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THE MEAN-FIELD LIMIT FOR SOLID PARTICLES
IN A NAVIER-STOKES FLOW

LAURENT DESVILLETTES, FRANÇOIS GOLSE, AND VALERIA RICCI

Abstract. We propose a mathematical derivation of Brinkman’s
force for a cloud of particles immersed in an incompressible viscous
fluid. Specifically, we consider the Stokes or steady Navier-Stokes
equations in a bounded domain Ω ⊂ R

3 for the velocity field u
of an incompressible fluid with kinematic viscosity ν and density
1. Brinkman’s force consists of a source term 6πνj where j is
the current density of the particles, and of a friction term 6πνρu
where ρ is the number density of particles. These additional terms
in the motion equation for the fluid are obtained from the Stokes or
steady Navier-Stokes equations set in Ω minus the disjoint union
of N balls of radius ε = 1/N in the large N limit with no-slip
boundary condition. The number density ρ and current density
j are obtained from the limiting phase space empirical measure
1

N

∑

1≤k≤N δxk,vk
, where xk is the center of the k-th ball and vk

its instantaneous velocity. This can be seen as a generalization
of Allaire’s result in [Arch. Rational Mech. Analysis 113 (1991)
209–259] who considered the case of periodically distributed xks
with vk = 0, and our proof is based on slightly simpler though
similar homogenization arguments. Similar equations are used for
describing the fluid phase in various models for sprays.

MSC: 35Q30, 35B27, 76M50
Key-words: Stokes equations, Navier-Stokes equations, Homogeniza-
tion, Suspension flows

1. Introduction

The subject matter of this paper is the derivation of macroscopic
models for the dynamics of large systems of solid particles or liquid
droplets immersed in a viscous fluid (liquid or gas). Specifically, we
are concerned with the collective effect of the friction force exerted on
each particle as a result of the viscosity of the fluid together with a no-
slip condition at the surface of each particle. This type of fluid/solid
interaction is relevant in several different physical contexts.

A first example is provided by the sedimentation of solid particles in
a viscous incompressible fluid (say, a liquid), typically under the effect

1
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of gravity. There is a huge literature on this subject; we shall only
mention a few, such as [3], [8], [5].

Another example is the case of sprays. Sprays are complex flows
which consist of a dispersed phase immersed in some viscous fluid.

Sprays can be described (Cf. [14, 9]) by systems of coupled macro-
scopic equations (Eulerian-Eulerian modeling) or by the coupling of
a macroscopic equation and a kinetic equation (Eulerian-Lagrangian
modeling).

We do not claim that the results in this paper provide a complete
derivation of any of these models for sprays, in particular because we do
not analyze the coupling between the particle and the fluid dynamics.
Also, our results apply to steady regimes only, for reasons that will be
discussed below.

The present work is only aimed at providing a rigorous derivation
of the Brinkman force created by a cloud of like spherical particles —
we recall that this force results from the collective effect of the drag
exerted on the particles by the surrounding fluid. In models for sprays,
this Brinkman force would typically be responsible for the coupling
between the motion of the fluid and that of the dispersed phase.

Our approach of this problem is the homogenization method: we
more or less follow earlier works such as [7] and [1] which only consid-
ered periodic distributions of particles. More precisely, the reference [7]
established the friction term for the Laplace equation in a periodically
perforated domain with homogeneous Dirichlet boundary condition.
The case of the Stokes or Navier-Stokes equations was treated in [1] by
similar arguments.

The discussion in the present paper differs from [1] in two ways. To
begin with, only periodic distributions of particles all of which have
the same velocity (which, by Galilean invariance can be taken as 0) are
considered in [1]. In the present paper, we consider clouds of particles
whose phase space empirical measure converges to some smooth phase
space density. Thus, as long as this (mild) assumption is verified, the
particles considered here can each have their own instantaneous ve-
locity1. Another difference with [1] lies in the method of proof, which
may lead to simplifications here and there. The reference [1] closely fol-
lowed the argument in [7] by truncating the velocity field in the vicinity
of each particle, an operation that has the disadvantage of leading to
velocity fields that fail to satisfy the incompressibility condition. In

1We mention also the paper [13], where an analogous problem is considered
for the Navier-Stokes equations. This paper (as the references therein) does not
unfortunately contain any detail about the convergence proof.
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the present work, the same goal is achieved by removing to the veloc-
ity field some carefully constructed solenoidal boundary layers so that
the resulting vector field still satisfies the incompressibility condition.
Hence the pressure can be integrated out, thereby leading to somewhat
easier computations and avoiding painful estimates. Yet, our analysis
borrows a lot from [7] and [1], especially in the construction of these
boundary layers.

We found it convenient to describe the cloud of particles through
its empirical measure instead of using (marginals of) its N -particle
distribution function, as in [3], [8], [5], [6] — as a matter of fact, most
of these references assume nearly factorized N -particle functions, so
that both viewpoints are essentially equivalent.

2. Presentation of the model and main results

2.1. Formal derivation of the model. Consider a system of N iden-
tical rigid spheres in a viscous incompressible fluid with kinematic vis-
cosity ν and density ρf . For simplicity, we assume that the dynamics
of the spheres is given, and we seek the collective effect on the fluid of
the drag force on each sphere. We shall make the two following scaling
assumptions:

a) the speed of the spheres is assumed to be small enough, so that
the quasi-static approximation holds for the fluid motion, and

b) the collective effect of the drag forces exerted on each sphere is
of the same order of magnitude as the external force field driving the
fluid.

First, we outline the quasi-static approximation a). Our starting
point is the set of Navier-Stokes equations

(1)
∂tu+ u · ∇xu+ ∇xp = ν △x u+ f , ∇x · u = 0 ,

u(t, ·)|∂B(xk(t),r) = ẋk(t) ,

where u ≡ u(t, x) ∈ R
3 and p ≡ p(t, x) are respectively the velocity

and pressure field in the fluid, while r is the radius of the rigid balls
immersed in the fluid and xk(t) is the position at time t of the center
of the k-th ball Bxk(t),r. The density of external force per unit of mass
in the fluid is f ≡ f(t, x) ∈ R

3.
Notice that, in this model, the effect of solid rotation for each particle

is neglected — together with the amount of torque particles subject to
such solid rotations would exert on the fluid.

Assume that the motion of the spheres occurs at a time scale that
is long compared to the typical time scale of the external force field f .
In other words, we postulate the existence of a small parameter τ ≪ 1
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such that
xk(t) = Xk(τt) .

The quasi-static approximation is obtained as follows: defining the slow
time variable T = τt and u(t, x) = τU(τt, x), the left-hand side of the
Navier-Stokes equation is rescaled as

∂tu+ u · ∇xu− ν △x u = τ 2(∂TU + U · ∇xU) − τν △x U .

Defining

τF (T, x) = f

(

T

τ
, x

)

, τP (T, x) = p

(

T

τ
, x

)

, and Vk =
dXk

dT

we recast the Navier-Stokes problem above

(2)
τ 2(∂TU + U · ∇xU) + τ∇xP = τ(ν △x U + F ) , ∇x · U = 0 ,

U(T, ·)|∂BXk(T ),r
= Vk(T ) .

Neglecting all terms of order O(τ 2) in (2), we arrive at the quasi-static
Stokes problem

(3)
−ν △x U + ∇xP = F , ∇x · U = 0 ,

U(T, ·)|∂BXk(T ),r
= Vk(T ) .

Notice that, in the Stokes problem above, T is only a parameter, so that
Xk(T ) and Vk(T ) can be regarded as independent. In other words, in
the Stokes problem considered below, it will be legitimate, under the
quasi-static approximation, to consider Xk as a constant and yet to
allow Vk 6= 0.

This accounts for item a) above in the derivation of our model; let
us now discuss item b), namely the collective effect of the drag force
exerted on the spheres.

We recall that the drag force exerted on a single sphere of radius r
immersed in a Stokes fluid with kinematic viscosity ν, density ρf is

6πρfνrV

where V is the relative velocity of the sphere — relatively to the speed
of the fluid at infinity: see [12] §20.

Hence the collective force field exerted on the fluid by a system of N
identical such spheres with prescribed dynamics is of the order of

6πρfνNr〈V 〉 ,
where 〈V 〉 is the average relative velocity of the spheres.

In the sequel, we assume that the parameters ν and ρf are of order
O(1), as well as 〈V 〉, but we are interested in situations where r ≪ 1
(small spheres) and N ≫ 1 (large number of spheres). In order for
the collective effect of the immersed spheres to be of the same order
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as that of the driving external force field, we postulate (without loss of
generality) that

(4) Nr ≃ Const. > 0 .

This scaling assumption leads to the mean field approximation listed
above as b).

2.2. The quasi-static, mean field limit. Henceforth we use the
sphere radius as the small parameter governing all limits of interest
here, and denote it by ε > 0 instead of r. Thus we assume that
N → ∞, ε → 0 and

(5) Nε = 1 .

We further assume that the fluid and the particles considered here are
enclosed in a domain Ω and denote the volume that is left free for fluid
motion by

Ωε = Ω \
N
⋃

k=1

Bxk,ε .

In this setting, the Stokes problem for the velocity field uε and the
pressure field pε reads

{

−△ uε + ∇pε = g,
∇ · uε = 0,

on Ωε.(6)

Here, the source term g is the ratio of density of external force per unit
of mass to the kinematic viscosity. This system is supplemented with
a no-slip boundary conditions for u on the boundary of Ωε :

{

u|∂Bxk,ε = vk, for k = 1, .., N,
u|∂Ω = 0,

(7)

where vk is the instantaneous velocity of the (center of mass of the)
k-th sphere.

Denote by

(8) FN(x, v) =
1

N

N
∑

k=1

δxk,vk
(x, v)

the phase space empirical measure of the system of N spheres and by

(9) ρN (x) =

∫

R3

FN(x, v) dv; jN(x) =

∫

R3

FN (x, v) v dv

its two first moments.
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It will be convenient to consider the natural extension of uε to Ω
defined by

ūε(x) =

{

uε(x) if x ∈ Ωε,
vk if x ∈ Bxk,ε, k = 1, .., N.

(10)

As recalled above, the Stokes’ computation of the friction exerted
on an immersed sphere by the surrounding viscous incompressible fluid
involves the relative velocity of the sphere to the speed of the fluid at
infinity. In order to extend Stokes’ analysis to the mean field situation
considered here, we need to assume that the distance between the im-
mersed particles is large enough compared to their size. Specifically,
we assume that

(11) inf
1≤k 6=l≤N

|xk − xl| > 2rε where rε := ε1/3 .

This assumption on the distance between particles is consistent with
the critical scale for the total number of particles discussed in [10]. The
assumption (11) allows considering each particle subject to a drag force
given by Stokes’ formula independently of other particles. Obviously,
we do not know whether (11) is preserved under particle motion, and
this is why only steady situations are considered here.

Likewise, we assume for simplicity that the fluid and the particles
occupy a smooth bounded domain Ω ⊂ R

3, and that there is no di-
rect interaction between the boundary of Ω and any of the immersed
particles:

(12) inf
1≤k≤N

dist(xk, ∂Ω) > rε .

Theorem 1. Let Ω ⊂ R
3 be a smooth bounded domain, and consider

a system of N balls Bxk,ε for k = 1, . . . , N and ε = 1/N included in Ω
and satisfying conditions (11)-(12). Assume that the empirical measure
FN has uniformly bounded kinetic energy

sup
N≥1

∫∫

Ω×R3

1
2
|v|2FN(x, v)dxdv <∞

while the macroscopic density and the current converge weakly in the
sense of measures

ρN ⇀ ρ, jN ⇀ j as N → ∞

with ρ and j continuous on Ω̄.
For each g ∈(L2(Ω))3, let uε be the unique weak solution in (H1(Ωε))

3

of (6), (7), and define ūε as in (10). Then, ūε converges in (L2(Ω))3
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to the solution U of






−△ U + ∇Π = g + 6 π (j − ρU),
∇ · U = 0,
U |∂Ω = 0

(13)

As a matter of fact, the same techniques as in the proof of Theorem 1
allow considering the steady Navier-Stokes, instead of Stokes equations.
The starting point in this case is

{

uε · ∇uε − ν △ uε + ∇pε = g,
∇ · uε = 0,

on Ωε.(14)

In writing the system above, we have retained the kinematic viscosity
ν instead of absorbing it in the source term as in the linear, Stokes
case. Hence, unlike in (6), g is the density of external force per unit of
mass (instead of its ratio to the kinematic viscosity).

The limiting equations in this case are






U · ∇U − ν △ U + ∇Π = g + 6 πν (j − ρU),
∇ · U = 0,
U |∂Ω = 0

(15)

Let us briefly discuss the uniqueness problem for (15). By a standard
energy argument, one finds that, if U1 and U2 are weak solutions of (15),
they must satisfy

6πν

∫

Ω

ρ|U1 − U2|2dx+ ν‖∇(U1 − U2)‖2
L2(Ω)

≤ ‖∇U1‖L2(Ω)‖U1 − U2‖2
L4(Ω)

+ ‖U2‖L4(Ω)‖∇(U1 − U2)‖L2(Ω)‖U1 − U2‖L4(Ω)

We first recall (see [11] p. 9) that

‖Uε‖4
L4(Ω) ≤ 4‖Uε‖L2(Ω)‖∇Uε‖3

L2(Ω) ;

together with the Poincaré inequality, this entails

(16) ‖Uε‖4
L4(Ω) ≤ 4CP‖∇Uε‖4

L2(Ω)

where CP denotes the Poincaré constant in the domain Ω. Hence

ν‖∇(U1 − U2)‖2
L2(Ω)

≤ 2C
1/2
P (‖∇U1‖L2(Ω) + ‖∇U2‖L2(Ω))‖∇(U1 − U2)‖2

L2(Ω) .

Therefore, uniqueness holds for (15) if

ν ≥ 2C
1/2
P (‖∇U1‖L2(Ω) + ‖∇U2‖L2(Ω)) .
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But the usual energy estimates for either of the weak solutions U1 and
U2 shows that

ν‖∇Uj‖L2(Ω) ≤ CP (‖g‖L2(Ω) + 6πν‖j‖L2(Ω)) .

Finally, uniqueness holds for (15) if

ν2 ≥ 4C
3/2
P (‖g‖L2(Ω) + 6πν‖j‖L2(Ω))

i.e. for ν > ν0 ≡ ν0(‖g‖L2(Ω), ‖j‖L2(Ω), CP ).

Theorem 2. Under the same assumptions as in Theorem 1 and for
each ν > ν0(‖g‖L2(Ω), ‖j‖L2(Ω), CP ), consider, for each g ∈ L2(Ω) and
each ε = 1/N , a solution uε of the steady Navier-Stokes equations (14)
with the no-slip boundary condition (7). Defining its natural extension
to Ω to be ūε as in (10), one has ūε → u in L2(Ω) as ε = 1/N → 0,
where u is the unique weak solution of (15).

3. Method of proof

In this section, we present the strategy for the proofs of Theorems 1
and 2.

3.1. Introducing correctors. We recall that the weak formulation of
the Stokes problem (6)-(7) is

(17)

∫

Ωε

∇uε · ∇Wdx =

∫

Ωε

g ·Wdx ,

while the weak formulation of the Navier-Stokes problem (14), (7) is

(18) ν

∫

Ωε

∇uε · ∇Wdx =

∫

Ωε

uε ⊗ uε : ∇Wdx+

∫

Ωε

g ·Wdx ,

for each test solenoidal vector field W ∈ (H1
0(Ωε))

3, i.e. such that
∇ ·W = 0.

For each w ∈ (D(Ω))3 such that ∇ · w = 0, we choose test vector
fields of the form

Wε = w − Bε[w]

where Bε[w] ∈ (H1
0 (Ω))3 satisfies

∇ · Bε[w] = 0 in Ω and Bε[w] |B̄xk,ε
= w |B̄xk,ε

.

Similarly, we approximate the solution by

Uε = ūε −Aε

where Aε ∈ (H1
0 (Ω))3 satisfies

∇ · Aε = 0 in Ω and Aε |B̄xk,ε
= vk .



PARTICLES IN A STOKES FLOW 9

Explicit formulas for the fields Aε and Bε will be given at the end of
the present section. Notice that, by construction,

Uε |Bxk,ε= Wε |Bxk,ε= 0 , for all k = 1, .., N .

In addition, the correctors Aε and Bε are chosen so that

Bε[w] ⇀ 0 in (H1
0 (Ω))3 ,(19)

Aε ⇀ 0 in (H1
0 (Ω))3 .(20)

Condition (19) implies that

Wε ⇀ w in (H1
0(Ω))3 and ∇Wε ⇀ ∇w in (L2(Ω))9 .

Moreover, (19) and (20) imply that

Bε[w] → 0 in (Lp(Ω))3 ,

Aε → 0 in (Lp(Ω))3 ,

for each p ∈ [1, 6), by the Rellich-Kondrachov compact embedding
theorem, so that

Wε → w in (Lp(Ω))3 for each p ∈ [1, 6) .

Condition (20) implies that Uε and ūε behave similarly as ε→ 0. In
the next subsection, we study the asymptotic behavior of Uε, which is
somewhat simpler to analyze. As we shall see, condition (20) implies
that

Uε ⇀ U in (H1
0 (Ω))3 as ε→ 0

for both problems (6) and (14) with the boundary condition (7). Hence

Uε → U in (Lp(Ω))3 for 1 ≤ p < 6

as ε → 0.

3.2. Weak convergence of Uε. Here we show that (some subsequence
of) Uε converges weakly in (H1(Ω))3 (assuming (19) and (20)), for both
problems (6) and (14) with boundary condition (7).

Indeed, for each k = 1, . . . , N , one has Uε |Bxk,ε= 0, so that the weak
formulation of the Stokes problem becomes :

‖∇Uε‖2
L2(Ω) =

∫

Ω

∇ūε : ∇Uεdx−
∫

Ω

∇Aε : ∇Uεdx

=

∫

Ω

g · Uεdx−
∫

Ω

∇Aε : ∇Uεdx

≤ ‖g‖L2(Ω)‖Uε‖L2(Ω) + ‖∇Aε‖L2(Ω)‖∇Uε‖L2(Ω)

By the Poincaré inequality and (20), which entails a uniform bound of
the form ‖∇Aε‖L2(Ω) < C, we conclude that ‖∇Uε‖L2(Ω) is bounded.
Hence there is a subsequence such that Uε ⇀ U in (H1(Ω))3.
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For the Navier-Stokes problem we have similarly:

ν‖∇Uε‖2
L2(Ω) = ν

∫

Ω

∇ūε : ∇Uεdx− ν

∫

Ω

∇Aε : ∇Uεdx

=

∫

Ω

g · Uεdx−
∫

Ωε

(ūε · ∇ūε) · Uεdx− ν

∫

Ω

∇Aε : ∇Uεdx

=

∫

Ω

g · Uεdx+

∫

Ωε

Uε ⊗ Uε : ∇Uεdx− ν

∫

Ω

∇Aε : ∇Uεdx

+

∫

Ωε

(Aε ⊗ Uε + Uε ⊗Aε + Aε ⊗Aε) : ∇Uεdx .

Observe that
∫

Ωε

Uε ⊗ Uε : ∇Uεdx =

∫

Ωε

Uε · ((Uε · ∇)Uε) dx

= 1
2

∫

Ωε

∇
(

Uε|Uε|2
)

dx = 0

by Green’s formula, since Uε

∣

∣

∂Ωε
= 0. Hence

ν‖∇Uε‖2
L2(Ω) ≤ ‖g‖L2(Ω)‖Uε‖L2(Ω) + ν‖∇Aε‖L2(Ω)‖∇Uε‖L2(Ω)

+ (‖Aε ⊗ Uε‖L2(Ω) + ‖Uε ⊗Aε‖L2(Ω) + ‖A⊗2
ε ‖L2(Ω))‖∇Uε‖L2(Ω)

≤ ‖g‖L2(Ω)‖Uε‖L2(Ω)

+ (ν‖∇Aε‖L2(Ω) + 2‖Aε‖L4(Ω)‖Uε‖L4(Ω) + ‖Aε‖2
L4(Ω))‖∇Uε‖L2(Ω) .

Applying inequality (16) shows that
(21)

(ν − 2
√

2C
1/4
P ‖Aε‖L4(Ω))‖∇Uε‖L2(Ω)

≤ (CP‖g‖L2(Ω) + ν‖∇Aε‖L2(Ω) + ‖Aε‖2
L4(Ω)).

Recall that ‖Aε‖L4(Ω) → 0 as ε→ 0 by (21), while ‖∇Aε‖L2(Ω) ≤ C by
(20). Hence the estimate above entails the bound

‖∇Uε‖L2(Ω) ≤ C .

3.3. Weak formulations on the whole domain. Next we recast
the weak formulations (17) and (18) in terms of Uε: as we shall see,
this is somewhat more convenient, at least in taking the mean field
limit.

We first discuss the Stokes problem (17). Observe that
∫

Ω

∇ūε : ∇Wεdx =

∫

Ωε

∇uε : ∇Wεdx =

∫

Ωε

g ·Wεdx .
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Expressing ūε in terms of Uε, one arrives at
∫

Ω

∇Uε : ∇Wεdx+

∫

Ω

∇Aε : ∇Wεdx =

∫

Ω

g ·Wεdx

which, after replacing Wε with its expression in terms of w, leads to
∫

Ω

∇Uε : ∇wdx−
∫

Ω

∇Uε : ∇Bεdx+

∫

Ω

∇Aε : ∇Wεdx =

∫

Ω

g ·Wεdx .

Transforming the second integral on the right hand side by Green’s
formula, one eventually obtains

(22)

∫

Ω

∇Uε : ∇wdx+

∫

Ω

Uε ·△Bεdx−
∫

Ω

△Aε ·Wεdx =

∫

Ω

g ·Wεdx .

Under assumptions (19)-(20)
∫

Ω

∇Uε : ∇wdx →
∫

Ω

∇U : ∇wdx(23)

∫

Ω

g ·Wεdx →
∫

Ω

g · wdx(24)

as ε → 0. Thus we are left with computing the limit of

−
∫

Ω

∇Uε : ∇Bεdx+

∫

Ω

∇Aε : ∇Wεdx

or, equivalently, of
∫

Ω

Uε · △Bεdx−
∫

Ω

△Aε ·Wεdx .

For the Navier-Stokes problem (18), we follow the same arguments.
First

(25)

ν

∫

Ωε

∇uε · ∇Wεdx−
∫

Ωε

uε ⊗ uε : ∇Wεdx

= ν

∫

Ω

∇ūε · ∇Wεdx−
∫

Ω

ūε ⊗ ūε : ∇Wεdx =

∫

Ω

g ·Wεdx

since vk, k = 1, . . . , N , are constants and Wε |Bxk,ε= 0. Making the
substitution ūε = Uε + Aε in (25), one gets

ν

∫

Ω

∇Uε : ∇Wεdx+ ν

∫

Ω

∇Aε : ∇Wεdx =

∫

Ω

Uε ⊗ Uε : ∇Wεdx

+

∫

Ω

g ·Wεdx+

∫

Ω

(Aε ⊗ Uε + Uε ⊗Aε + Aε ⊗Aε) : ∇Wεdx
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and, inserting Wε = w−Bε in the equality above, one eventually arrives
at

(26)

ν

∫

Ω

∇Uε : ∇wdx− ν

∫

Ω

∇Uε : ∇Bεdx+ ν

∫

Ω

∇Aε : ∇Wεdx

=

∫

Ω

Uε ⊗ Uε : ∇Wεdx+

∫

Ω

g ·Wεdx

+

∫

Ω

(Aε ⊗ Uε + Uε ⊗Aε + Aε ⊗Aε) : ∇Wεdx .

Next we pass to the limit as ε → 0; assumptions (19)-(20) imply
that Aε and Uε converge strongly in L4(Ω), so that
∫

Ω

(Aε ⊗ Uε + Uε ⊗Aε + Aε ⊗Aε) : ∇Wεdx → 0 ,

∫

Ω

Uε ⊗ Uε : ∇Wεdx →
∫

Ω

U ⊗ U : ∇wdx .

Moreover
∫

Ω

g ·Wεdx →
∫

Ω

g · wdx ,

ν

∫

Ω

∇Uε : ∇wdx → ν

∫

Ω

∇U : ∇wdx ,

so that we are left with the task of computing the limit as ε → 0 of

−ν
∫

Ω

∇Uε : ∇Bεdx+ ν

∫

Ω

∇Aε : ∇Wεdx .

At this point, we need to specify how the correctors Aε and Bε are
constructed.

3.4. Defining the correctors. Given any smooth function w on B0,s

and r > s, we designate by Ψs,r[w] the solution of the following Stokes
problem :















△Ψs,r[w] = ∇Πs,r[w] , x ∈ B0,r \B0,s ,
∇ · Ψs,r[w] = 0 ,
Ψs,r[w] |B0,s= w ,
Ψs,r[w] |Bc

0,r
= 0 .

(27)

When s = ε, r = rε = ε1/3, we define

ψε[w] = Ψε,ε1/3[w] .

We denote πε[w] = Πε,ε1/3[w]), the pressure field associated to ψε[w].
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With the function ψε[w], we define the corrector Bε as follows:

(28) Bε =
N

∑

k=1

ψε[w(· + xk)](x− xk) .

Whenever w is a constant, i.e. w(x) = v, we use the notation

Φs,r[v] = Ψs,r[w] and likewise φε[v] = ψε[w] .

With the function φε[v], we define the corrector Aε in the following
manner:

(29) Aε =

N
∑

k=1

φε[vk](x− xk) .

The vector fields Aε and Bε so defined are obviously solenoidal ele-
ments of (H1

0 (Ω))3 that verify the conditions

Aε |B̄xk,ε
= vk and Bε[w] |B̄xk,ε

= w |B̄xk,ε
.

In section 5, we shall prove that Aε and Bε verify assumptions (20)-(19).

4. Explicit formulas for the correctors

The Stokes equations in an annulus can be solved explicitly; in this
section, we use these explicit formula to express the correctors Aε and
Bε, and to estimate the quantity

∫

Ω

∇Uε : ∇Bεdx−
∫

Ω

∇Aε : ∇Wεdx .

Occasionally, we will refer to the appendix (section 6.2) where a few
standard computations are summarized.

We start with a formula for Φ1,R[v] — and hence for φε[v]. For each
x ∈ R

3, denote r = |x|, ω = x
|x|

. Moreover, we denote Pωa = (ω · a)ω
is the orthogonal projection on the line Rω.

Whenever 1 ≤ r ≤ R,

Φ1,R[v](x) = −
[

4α(R) r2 + 2 β(R) +
γ(R)

r
− δ(R)

r3

]

(I − Pω) v

−2

[

α(R) r2 + β(R) +
γ(R)

r
+
δ(R)

r3

]

Pω v ,(30)

while

Φ1,R[v](x) = v for x ∈ B0,1 ,

Φ1,R[v](x) = 0 for x ∈ Bc
0,R .
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In the formulas above

(31) α(R) = − 3

8R3
+O(1/R4) , β(R) =

9

8R
+O(1/R2) ,

while

(32) γ(R) = −3
4

+O(1/R) , δ(R) = 1
4

+O(1/R)

as R → +∞.
If one replaces the boundary condition at r = R with the condition

at infinity

lim
|x|→∞

Φ = 0

the solution is

(33) Φ1,∞[v](x) = 1
4

(

3

r
+

1

r3

)

(I − Pω) v + 1
2

(

3

r
− 1

r3

)

Pω v.

We denote by Π1,∞[v] the associated pressure.
The following relations hold between the pressure fields Π1,R[v] and

Π1,∞[v] :
(34)
ω · ∇Φ1,R[v](x) − Π1,R[v](x)ω = ω · ∇Φ1,∞[v](x) − Π1,∞(x)ω

− 8α(R) r (I − 3Pω) v +
1

r2
O

(

1

R

)

in the limit as R → +∞. Finally,

(35) (ω ·∇Φ1,∞[v](x)−Π1,∞(x)ω) = −3
4
(I+3Pω)

v

r2
− 3

4
(I−3Pω)

v

r4
.

Using the obvious scaling relation

φε[v](x) = Φ1,rε/ε[v](x/ε) ,

we see that (30) and (31) become, for r ∈ [ε, rε]

(36)

φε[v](x) = −
[

4α1(ε) r
2 + 2 β1(ε) +

γ1(ε)

r
− δ1(ε)

r3

]

(I − Pω) v

− 2

[

α1(ε) r
2 + β1(ε) +

γ1(ε)

r
+
δ1(ε)

r3

]

Pω v

= A(r) (I − Pω) v +B(r)Pω v

with

(37) α1(ε) = −3
8

+O(ε2/3) , β1(ε) = 9
8
ε2/3 +O(ε4/3),

while

(38) γ1(ε) = −3
4
ε+O(ε5/3) , δ1(ε) = 1

4
ε3 +O(ε11/3) .
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Furthermore, for r ∈ [ε, rε]

(39)

∇φε[v] = − (a(r) + b(r))ω ⊗ (I − Pω) v

+ b(r)

[

(I − Pω) v ⊗ ω + v · ω (I − 3ω ⊗ ω)

]

with

a(r) = 6

(

α1 r +
δ1
r4

)

,(40)

b(r) = 2α1 r −
γ1

r2
− 3

δ1
r4
.(41)

We also record the following formulas for scalar products :
(42)
∇φε[vk] : ∇φε[w(xk)] = [(a+ b)2 + b2] (vk · w(xk) − Pωvk · Pωw(xk))

+ 6 b2 Pωvk · Pωw(xk) ,

and
(43)
∇φε[vk] : ∇w(· + xk) = − (a+ b)ω · ∇(vk · w) + b ω · (vk · ∇w)

+ vk · ω (a− 3b)ω · (ω · ∇w) + b vk · ω∇ · w .

In the last formula, we have kept the term ∇·w, although all the vector
fields w considered in this work are solenoidal.

5. Passing to the limit

First, we prove that the correctors defined in (29) converge weakly
to 0 in H1

0 (Ω) in the vanishing ε limit.

5.1. Weak convergence of Aε. Observe that
(44)
∫

ε≤|z|≤rε

G(|z|)Pz/|z|vk · Pz/|z|w(xk)dz = 4π
3
vk · w(xk)

∫

ε≤r≤rε

G(r) r2 dr

for each function G for which the integral on the right-hand side makes
sense. Therefore, using (36) and (44), we obtain

(45) ‖φε[v]‖2
L2(Ω) = 4π

3
|v|2

(
∫ rε

ε

r2 (2A2 +B2) dr + ε3

)

where the last term comes from the integral on B0,ε.
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Since
∫ rε

ε

r2 (2A2 +B2) dr ≤ C

(

(α1)
2 (r7

ε − ε7) + |α1 β1|(r5
ε − ε5)

+ |α1 γ1| (r4
ε − ε4) + (β1)

2 (r3
ε − ε3)

+
(

|β1 γ1| + |α1 δ1|
)

(r2
ε − ε2)

+ |β1 γ1| log(rε/ε) + (γ1)
2 (rε − ε)

+ |δ1 γ1|
(

1

ε
− 1

rε

)

+ (δ1)
2

(

1

ε3
− 1

r3
ε

) )

,

we obtain from (37)-(38) :
(46)
∥

∥

∥

∥

∥

N
∑

k=1

φε[vk]

∥

∥

∥

∥

∥

2

L2(Ω)

=
N

∑

k=1

‖φε[vk]‖2
L2(Ω) =

4π
3

1

N

N
∑

k=1

|vk|2
(

O(Nε3) +O(Nε7/3) +O(Nε9/3) +O(Nε11/3 | log ε|)
)

→ 0 ,

so that Aε → 0 in L2(Ω).
Next, we consider (42) with w(xk) = vk. Since

(47) ∇φε[vk] : ∇φε[vk] = [(a+ b)2 + b2] |vk|2 +[(a+ b)2 +5 b2] (Pωvk)
2 ,

we obtain

‖∇φε[vk]‖2
L2(B0,rε\B0,ε) = 16π

3
|vk|2

∫ rε

ε

[(a+ b)2 + 2 b2] r2 dr

= 16π
3

|vk|2
(

72
5
α2

1 (r5
ε − ε5) − 3 γ2

1 (r−1
ε − ε−1) − 27

5
δ2
1 (r−5

ε − ε−5)

− 12α1γ1 (r2
ε − ε2) + 24α1δ1 ln

rε

ε
− 2 γ1δ1 (r−3

ε − ε−3)

)

which, together with (37)-(38), gives

(48) ‖∇φε[vk]‖2
L2(B0,rε\B0,ε) ≤ C ε |vk|2 .

Hence, setting rε = ε1/3,

‖∇Aε‖2
L2(Ω) ≤ C ε

N
∑

k=1

|vk|2

= C

(
∫

Ω

∫

v∈R3

FN(x, v) |v|2 dv
)

≤ C ′ .
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Therefore, there exists a subsequence such that Aε ⇀ A in H1
0 (Ω).

Since Aε → 0 in L2(Ω), A = 0 and the whole sequence Aε ⇀ 0 in
H1

0 (Ω).

5.2. Weak convergence of Bε. Next we prove that the sequence of
correctors given by definition (28) converges weakly to 0 in H1

0 (Ω).
First we estimate ‖Bε[w]‖L2(Ω) and ‖∇Bε[w]‖L2(Ω). In order to do so,

we consider the solution Ψs,r[φ] of Stokes problem (27) with w = φ.
Using Ψε,2ε − Ψε,ε1/3 as test function in problem (27) with s = ε,

r = ε1/3, we see that

(49) ‖∇Ψε,ε1/3‖L2(B0,rε\B0,ε) ≤ ‖∇Ψε,2ε‖L2(B0,2 ε\B0,ε).

According to [1], Lemma 2.2.5, formula 2.2.37, p.240, the following
holds for each η ∈]0, 1[ and u ∈ H1(B0,1))

(50) ‖∇Ψη,1[u]‖L2(B0,1\B0,η) ≤ C

(

‖∇u‖L2(B0,1) + η1/2‖u‖L2(B0,1)

)

,

where the constant C is uniform in η and u. Observe that u(x) =
φ(2ε x) satisfies

(51) ‖u‖L2(B0,1) = (2ε)−3/2 ‖φ‖L2(B0,2ε),

(52) ‖∇u‖L2(B0,1) = (2ε)−1/2 ‖∇φ‖L2(B0,2ε),

and

(53) ‖∇Ψε,2ε[φ]‖L2(B0,1ε\B0,ε) = (2ε)1/2‖∇Ψη,1[u]‖L2(B0,1\B0,1/2).

Using successively (53), (49), (50) and (51), (52), we see that

‖∇Ψε,ε1/3[φ]‖L2(B
0,ε1/3\B0,ε) ≤ (2ε)1/2 ‖∇Ψη,1[u]‖L2(B0,1\B0,1/2)

≤ C

(

(2ε)1/2 ‖∇u‖L2(B0,1) + (1/2)1/2 (2ε)1/2 ‖u‖L2(B0,1)

)

(54) = C

(

‖∇φ‖L2(B0,2ε) + (1/2)1/2 (2ε)−1 ‖φ‖L2(B0,2ε)

)

.

Assuming that φ is smooth and φ(0) = 0 implies that

(55) ‖∇ψε[φ]‖L2(B
0,ε1/3\B0,ε) ≤ Const.ε3/2.

Since

‖∇Bε[w]‖L2(Ω) ≤
N

∑

k=1

‖∇φε[w(xk)]‖L2 +
N

∑

k=1

||∇ψε[w(·+xk)−w(xk)]||L2 ,
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it follows from (48) with rε = ε
1
3 and vk = w(xk) and (55) that

‖∇Bε[w]‖L2(Ω) < Const.

Hence there is a subsequence s.t. Bε ⇀ B in H1
0 (Ω).

On the other hand
N

∑

k=1

ψε[w(· + xk)](x− xk) =

N
∑

k=1

φε[w(xk)](x− xk)

+
N

∑

k=1

ψε[w(· + xk) − w(xk)](x− xk) .

By Poincaré’s inequality and (55),

N
∑

k=1

||ψε[w(· + xk) − w(xk)](x− xk)||2L2

≤ ε2/3
N

∑

k=1

||∇ψε[w(· + xk) − w(xk)](x− xk)||2L2

≤ CstN ε11/3.

Using (46) with vk = w(xk) shows that

Bε =
N

∑

k=1

ψε[w(· + xk)] → 0

in (L2(Ω))3, so that B = 0 and the whole sequence

Bε ⇀ 0 in (H1
0 (Ω))3 .

Finally, notice that

‖
N

∑

k=1

ψε[w(· + xk) − w(xk)]‖(H1
0 (Ω))3 → 0 .

5.3. Limit of
∫

Ω
∇Aε : ∇Wε. We have

(56)

∫

Ω

∇Aε : ∇Wεdx =

∫

Ω

∇Aε : ∇wdx−
∫

Ω

∇Aε : ∇Bε[w]dx

=

∫

Ω

∇Aε : ∇wdx−
∫

Ω

∇Aε : ∇(

N
∑

k=1

ψε[w(· + xk) − w(xk)])dx

−
N

∑

k=1

∫

ε≤|z|≤rε

∇φε[vk] : ∇ψε[w(xk)]dz
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In view of (20), we see that

lim
ε→0

∫

Ω

∇Aε : ∇wdx = 0 .

Moreover, since

∇(
N

∑

k=1

ψε[w(· + xk) − w(xk)]) → 0 in (L2(Ω))9

we also have
∫

Ω

∇Aε : ∇(
N

∑

k=1

ψε[w(· + xk) − w(xk)])dx→ 0 .

Next we estimate (56). Recalling (44), we have
(57)
∫

ε≤|z|≤rε

∇φε[vk] : ∇φε[w(xk)]dx = 4π vk · w(xk)

(
∫

ε≤r≤rε

F(r) r2 dr

)

,

where (according to (42))

(58) F(r) =
2

3
[(a+ b)2 + b2] + 2 b2.

Therefore,
∫ rε

ε

r2 F(r) dr = 32
3
α2

1 (r5
ε − ε5) − 6 δ2

1 (r−5
ε − ε−5) − 10

3
γ2

1 (
1

rε

− 1

ε
)

−32
3
α1 γ1 (r2

ε − ε2) − 4 γ1 δ1 (r−3
ε − ε−3)

= 3
2
ε+O(ε5/3).

Finally,

(59)

∫

ε≤|z|≤rε

∇φε[vk] : ∇φε[w(xk)]dz = 6π εvk · w(xk) +O(ε5/3),

and

lim
ε→0

N
∑

k=1

∫

ε≤|z|≤rε

∇φε[vk] : ∇φε[w(xk)]dx

= lim
ε→0

N
∑

k=1

(

6π ε vk · w(xk) +O(ε5/3)

)

= lim
ε→0

(6π +O(ε2/3)) (εN)

∫

Ω

∫

R3

v · w(x)FN(x, v) dvdx

= 6π

∫

Ω

j(x) · w(x) dx .
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Therefore, we conclude that

(60) lim
ε→0

∫

Ω

∇Aε : ∇Wεdx = 6π

∫

Ω

j(x) · w(x) dx .

5.4. Limit for
∫

Ω
∇Uε : ∇Bε. We have

(61)

∫

Ω

∇Uε : ∇Bε[w]dx =

∫

Ω

∇Uε : ∇(

N
∑

k=1

ψε[w(· + xk) − w(xk)])dx

+

N
∑

k=1

∫

ε≤|z|≤rε

∇Uε(· + xk) : ∇φε[w(xk)]dz

Since

∇(

N
∑

k=1

ψε[w(· + xk) − w(xk)]) → 0

in (L2(Ω))9, we see that

∫

Ω

∇Uε : ∇(
N

∑

k=1

ψε[w(· + xk) − w(xk)])dx→ 0 .

In order to estimate (61), we first integrate by parts, denoting by n the
outward unit normal vector to the sphere ∂Bxk ,rε:

Ik =

∫

ε≤|z|≤rε

∇Uε(· + xk) : ∇φε[w(xk)]dz

= −
∫

ε≤|z|≤rε

Uε(· + xk) · △φε[w(xk)]dz

+

∫

∂Bxk,rε

(n · ∇φε[w(xk)](· − xk)) · Uεdz .

Next we use the definition of φε to compute

(62) Ik =

∫

∂Bxk,rε

(

n · ∇φε[w(xk)](· − xk) − πε(· − xk)n

)

· Uεdz .

At this point, we observe that n = ω = x−xk

|x−xk|
(that is, ω is “cen-

tered” on xk instead on the origin as in section 4). Since ∇φε(x) =
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1
ε
∇Φ1,rε/ε(x/ε) it follows from (34) that

Ik =
1

ε

∫

∂Bxk,rε

(

ω · ∇Φ1,rε/ε[w(xk)](
x−xk

ε
) − Π1, rε

ε
(x−xk

ε
ω

)

· Uεdx

=
1

ε

∫

∂Bxk,rε

(

ω · ∇Φ1,∞[w(xk)](
x−xk

ε
) − Π1,∞(x−xk

ε
)ω

+ 3

(

ε

rε

)2

(I − 3Pω)w(xk) + O

(

ε

rε

)3 )

· Uεdx .

By (35),

Ik =
ε

r2
ε

∫

∂Bxk,rε

(

− 3
4
(I + 3Pω)w(xk) + 3 (I − 3Pω)w(xk)

−3
4
(I − 3Pω)w(xk)

ε2

r2
ε

)

· Uεdx+O

(

ε2

r3
ε

)

,

so that

Ik=
ε

r2
ε

∫

∂Bxk,rε

(

− 3
4
(I+3Pω)w(xk)+ 3 (I−3Pω)w(xk)

)

·Uεdx+O

(

ε2

r3
ε

)

.

Notice that the same result is obtained in ([1])) by a somewhat different
procedure.

At this point, we claim the following strong limits in (H−1(R3))3

that hold for any G ∈ (Cb(R
3))3 — for a proof, see sec. (6.1)) in the

appendix below:

(63)

N
∑

i=1

rε G(xk) δ∂Bxk,rε
→4π ρ(x)G(x) in (H−1(R3))3 ,

N
∑

i=1

rεG(xk) · ω ω δ∂Bxk,rε
→4π

3
ρ(x)G(x) in (H−1(R3))3 .

Since Uε → U converges weakly in (H1(Ω))3, we get

(64)

N
∑

k=1

∫

ε≤|z|≤rε

∇Uε : ∇ψε[w(·+ xk)]dz → − 6π

∫

Ω

w(x) ·U ρ(x)dx ,

so that

(65) lim
ε→0

∫

Ω

∇Uε : ∇Bεdx = − 6π

∫

Ω

w(x) · U ρ(x)dx.

5.5. The limit equation. We start from the weak formulations es-
tablished in section 3 (that is, equations (17) and (18)).
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5.5.1. The Stokes case. In view of the results established in sections
5.3 and 5.4, we pass to the limit in the Stokes problem (6)-(7)

∫

Ω

∇U · ∇wdx =

∫

Ω

g · wdx+ 6π

(
∫

v · wfdxdv −
∫

w · Uρdx
)

.

Therefore, U is the a weak solution of

(66)







−△ U − 6π (j − ρU) + ∇Π = g ,
∇ · U = 0 ,
U |∂Ω = 0 .

Since the problem above has at most one weak solution, the whole
sequence Uε converges to U in (H1(Ω))3.

In addition

ūε = Uε +

N
∑

k=1

φε[vk](x− xk) → U

in (L2(Ω))3, as can be seen from (46).
This finishes the proof of theorem 1, assuming (63) — whose proof

is deferred to the appendix below

5.5.2. The Navier-Stokes case. Likewise, for the Navier–Stokes prob-
lem (14), (7) in the limit as ε→ 0

ν

∫

Ω

∇U · ∇wdx =

∫

Ω

U ⊗ U : ∇wdx

+

∫

Ω

g · wdx+ 6π

(
∫

v · wfdxdv −
∫

w · Uρdx
)

.

Given ρ, j and g, there exists ν0 > 0 large enough, so that, for each
ν > ν0, the problem

(67)







U · ∇U − ν △ U(x) − 6π (j − ρU) + ∇Π = g ,
∇ · U = 0 ,
U |∂Ω = 0 ,

has a unique weak solution U ∈ (H1
0 (Ω))3.

Hence the whole sequence Uε converges weakly to U in (H1
0 (Ω))3 as

ε→ 0.
As in the Stokes case, (46) implies that

ūε = Uε +

N
∑

k=1

φε[vk](x− xk) → U

in (L2(Ω))3. This completes the proof of theorem 2 — assuming again
that the limits in(63) hold.
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6. Appendix

6.1. Proof of (63). We closely follow the method described in [7] in
the periodic setting. Given G ∈ (Cb(R

3))3, we consider two auxiliary

problems in
⋃N

k=1Bxk,rε : for k = 1, . . . , N

{ −△ ξε = −3G(xk),
∂ξε

∂n
|∂Bxk,rε

= rεG(xk),

and







−△χε = −G(xk) − r
rε

(

6 (G(xk) · ω)ω + 2G(xk)

)

+ 3G(xk),

∂χε

∂n
|∂Bxk,rε

= rε (G(xk) · ω)ω .

Next we extend ξε and χε by 0 in the complement of
⋃N

k=1Bxk,rε. Com-
puting the Laplacian of ξε and χε in the sense of distributions in the
whole Euclidean space, we get

−△ ξε = −3

N
∑

k=1

G(xk) 1Bxk,rε
+

N
∑

k=1

rε G(xk) δ∂Bxk,rε

= −3N 1B0,rε
∗ (GρN ) +

N
∑

k=1

rεG(xk) δ∂Bxk,rε
,(68)

−△ χε = −
N

∑

k=1

G(xk) 1Bxk,rε

+
N

∑

k=1

{

r

rε

(

6 (G(xk) · ω)ω + 2G(xk)

)

− 3G(xk)

}

1Bxk,rε

+

N
∑

k=1

rε (G(xk) · ω)ω δ∂Bxk,rε
(69)

= −N 1B0,rε
∗ (GρN) +

N
∑

k=1

rε (G(xk) · ω)ω δ∂Bxk,rε

+
N

∑

k=1

{

r

rε

(

6 (G(xk) · ω)ω + 2G(xk)

)

− 3G(xk)

}

1Bxk,rε
.
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The solutions of the two auxiliary problems above are

ξε(x) =

N
∑

i=1

|x− xk|2 − r2
ε

2
G(xk) 1Bxk,rε

,

χε(x) =
N

∑

i=1

( |x− xk|3
rε

− |x− xk|2
)

(G(xk) · ω)ω 1Bxk,rε
,

while their gradients are given by

∇ξε(x) =
N

∑

k=1

|x− xk| (ω ⊗G(xk)) 1Bxk,rε
,

∇χε(x) =

N
∑

k=1

|x− xk|2
rε

((ω ⊗G(xk)) · ω)ω 1Bxk,rε

+

N
∑

k=1

( |x− xk|2
rε

− |x− xk|
)

×
(

(G(xk) · ω) I +G(xk) ⊗ ω

)

1Bxk,rε
.

with ω = x−xk

|x−xk|
.

Then, we estimate

‖ξε‖2
L2(R3) ≤ Const. r4

ε

∫

G2ρNdx = O(r4
ε),

‖∇ξε‖2
L2(R3) ≤ Const. r2

ε

∫

G2ρNdx = O(r2
ε),

‖χε‖2
L2(R3) ≤ Const., r4

ε

∫

G2ρNdx = O(r4
ε),

‖∇χε‖2
L2(R3) ≤ Const.t r2

ε

∫

G2ρNdx = O(r2
ε).

Therefore, ξε and χε → 0 in (H1)3, so that both

(70) ∆ξε and ∆χε → 0 in (H−1)3 .

Next, we recall that N 1B0,rε
⇀ 4π

3
δ0 weakly in the sense of measures;

hence

(71) N 1B0,rε
∗ (GρN) ⇀ 4π

3
ρG

weakly in the sense of measures. Furthermore

‖N 1Bxk,rε
∗ (GρN)‖L∞ ≤ ‖G‖L∞
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so that, by the Rellich compactness theorem, the limit (71) holds in
the strong topology of (H−1

loc )
3.

Going back to (68), we conclude from (70) that

N
∑

k=1

rεG(xk) δ∂Bxk,rε
→ 4π ρG in (H−1

loc )
3

strongly.

Next, we apply the same procedure to the second term on the right
hand side of (69).

First, we observe that the last term on that right hand side is
bounded in L∞(R3) by 11‖G‖L∞, while
(72)
∫

Ω

(

φ(x)·
N

∑

k=1

{

r

rε

(

6 (G(xk)·ω)ω+2G(xk)

)

−3G(xk)

}

1Bxk,rε

)

dx→ 0

for each φ ∈ (D(R3))3. Applying the Rellich compactness theorem
again shows that the convergence (72) holds in the strong topology of
(H−1

loc )
3.

Going back to (69) and using (70), (71) and (72) shows that

N
∑

k=1

rε(G(xk) · ω)ωδ∂Bxk,rε
→ 4π

3
ρG in (H−1)3

strongly.

6.2. Solution of Stokes’ problem in an annulus. We first prove
the explicit formula for Φ1,R in (30), (31) and (32), by the same method
as in [12] §20. By symmetry, we seek Φ1,R in the form Φ1,R[v] =
curl curl(f(r) v) (where r = |x|). Then

(

∂2

∂r2
+

2

r

∂

∂r

) (

∂2

∂r2
+

2

r

∂

∂r

)

f(r) = Const.

so that

f ′(r) = α r3 + β r + γ +
δ

r2
.
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Denoting by Pω the orthogonal projection on ω = x/r we arrive at
formula (30) :

Φ1,R[v](x) = − (f
′′

+
f

′

r
) (I − Pω) v − 2

f
′

r
Pωv

= −
[

4α(R) r2 + 2 β(R) − δ(R)

r3
+
γ(R)

r

]

(I − Pω) v

− 2

[

α(R) r2 + β(R) +
δ(R)

r3
+
γ(R)

r

]

Pω v.

Because of the boundary conditions, the constants α,β,γ,δ in the for-
mula above satisfy the following system of equations :

3 (R5 − 1)α + (R3 − 1) β =
1

2
,

5 (R3 − 1)α + 3 (R− 1) β =
3

2
,

3
2
α + 1

2
β + 1

4
= δ,

−5
2
α − 3

2
β − 3

4
= γ,

leading to the estimates (31) and (32) :

α = − 3

8R3
+OR→+∞(1/R4), β =

9

8R
+OR→+∞(1/R2),

γ = −3

4
+OR→+∞(1/R), δ =

1

4
+OR→+∞(1/R).

Next we compute the pressure for the above flow; for simplicity, we
first write down the following table :

∇r = ω, ∇ω = I−ω⊗ω
r

,
∇ · ω = 2

r
, ω · ∇ω = 0,

∇(ω · v) = v−Pωv
r

,
ω · Pωv = ω · v, ∇ · (a⊗ b) = (∇ · a) b+ a · ∇b,

so that

∇Pω v =
v − Pωv

r
⊗ ω + (ω · v)∇ω and ω · ∇Pω v = 0,

∇ · Pωv =
2

r
ω · v, △ω = − 2

r2
ω ,

△Pω v = 2

(

v − 3Pωv

r2

)

.
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To find the pressure, observe that

△Φ1,R[v](x) = −
[

20α− 5α

r3
− 3 β

r3
− 3

2 r3

]

v− 3

[

5α

r3
+

3 β

r3
+

3

2 r3

]

Pω v

so that, up to some unessential additive constant,

Π1,R = −
[(

20α r − 3

2 r2
− 5α+ 3 β

r2

)

ω · Pω v

]

.

Letting R → +∞ in the previous expressions leads to formula (33)
(see also [12]) :

(73) Φ1,∞[v](x) = 1
4
(
3

r
+

1

r3
) (I − Pω) v + 1

2
(
3

r
− 1

r3
)Pω v,

and

(74) Π1,∞ =
3

2r2
ω · Pω v.

Obviously

Φ1,R[v](x) = Φ1,∞[v](x) − [4α(R) r2 + 2 β(R)] (I − Pω) v

− 2 [α(R) r2 + β(R)]Pωv +
1

r
O

(

1

R

)

,

ω · ∇Φ1,R[v](x) = ω · ∇Φ1,∞[v](x)

− 4α(R) r (2I − Pω) v +
1

r2
O

(

1

R

)

,

while

Π1,R = Π1,∞ − 20α(R) r ω · v +
1

r2
O

(

1

R

)

.

as R → +∞.
Formula (34) follows as a consequence:

ω · ∇Φ1,R − Π1,R ω = ω · ∇Φ1,∞ − Π1,∞ ω

− 8α(R) r (I − 3Pω) v +
1

r2
O

(

1

R

)

.

From (73) and (74), we arrive at formula (35) :

(75) ω · ∇Φ1,∞[v](x) − Π1,∞ ω = −3
4
(I + 3Pω)

v

r2
− 3

4
(I − 3Pω)

v

r4
.

Finally, we derive formulas (42), (43). First rewrite formula (39) for
∇φε[v] with r ∈ [ε, rε] in the form

(76) ∇φε[v] = −a(r)N(v) + b(r) [M(v) + v · ω (I − 3ω ⊗ ω)]
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where M and N are two matrix-valued, linear functions of v :

M(v) = (I − Pω) v ⊗ ω − ω ⊗ (I − Pω) v,

N(v) = ω ⊗ (I − Pω) v,

while

a(r) = 6 (α1 r +
δ1
r4

), b(r) = 2α1 r −
γ1

r2
− 3

δ1
r4
.

For each v, w ∈ R
3 and each ω ∈ S2

1
2
M(v) : M(w) =N(v) : N(w) =−M(v) : N(w) = (v ·w−Pωv · Pωw),

M(v) : ω ⊗ ω = M(v) : I = N(v) : ω ⊗ ω = N(v) : I = 0,

ω ⊗ ω : I = ω ⊗ ω : ω ⊗ ω = 1, I : I = 3.

Now (42) and (43) follow from (76) by elementary manipulations in-
volving the identities recalled above.
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