-linear theory. Since Specifically, we showed thgt for an |sotroplq forcing, the
the turbulent diusivity scales aD* [see Eq. [(8)], we can transport parallel and perpendicular to the rotation welots

calculateD; in terms ofDg as: the same scaling with the rotation frequeiizythey are both
e _reduced _by a factaR ! compared to _the case without rotation
D, = 1 P(k, v, Q) dk , (41) irrespective of the temporal correlation function of thecfog.
Do Jaj1, Furthermore, the transport in the direction parallel torthte-

ion is twice as fast than the one in the perpendicular doact
see Eq. @3)]. This result was shown to be robust independen
of the specific form of temporal correlati@(r) (exponential
and power law) or correlation time (finite, short or infinite)
Note that this result was shown py Kichatinov et al. (1994) in
the case of an infinitely correlated forcing.
1 fl/'” P(k.v.0) dk. 42) In comparison, the scaling of the turbulence intensity de-
1 pends on the property of the forcing. For exponential corre-

whereP(k, v, Q) is a function depending only on modulus olj
the wave number, molecular viscosity, and rotation. Nog t
the integration range is over the scélguch thaty < | < ;.
Repeating this procedure iteratively, one can computeuthe t
bulent difusivity at scalen + 1 as follows:

/|n+1

ation function with infinite memory, all the components of

I Wle takg theblllmltnﬂ.—> 5 W_I(_ehobtam_g C([))nEnuous rangt])e OJthe velocity amplitude scale @' while their intensity in
scale and turbulent flusivity. Thus, writingD(k) as the turbu- the direction parallel to the rotation is twice that in the-pe

lent diffusivity acting on scales smaller than', Eq. ) can pendicular direction (similar to the transport). However,s-

be rewritten correlated turbulence, the turbulence amplitude beconus i

P(K) dk . (43) pendent of the rotation rate. Thus, in this case, inertiad_esa
Do + D(K) affect only the cross-phase of the velocity field and not its am-
plitude. Furthermore, in the case of a finite correlationetim
with a power-law, the turbulence intensity scalestdswith
-1 < n < 0 while the ratio of the turbulence amplitude in the
direction parallel to that perpendicular to the rotatiom ¢

1~ 12 any number between 1 and 2 depending on the exponent of the

Dt ~ (— fo Pk, v, Q) dk) . (44) power-law.

dD(K) =

The turbulent dtusivity Dt is obtained by integrating over all
scales in the inertial range, starting fram= O with the value
of molecular ditusivity Dy = D, with the result:
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In the case where the driving force is highly anisotropithe dfect of rotation had been much stronger in reducing trans-
it was shown to give rise to nonf{tlisive fluxes when the port, it could have inhibited the mixing of light elementsiire
rotation is perpendicular to the anisotropy. In the larg@+o convection zone, thereby leading to a weak mixing as reduire
tion limit, the transport of angular momentum scalesad  (Barnes et gl[ 1999). Our results have confirmed that this can
for a forcing with a finite correlation time. However, forsa not possibly be true and that rotation cannot play an importa
correlated turbulence, we found that the (quenchirigdot of role in reducing the mixing of light elements in the solar con
rotation was reduced with nonftlisive fluxes now scaling asvection zone to explain the observed (rather modest) deplet
Q1. Furthermore, for a power-law correlation function, thef light elements on the Suf (Schatzman & Bgglin 1991).
momentum flux was found to scale @8 with -2 < p < —-1. Traditional stellar modelling does not involve any

Finally, we performed a multi-scale renormalisation ana&nisotropy in the turbulent flusivity of particles (or equiva-
ysis which permitted us to go beyond the quasi-linear thedsntly in the turbulent conductivity of temperature) duerte
in the calculation of the turbulent filisivity. We found that, tation. We have shown here that such an anisotropy can be in-
in comparison with the quasi-linear theory result of a turbuluced by rotation. This is however not a significafieet as
lent diffusivity proportional taQ 1, the renormalisation theorythe transport in the direction parallel to the rotation idyon
predicts a scalin@ /2. Consequently, we expect the turbulertivice as fast as that in the perpendicular direction, adongrid
diffusivity to depend weakly of. It also gave us an anisotropythe quasi-linear theory. This anisotropy is quite robustiast
in transport weaker than the quasi-linear prediction, traltel the temporal correlations used and has been shown to give
component beingv2 faster than that of the perpendicular.  rise to a warmer pole than the equator (Kichatinov & Rudliger

We should however note that the scaling of our results c). This anisotropy is however shown to be weaker accord-
be modified in the case of a bounded domain of finite sizeg to the multi-scale renormalisation analysis, the raging
In the calculation of all the turbulent transport fibeients, we only V2. Consequently, rotation may not beffizient for in-
obtained a result proportional to the following type of gr@l:  ducing anisotropic transport in stars, for instance, ineoitd

H(K) cause a dfticient latitudinal temperature gradient in the con-
I(k,Q) = f 2 ok, (45) vective envelopes as required by numerical models (Kiobati
VKT + Wy & Rudiger [199b[ Kuiker & Rudigkr 20p5). As we have shown

wherewy = (Q - k) /k is the projection of the unit vector in thein our previous studies, an anisotropic transport canyeasil
direction of the wave number on the rotation axis. When the daduced by a strong shear layer (such as the solar tachpcline
main of integration is unbounded, the integration over tiie ase 200 h 20D6), magnetic fieldls (Kim
gular variable makes this integral proportionaf¥o', when the R00§;|Leprovost & Kim|20074; Kim & Leprovgsgt 2007a) or
rotation rateQ is sufficiently large [e.g. Eq.[(18)]. This is be-stratification [Kim & Leprovo$f 2007b). In these works, shea
cause this integral involves some contribution of order i flows are also shown to quench turbulent transport signitizan

Q -k = 0) and others of orde&2 2. However, in a realistic situ- leading to weak mixing.

ation, the domain of integration (in Fourier space) is baehd  Finally, we note that our results depend on the magnitude
That is, there is a minimal wavenumber (corresponding too&, the difusion ratevk? (or Dk?) and the characteristic fre-
maximum length, for instance the size of the box) in the direquency of the forcing Ar¢. Obviously, stars of dierent spec-
tion of the rotation, for exampld, = min(ky). The aforemen- tral types have dierent values fo€, v, D andrs. It is thus
tioned scaling o2 is valid only whem?k® > Q2k2. In the important to understand the origin of and to perform a sys-
opposite casek® < Q%k2), the termw? in Eq. (4%) is always tematic study on the development of turbulence theory as a
dominant, giving the scaling a®? for large rotation rate. In function of masses and ages. This will be addressed in future
this case, the multi-scale analysis would give a scalin@df studies.

instead ofQ~/2.
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8. Implications for stellar convection zone

We discuss here some of the important implications of our rAppendix A: Turbulence amplitude and transport
sults for the Sun and other stars. For parameters typicahieof‘
Sun,Q ~ 23x10°s ! andv ~ 10Pcn?s™t, the dfect of . _
a finite-size domain discussed in S¢tt. 7 can be ignored if (ko) used in Eqs[15) and](®).
characteristic length scale is larger thafg)*/? ~ 1.7x10%cm. 1 2

This is likely to be the case in the solar convection zone &&); = (2 2 t S o 5 ]Kc
convective motions can extend to a distance of approximatel v 2(2k* + wp)

n this appendix, we provide the form oﬂjk(k,wo) and

— wo
2(v%k* + W)

oc, (A.2)

4x 10%cm. In this case, the quasi-linear theory predicts that th&y - _p wo o+ vik? -
turbulent difusivity scales a§2™* for rapid rotation while the "2 ~ 20K + WD) ©7 202K + w?) ‘1
turbulence amplitude scales@8-Q~! depending on the prop- 1 2 w

erty of the forcing. In comparison, the renormalisationlgsia AJ, = ( 2 a2 )Kc +— 40 >0,
predicts a turbulent @usivity scaling a®2~/2. This result thus 2v 20" + wp) 2(v%k* + wyp)

suggests that theffect of rotation on particle or heat transport,, (y(ﬂz +a%) —y(BP+ad)+2a® Wk

is weaker than previously thought (Kichatinov ef(al. 199%). A = 2vk2a2 22 202K + w?)
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. 20B+Jy + @2 vk? )
K
a 20K+ wd))C
. y(8?% + a?) wo 06 +/y + a2
a2 2(:%k* + w3) a
ad) — 2a? wo
a2 2(2k* + w3)
N 28y + a2 vk2 )
K
a 202kt +wd)/)C
y(8? + a2) — 2a? vk?
_(9
a? 2(:%k* + wd)
_2BNy+a? wo )a
a 202k +wd))
(7(62 +a%)  y(B°+@
2vk2a2 a?
206y + a? vk? )
- K
a 20k + )¢

+( —y(8? + a°) + 2a° wo

vk?

VKA + w

(97([32 +

12

vk?
2(%k* + w3)

) — 2a®

k3
1l

-
Mll_

X _
MlZ_

-
MZZ_

vk2 )
g ’
202k + w2) ) ¢

a2 2(v%k* + w}
08y +az  vk? )
- ¢,
a vk + w3
1 vk? BOAy + a2 wo
- - - K
20k2 22K + wd) a 2(:%k* + w3) ¢
_ BONY+ a? vk?
Oc¢c,
2(1/2k4 +wl) a 2(2k* + w3) ¢
\/y + a2 wo vk?
B ]K T I
( 2MW+%)C 2(v2K4 + ) ©
1 vk? BOAy + a2 wo
Tk T 20k 1 o?) ETIRNY
v 2(v2k* + wf) a 2(v2k* + wp)
ne wo N BOAy + a2
2(v%k* + w3) a
Mz — (_ By  Bly+2a)vk?
1\ 2229k 282(v2K4 + wl)
(1-5%)0+y + a2 wo )
- K
a 202K + ) ) °
_( ()/ + 2a2)w0
282(v2k* + w3)
. (1-5%)0+y + a2 vk? )
¢,
a 202K + wd) )¢
2 2
M, = (@52~ W
a 202k + wd)
v+ 2a° wo )
a2 2(2k* + wd)

-8

y + 2a2 vk?
a2 2(2k* + wd)

+(—9ﬁ

2]O-C s
0

\y + a2 wo
-1 Jor.
a 202kt +wd)) ¢
MZ = (_ By Bly+2a)k?
22 2a2vk?  2a%(vk* + w3)

N (1-B9)0+y + @2 wo )K
a 2(2k4 + w)) )¢
()/ + 23.2)0)0
('8 282(v2k* + w?)
La- B0y +a2 WK )0
a 202kt + w}) )¢
Here again, the functiong, o« and{. characterising the in-

fluence of the temporal correlation of the forcing on the tarb
lence are defined by Eqg] (6) ard](11).
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