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GEODESIC FLOW OF THE AVERAGED CONTROLLED
KEPLER EQUATION

BERNARD BONNARD∗ AND JEAN-BAPTISTE CAILLAU†

Abstract. A normal form of the Riemannian metric arising when averaging the coplanar con-
trolled Kepler equation is given. This metric is parameterized by two scalar invariants which encode
its main properties. The restriction of the metric to S2 is shown to be conformal to the flat metric on
an oblate ellipsoid of revolution, and the associated conjugate locus is observed to be a deformation
of the standard astroid. Though not complete because of a singularity at infinity in the space of
ellipses, the metric has convexity properties that are expressed in terms of the aforementioned in-
variants, and related to surjectivity of the exponential mapping. Optimality properties of geodesics
of the averaged controlled Kepler system are finally obtained thanks to the computation of the cut
locus of the restriction to the sphere.
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Introduction. Modern orbit transfer missions, e.g. interplanetary ones, use
electro-ionic propulsion, that is engines with very low thrust compared to chemical
boosters. Typical performance indexes for these transfers include time or fuel mini-
mization. The underlying model for such missions is the standard two-body system
(swingby or planetary capture phenomenons being also treated in this framework,
for instance using several phases) described by the controlled Kepler equation. In its
simplest form, it is a second order control system involving the position vector q in
R3, and the thrust of the engine, u,

q̈ = −q/|q|3 + u. (0.1)

Practical models used in effective mission design take into account the variation of
the mass due to fuel consumption, higher order terms of the potential, etc.

Let c = q × q̇ denote as usual the angular momentum, E = q̇2/2 − 1/|q| the
mechanical energy, and define the elliptic domain, Q, according to

Q = {(q, q̇) | c 6= 0, E < 0}.

On this domain, the unperturbed motion of (0.1) is known to be an ellipse, and the
standard first integrals of the movement can be used as geometric coordinates. In the
coplanar case where the control remains into the plane defined by the initial angular
momentum, the geometry of the osculating ellipse is determined by three such first
integrals, for instance the semi-major axis a—which can be replaced by the mean
movement, n = a−3/2—, the eccentricity, e, and the argument of perigee, θ (see [6]).
These coordinates reveal the structure of the coplanar elliptic domain which is fibered
over S1 since Q = Xe × S1, with Xe the space of ellipses,

Xe = {(n, e, θ) | n > 0, 0 < e < 1, θ ∈ S1} = R∗
+ ×D,

where D is the open unit disc in the complex plane. One has then to add to the
previous three first integrals a coordinate defining the position on the osculating
ellipse, namely the longitude, l in S1.
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Analysis in the minimum time case [4] gives evidence for the existence of conjugate
points where extremals of the system cease to be locally minimizing. A simplified
approximation of the system is then desirable to study optimality properties. For low
thrust transfers, the modulus of the control is very small and many revolutions are
required to achieve an orbit transfer, e.g. from a low eccentric initial orbit towards
the geosynchronous one. As a consequence, while the geometric coordinates arising as
first integrals of the unperturbed motion are slowly varied, the longitude acts as a fast
variable, and the small parameter of the problem is the inverse of the final value of
the longitude cumulated along the whole trajectory (angular length of the transfer).
Averaging with respect to longitude has been considered in [10], and it is shown in [3]
that the averaged Hamiltonian of the minimization of the energy—the L2-norm of the
control—remains integrable (see also §2). More precisely, this averaged Hamiltonian
is quadratic in the adjoint state and associated to a Riemannian metric in orthogonal
form and with singularities on Xe,

g = dn2/(9n1/3) + 2n5/3de2/(5(1− e2)) + 2n5/3e2dθ2/(5− 4e2). (0.2)

The singularities are n = 0, which is a point a infinity in the space of ellipses (i.e.
a = ∞), and e = 1, which defines the parabolic boundary of the domain, while e = 0
is only due to the use of polar coordinates on D and removed by taking cartesian ones
instead. The effect of the singularity at infinity is discussed in §3.

The first section of the paper is devoted to curvature computations. An analytic
prolongation of the metric is considered, and a normal form is obtained, revealing
two scalar invariants. The first one is related to convexity issues, whereas the second
defines the geometry of the restriction of the metric to S2 and counts the number of
closed simple geodesics on the sphere. We prove in the second section that the metric
is integrable in the class of harmonic functions, and provide explicit quadratures in
suited coordinates. An estimation of the length of closed geodesics combined with
the curvature evaluation of §1 allows to compute the injectivity radius of the metric
restricted to S2 and to devise a necessary condition for optimality of metrics in the
normal form derived. In Kepler’s case, this condition is not fulfilled and cut points
exist for the analytically extended metric. Section 3 deals with convexity issues.
Though the singularity at infinity of the metric results in incompleteness, convexity
may occur and is characterized thanks to the two aforementioned parameters. The
analysis is reduced to a discussion in two-dimensional meridian half-planes, and related
to surjectivity of the exponential mapping. In the last section we compute the cut
locus of the metric restricted to the sphere and the astroid-like associated conjugate
locus [5]. Both are related to the separating line and conjugate locus of the full
three-dimensional metric.

1. Curvature of the system. We begin with an analytic prolongation of the
metric from the space of ellipses, Xe = R∗

+×D, which is homeomorphic to the product
of the positive real line with one open hemisphere, to X = R∗

+ × S2, product of the
positive real line with the full two-dimensional sphere.

Let r = (2/5)n5/6, and let (θ, ϕ) be the usual angular coordinates on the two-
sphere. We set e = sinϕ, thus lifting D to S2, and get the following.

Proposition 1.1. A normal form of Kepler’s metric (0.2) is

g = dr2 + (r2/c2)(G(ϕ)dθ2 + dϕ2)

which is analytic on X = R∗
+ × S2 with

G(ϕ) = sin2 ϕ/(1− (1− µ2) sin2 ϕ)
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and positive c, µ, µ ≤ 1. In Kepler’s case, c =
√

2/5 and µ = 1/
√

5.
The singularities ϕ = 0 (π) at the poles are simply due to the choice of coordinates

on S2, and r = 0 is the only singularity left since e = 1 is absorbed as the equator,
ϕ = π/2.

The restriction of the metric to {r = c} ' S2 is g2 = G(ϕ)dθ2 + dϕ2, and we
denote similarly the resulting normal forms of Hamiltonians:

H = p2
r/2 + (c2/r2)H2, H2 = (1/2)(p2

θ/G(ϕ) + p2
ϕ). (1.1)

An analytic metric on the two-sphere of revolution [9, 14] like g2 turns to be isometric
to f(z)g0, where g0 = sin2 ϕdθ2 + dϕ2 is the restriction of the flat metric to S2 and f
a positive function of the vertical coordinate z (see [2]). A more specific construction
is available here.

Proposition 1.2. The metric g2 is conformal to the flat metric restricted to an
oblate ellipsoid of revolution of unit semi-major axis and semi-minor axis µ.

Proof. We have indeed

g2 = G(ϕ)dθ2 + dϕ2 = g1/(1− (1− µ2) sin2 ϕ),

where g1 = sin2 ϕdθ2 + (1 − (1 − µ2) sin2 ϕ)dϕ2 is the restriction of the flat three-
dimensional metric to the ellipsoid parameterized by

x = sinϕ cos θ, y = sinϕ sin θ, z = µ cosϕ,

whence the result.
Accordingly, there is a natural homotopy from g2 to the flat metric on S2, having

the parameter µ varying up to µ = 1 (since g2|µ=1 = g1|µ=1 = g0). This resemblance
with the ellipsoid of revolution defined by µ is crucial to understand the cut and
conjugate loci computations of §4.

When r → ∞, the semi-major axis coordinate a = (5r/2)−4/5 tends to zero, the
collision point in the space of ellipses. We analyse the effect of the collision on the
curvature.

Let V be the span of ∂/∂θ and ∂/∂ϕ. The sectional curvature KV of g is
R2323/|∂/∂θ ∧ ∂/∂ϕ|2 where R is the Riemannian curvature tensor and R2323 =
R(∂/∂θ, ∂/∂ϕ, ∂/∂θ, ∂/∂ϕ).

Lemma 1.3. The metric g is flat if and only if KV is zero.
Proof. The condition is clearly necessary. To show it is also sufficient, define

ψ = ϕ/c and write the metric in the new coordinates: g = dr2 + r2(Γ(ψ)dθ2 + dψ2)
with Γ(ψ) = G(cψ)/c2. The span of ∂/∂θ and ∂/∂ψ is still V and, computing in these
coordinates, one gets

KV = −(F + F ′′)/(r2F )

where F =
√

Γ. When KV is zero, F can be normalized to sinψ, and g = dr2 +
r2(sin2 ψdθ2 + dψ2) is the flat metric in spherical coordinates.

Proposition 1.4. The sectional curvature of g in Kepler’s case is

KV = (1− 24 cos2 ϕ− 16 cos4 ϕ)/(r2(1 + 4 cos2 ϕ)2) → 0, r →∞,

and the metric is asymptotically flattened by the collision.
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We show in §4 that the analysis of optimality of the geodesic flow of g is deduced
from the properties of the restriction to S2. We immediately compute the Gauss
curvature of g2, K = −(d2

√
G/dϕ2)/

√
G.

Proposition 1.5. The Gauss curvature of g2 is

K = (µ2 − 2(1− µ2) cos2 ϕ)/(1− (1− µ2) sin2 ϕ)2.

The curvature reaches its maximum, K = 1/µ2, along the equator.
By Rauch theorem, the first conjugate time along any geodesic on S2 is then

bounded below by µπ, and this bound is optimal since it is reached on the equator
ϕ = π/2 where the curvature is constant. In particular, the injectivity radius, i(S2),
which is the infimum of distances of points to their respective cut loci (see §4), is
known [8] to be reached—the manifold is compact—either at a conjugate point, or
at the half of a simple closed geodesic. The task of computing periodic geodesics on
the sphere is completed in next section, thus providing a first necessary condition for
global optimality of g thanks to the estimation of this injectivity radius.

2. Integrability. The unperturbed Kepler motion is classically integrable, and
so remains the averaged controlled one, independently of the choice of parameters c,
µ in (1.1).

Proposition 2.1. The coordinate θ is cylic, and H, H2, pθ are three independent
first integrals in involution. On S2, the linear first integral pθ verifies the Clairaut
relation [2, 7], pθ = cos(φ)

√
G(ϕ), where φ is the angle of the geodesic with a parallel.

The geodesic flow on X = R∗
+×S2 is thus Liouville-integrable which we can also

check by a direct computation of r on the level set H = 1/2 (parameterization of
geodesics by arc length).

Lemma 2.2. The coordinate r2 is a degree two polynomial depending only on r0
and pr0, r2 = t2 + 2r0pr0t+ r20.

The integration is then performed using the time change dτ = dt/c2, and one
readily gets

τ(t, r0, pr0) = c2(arctan(t/(r0 cosα0) + tanα0)− α0)/(r0 cosα0) (2.1)

with pr0 = sinα0. Whenever pr0 = ±1, the angles θ and ϕ are constant on H = 1/2,
and we set τ = 0. Parameterizing again extremals by arc length on {r = c} ' S2, we
set H2 = 1/2 and proceed to the integration of g2, first underlying the symmetries of
the system.

Since θ is cyclic, we can normalize θ0 to zero, and the action of the two reflections
s1 : pθ 7→ −pθ, s2 : pϕ 7→ −pϕ on the Hamiltonian H2 is clear: s1 defines an axial
symmetry in the (θ, ϕ)-plane with respect to (Oϕ), while s2 is a central symmetry
(θ, ϕ) 7→ (2θc−θ, π−ϕ), θc depending on the geodesic. These two reflections generate
the Klein group, V ' Z/2Z × Z/2Z, which defines an Abelian discrete group of
symmetries of H2, see Fig. 2.1.

Proposition 2.3. Geodesics on H2 = 1/2 are parameterized by pθ, and the two
coordinates θ, ϕ are T -periodic with T = 4π/a and a = 2

√
1 + (1− µ2)p2

θ. On a
quarter of period [t1, t1 + T/4], for pϕ0 nonnegative,

θ = sign(pθ)
[
arctan(tan(a(t− t1)/2)/

√
b)

]t

0
− (1− µ2)pθt, (2.2)

ϕ = arcsin
√

(1 + b)/2− (1− b) cos(a(t− t1))/2, (2.3)
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s1 s2 s1s2

Fig. 2.1. Action of the Klein group on geodesics.

with t1 = −π/(2a)− arcsin((2 sin2 ϕ0− 1− b)/(1− b))/a and b = p2
θ/(1 + (1−µ2)p2

θ).
The quadratures are extended by analyticity on the whole period, and obtained for
negative pϕ0 using a −2t1 time translation on ϕ and θ̇,

ϕ|pϕ0<0(t) = ϕ|−pϕ0
(t+ 2t1), θ|pϕ0<0(t) = θ|−pϕ0

(t+ 2t1)− θ|−pϕ0
(2t1).

Remark. Inner symmetries on each geodesic imply that, for pϕ0 nonnegative, ϕ(t) =
π − ϕ(2(t1 + T/4) − t) on [t1 + T/4, t1 + T/2], and ϕ(t) = ϕ(2(t1 + T/2) − t) on
[t1 + T/2, t1 + T ]. Similar relations hold for θ, since θ̇ = pθ/G(ϕ).

Corollary 2.4. The metric g is integrable in the class of harmonic functions.
When pϕ0 = 0, we get the equator if ϕ0 = π/2, the so-called pseudo-equators

otherwise.
Corollary 2.5. All geodesics with the exception of meridians, θ = cst, are

pseudo-equators.
Proof. Excluding meridians, on H2 = 1/2 one always has 0 < p2

θ ≤ G(ϕ0) ≤ 1/µ2,
and there is ϕ′0 in [0, π/2] such that p2

θ = G(ϕ′0). The geodesic is a pseudo-equator
for the new initial condition ϕ′0.

According to Proposition 2.3, θ̇ is periodic, and the variation of θ which is non-
decreasing over a period (we restrict ourselves to pθ ≥ 0 by symmetry) is

∆θ = 2π(1− (1− µ2)e0)

for a pseudo-equator of initial condition e0 = sinϕ0 > 0. This expression is also valid
for meridians passing through the solvable singularity e0 = 0. Indeed, there are jumps
in θ at the poles generating the whole family of meridians θ = cst starting from θ0
normalized to zero: θ(ϕ = 0+) = cst, θ(ϕ = π) = cst + π, θ(ϕ = 2π) = 2π, for a total
variation ∆θ = 2π. As ∆θ/(2π) ≤ 1, closed geodesics—including meridians— are at
least one period long. For pseudo-equators of initial condition e0 in ]0, 1] or meridians
(e0 = 0), T = 2π

√
1− (1− µ2)e20 by Proposition 2.3, so that the half-length of any

closed geodesic is bounded below by µπ.
Theorem 2.6. The injectivity radius of the metric g restricted to {r = c} ' S2

is i(S2) = µπ. A necessary condition for global optimality of g on X = R∗
+ × S2 is

c/µ ≤ 1.
Proof. According to the discussion at the end of §1, i(S2) ≤ µπ, whence the

equality given the lower bound of the half-length of closed geodesics. Let us show
that g is not globally optimal is c > µ. The time σ on the level set H2 = 1/2 is τ (see
(2.1)), up to a renormalization by H2|H=1, that is

σ(t, r0, pr0) = c(arctan(t/(r0 cosα0) + tanα0)− α0). (2.4)
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Then

sup
|pr0|<1

sup
t≥0

σ(t, r0, pr0) = cπ, (2.5)

this bound not being reached on any geodesic. Let now γ be a geodesic of length µπ
on S2 with one cut point. Since µπ < cπ, this geodesic is the projection on S2 of a
geodesic on X (see Lemma 4.1 in §4) which cannot be globally minimizing because of
the cut point on γ.
Remark. For the condition to be also sufficient, we would need the metric on X to
be complete so as to use the standard structure result on the cut locus (decomposed
into conjugate points and points on the separating line, see §4). This is not the case,
as will be stated in §3. The limit case is the flat case, c = µ = 1 and X ' R3 − {0}
where global optimality holds.

Corollary 2.7. The metric is not globally optimal on X in Kepler’s case (c/µ =√
2 > 1).

As θ̇ and ϕ share the same period, closed geodesics on S2 are characterized by
the fact that ∆θ/(2π) be rational (except for the equator, e0 = 1, which is the only
geodesic with constant ϕ). Conversely, a geodesic which is pseudo-equator for e0 such
that the quotient is irrational densely fills the strip [ϕ0, π − ϕ0] on the sphere. In
Kepler’s case where µ2 is rational, there is one closed geodesic passing through every
rational e0 since ∆θ/(2π) = 1− (1− µ2)e0. It is known [13] that there exist at least
three simple closed geodesics, and there are actually infinitely many of them—the
meridians—because of the symmetry of revolution. We thus discuss the existence of
simple closed geodesics modulo rotations on θ.

Proposition 2.8. There are exactly [1/µ2] simple closed geodesics modulo rota-
tions around the poles on (S2, g2).
Remark. The invariant µ thus measures the number of simple closed geodesics on
the sphere. The result degenerates for µ = 1, all great circles being meridians for
appropriate axes on the flat two-sphere.

Proof. For closed geodesics, ∆θ/(2π) is rational,

1− (1− µ2)e0 = p/q,

and simple ones are obtained for p = 1. Then e0 = (q − p)/(q(1 − µ2))|p=1 ≤ 1, so
1 ≤ q ≤ 1/µ2.

In Kepler’s case, 1/µ2 = 5 and there are five classes of simple closed geodesics (see
Fig. 2.2) among which meridians and pseudo-equator for e0 = 5/6 have π-rational
lengths (2π and 4π, respectively). In fact, it appears that the existence of closed
geodesics with length in πQ is expressed in terms of a standard Diophantine equation,
the Pell equation [16]. When µ2 is indeed rational, such closed geodesics are obtained
finding a rational e0 such that T/(2π) =

√
1− (1− µ2)e20 belongs to Q, that is solving

the quadratic Diophantine equation

a2 − (1− µ2)b2 = c2. (2.6)

This equation is a generalized Pell equation, parameterized by c. In Kepler’s case,
(2.6) takes the form 5a2−4b2 = 5c2 (with e0 = b/a), which is reduced to the standard
equation

x2 −Dy2 = 25c2, (2.7)
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e0 = 0, L = 2π e0 = 5/8, L = π
√

11 e0 = 5/6, L = 4π

e0 = 15/16, L = π
√

19 e0 = 1, L = 2π
√

5 e0 = 20/21, L = 22π

Fig. 2.2. Closed geodesics in Kepler’s case. The first five are the simple ones.

where D = 20 is not a perfect square, and where a = x/5 when 5 divides x. For
c = 4, (2.7) has obvious solution (x, y) = (30, 5). The general solution (xn, yn) is then
obtained solving the unitary Pell equation x2 − 20y2 = 1 whose particular solution
(x, y) = (9, 2) acts as a generator: xn = 30rn ± 100sn and yn = 30sn ± 5rn with

rn = [(9 + 4
√

5)n + (9− 4
√

5)n]/2,

sn = [(9 + 4
√

5)n − (9− 4
√

5)n]/(4
√

5).

To (x, y) = (30, 5) is associated the solution (a, b) = (6, 5) of the original equation
(2.6), defining the (simple) closed geodesic passing through e0 = 5/6 of Kepler’s case.
Infinitely many closed geodesic with π-rational length are designed so (e.g., e0 = 20/21
with c = 11—see Fig. 2.2—, etc.)
Remark. In Kepler’s case, meridians are the shortest closed geodesics. Indeed, the
length of a closed geodesic such that ∆θ/(2π) = p/q is 2πq

√
1− (1− µ2)e20 ≥ 2πµq.

If closed geodesics shorter than meridians exist, it is necessarily for q ≤ 1/µ. This
implies q = 1 or 2 in Kepler’s case (1/µ =

√
5 < 3), that is e0 = 0 (meridians,

precisely) for q = p = 1, or e0 = 5/8 for q = 2, p = 1, which has length π
√

11 > 2π,
since p has to be chosen such that 1 ≤ p ≤ q, p ∧ q = 1.

3. Convexity properties. The meridian half-planes of X are the subsets θ =
cst. They are all isometric to X0 = {θ = 0}, and the metric g has a flat restriction
on them [3]: g|X0 = dr2 + (r2/c2)dϕ2, that is

g|X0 = dr2 + r2dψ2, (3.1)

setting ψ = ϕ/c, ϕ in ] − π/2, π/2[ (upper half-plane). The metric (3.1) is in polar
form, and flat coordinates are x = r sinψ, z = r cosψ. This reduction is important
in Kepler’s case since such half-planes correspond to transfers towards circular orbits
(where the transversality condition of Pontryagin maximum principle reads pθ = 0,
that is θ = cst). This is used in practice to initialize, for instance, the computation
of transfers towards the geostationnary orbit.

The effect of the singularity r = 0 is clear in this context.
Proposition 3.1. The manifold (X, g) is not complete.



8 B. BONNARD AND J.-B. CAILLAU

Proof. The separatrices ϕ = cst, that is ψ = cst in polar coordinates on X0,
define geodesics on X which reach the singularity r = 0 in finite time.

Regarding the weaker property of (geodesic) convexity, the following holds.
Proposition 3.2. A necessary condition for convexity of the manifold (X, g) is

cµ > 1.
Proof. The diameter of (S2, g2) is the half-length of the longuest simple closed

geodesic which is clearly the equator: diam(S2) = π/µ. According to (2.5), the time σ
on the sphere is bounded over by cπ. The supremum not being reached, the condition
is necessary (no geodesic on X can reach a point that projects into a point on S2

further than cπ).
Remark. Given two points on X whose projections on the sphere are closer than
cπ from each other, Lemma 4.1 combined with Propositions 4.2, 4.3 of §4 ensures
the existence of a geodesic between them without conjugate point or point on the
separating line. The sphere is indeed compact, so complete, and one just has to
lift a minimizing geodesic onto X thanks to the afore-mentioned lemma. This is not
sufficient however to guarantee global optimality of the lifted geodesic since cut points
not of the two previous kinds may exist because of incompleteness of the metric on X.
It should moreover be noted that the two necessary conditions on global optimality
(Theorem 2.6) and convexity are incompatible. In the limit flat case c = µ = 1,
X ' R3 − {0} which is clearly not convex.

Corollary 3.3. The metric is not geodesically convex on X in Kepler’s case
(cµ =

√
2/5 ≤ 1).

The non-convexity is well depicted in meridian half-planes. In flat coordinates
indeed, it is obvious that a geodesic with initial angle ψ0 cannot reach a point with
angle beyond π + ψ0 because of the singularity r = 0 when c < 1 (see Fig. 3.2). Such
a pair of points actually projects into points on S2 further than cπ, and the analysis
in X0 is sufficient as is now stated.

While optimality properties are related to infinitesimal or global injectivity of
the exponential mapping, existence is connected to the presently discussed convexity
issues, that is to surjectivity of the exponential. The geodesic flow on the Riemannian
manifold X is obtained through the exponential mapping, defined for small times on
the whole cotangent space at the initial point, expx0,t : T ∗

x0
X → X, by

expx0,t(p0) = Π ◦ exp t
−→
H (x0, p0),

where exp t
−→
H is the one-parameter subgroup generated by the Hamiltonian, and Π :

T ∗X → X the canonical projection. By homogeneity, we restrict ourselves to the
level set H = 1/2, parameterizing geodesics by arc length, or consider alternatively
expx0

= expx0,t=1 which, according to Hopf-Rinow, is only defined on an open subset
of the cotangent bundle since the manifold is not complete. The same construction
holds on the complete manifold S2, and for y0 on the sphere, we set

Λt = exp t
−→
H2(Λ0),

where Λ0 = T ∗
y0

S2 ∩ {H2 = 1/2} ' S(T ∗
y0

S2). Both Λ0 and Λt are Legendrian sub-
manifolds of the fibered space of oriented contact elements [1] which is homeomorphic
to the spherical cotangent bundle, S(T ∗S2). The wavefront at time t is the pro-
jection W (y0, t) = Π(Λt). Its singularities run along the caustic of the Lagrangian
submanifold L = expy0

t
−→
H2(T ∗

y0
S2), that is the set of singular values of Π restricted

to L.
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Fig. 3.1. Above, wavefront on the sphere for initial condition e0 = 9.5e − 1 and time t = cπ
in Kepler’s case (c =

p
2/5). The exponential mapping is surjective if and only e0 < arcsin(π(c −

1/2)) ' 4.29e − 1. Below, projection of this wavefront on the open unit disc, D. The apparent
contour describes the default of surjectivity in the space of ellipses, Xe = R∗

+×D, that is before the

analytic prolongation to X = R∗
+ × S2.

According to Proposition 3.2, the surjectivity default of expx0
is described by

the wavefront W (y0, cπ), where y0 is the projection of x0 on S2 (see Fig. 3.1). The
following lemma allows us to reduce the study to meridian half-planes.

Lemma 3.4. The longuest geodesic from any point on S2 to the equator is the
negative half-meridian, pϕ = −1.

Proof. The quadrature (2.3) tells us that, for nonnegative pϕ0, the equator is
reached at time t = t1 + T/4. By symmetry, it takes t = −t1 + T/4 to reach the
equator on a geodesic such that −1 < pϕ0 < 0 (−2t1 > 0 translation). This time
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x

z

π/(2c)

π(1− 1/(2c))

ψ0

ψ0 − π

Fig. 3.2. Geodesics in meridian half-planes issuing from a point such that ψ0 ≥ π(1−1/(2c))—
that is ϕ0 ≥ π(c − 1/2)—cannot reach points in the sector defined by ψ ≤ ψ0 − π, and surjectivity
is lost.

increases towards π/2 + ϕ0 which is precisely the time required to reach ϕ = π/2 on
the negative half-meridian defined on H2 = 1/2 by pϕ0 = −1.

The picture in meridian half-planes thus characterizes surjectivity, as in Fig. 3.2.
Proposition 3.5. Given x0 in X, the exponential mapping expx0

is surjective
if and only if ϕ0 < π(c− 1/2).

4. Optimality results. The cut point on a geodesic is the first point where the
geodesic ceases to be minimizing, and the first conjugate point is the point where
moreover local optimality with respect to neighbouring trajectories is lost [12]. The
conjugate locus is the set of first conjugate points on geodesics issuing from on given
point. Jacobi’s theorem, which extends to the more general framework of optimal
control, asserts that the conjugate locus is a subset of the caustic, subset formed
by the first singular values of the exponential mapping. On a complete Riemannian
manifold, cut points are either conjugate points, or points on the separating line
where two minimizing geodesics of equal length intersect [8]. We are thus conducted
to examine immersivity and injectivity properties of the exponential mapping. To
this end, we begin with a preliminary lifting lemma.

Lemma 4.1. Through two points on X which project on S2 into points whose
distance is less than cπ passes one geodesic.

Proof. If the two points project onto the same one on the sphere, they lie on
a separatrix in some meridian half-plane, and the result is trivial. Otherwise, let σ
denote the distance between them, 0 < σ < cπ. On the compact manifold (S2, g2),
there is a (minimizing) geodesic of such length joining these points, which is lifted into
a (non necessarily minimizing) geodesic on X provided the following system admits
at least one solution (pr0, t) in ]− 1, 1[×R∗

+ (see lemma 2.2 and (2.4)),

pr0 = ((r22 − r21)− t2)/(2r1t), (4.1)
t = r1 sin(σ/c)/ cos(arcsin(pr0) + σ/c), (4.2)

where r1 and r2 are the r-coordinates of the two points on X. The (possibly de-
generate) hyperbola (4.1) always intersects the second curve in the prescribed do-
main. Indeed, at t = r1, the point (r1,−1) belongs to the second curve and is below
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pr0(t = r1) = (r22− r21)/(2r21) > −1. Conversely, when t→∞, pr0 → −∞ for the first
curve whereas the second one has an horizontal asymptote defined by pr0 = cos(σ/c).
The two curves must therefore cross somewhere in ]− 1, 1[×R∗

+.
Given x0 on X, we denote Cut(x0), C(x0) and L(x0), the cut locus, conjugate

locus and separating line of x0, respectively. The same notation is used for y0 on S2,
and we also denote Bo(y0, t) the open metric ball of center y0 and radius t which is
the union of wavefronts from y0 and times less than t. Let x0 be a fixed point on X,
and y0 its projection on the sphere.

Proposition 4.2. A point belongs to the conjugate locus C(x0) if and only if it
projects onto a point in C(y0) ∩Bo(y0, cπ).

Proof. If x belongs to C(x0), x cannot be on a separatrix in a meridian half-plane
starting from x0 since a direct Jacobi field computation proves that separatrices are
without conjugate points. As a result, x projects onto a point y of S2 at distance
0 < σ < cπ from y0. Now, the exponential on X is obtained from the one on the
sphere. Namely,

expx0,t(p0) = (r(t, r0, pr0), expy0,σ(t,r0,pr0)
((pθ0, pϕ0)/

√
2H2))

where
√

2H2 = (r0/c)
√

1− pr
2
0. A simple rank computation shows that, for positive

t and σ = σ(t, r0, pr0), expx0,t is singular if and only if expy0,σ is singular, too.
Thus, y is a conjugate point, and even the first one on the corresponding geodesic
(there would be a conjugate point before x, otherwise). Conversely, if y belongs to
C(y0)∩Bo(y0, cπ), there is a geodesic of length 0 < σ < cπ joining y0 and y on which
y is the first conjugate point. This geodesic is lifted to a geodesic on X between
x0 and x thanks to Lemma 4.1. The previous rank computation entails that x is a
conjugate point of this geodesic, and that there cannot be conjugate points before
since this would contradict the fact that y belongs to the conjugate locus.

Proposition 4.3. A point in the separating line L(x0) projects onto a point in
L(y0) ∩Bo(y0, cπ).

Proof. If x belongs to L(x0), there are two minimizing geodesics issuing from x0,
γ1 and γ2, intersecting at a positive time t. Then r1(t) = r2(t), which implies r1 ≡ r2
by virtue of Lemma 2.2 (parabolas of same curvature intersecting at two distinct points
are identical). The two geodesics share the same pr0 and project so into geodesics of
same length on the sphere, 0 < σ(t, r0, pr0) < cπ. These two geodesics are necessarily
minimizing up to the projection y in Bo(y0, cπ) of x on S2. There would be otherwise
a cut point before y, say, on the projection of γ1. Since S2 endowed with the metric
g2 is complete, such a point would be either a conjugate point, or a point on the
separating line of y0. In the first case, Proposition 4.2 implies that y′ would be lifted
on X into a conjugate point along γ1, prior to x, thus contradicting optimality of
the geodesic up to x. In the second case, there would be a third minimizing geodesic
starting from y0 on the sphere, intersecting the projection of γ1 at y′, lengths being
the same at the intersection. This new geodesic would clearly be lifted on X into a
geodesic intersecting γ1 strictly before x, lengths being again the same, contradicting
optimality of γ1 anew.

On (S2, g2), cut loci are obtained as the closure of separating lines. Since the
metric is analytic, the cut locus of any point is a finite tree whose extremities are
singularities of the conjugate locus [11, 15, 17]. We now give a complete description
of these sets which turn to be completely similar to the cut loci on an oblate ellipsoid
of revolution (see §1, Proposition 1.2).

Proposition 4.4. The cut locus of point of eccentricity e0 = sinϕ0 on the
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sphere is the line [θl, 2π − θl], with θl = π(1 − (1 − µ2)e0), included in the antipodal
parallel of the point, ϕl = π − ϕ0. The distance from the point to its cut locus is
tl = π

√
1− (1− µ2)e20, and is reached at the cut point on the corresponding pseudo-

equator.
Proof. In accordance with discrete symmetries discussed in §2, intersecting geo-

desics of same length are obtained using s1 or s2. Clearly, intersections generated by
s2 come prior to those generated by s1 (whose length is not less than T/2, T being the
period). These intersections are located in the antipodal parallel, and a direct com-
putation on the quadratures of Proposition 2.3 shows that the two geodesics defined
on H2 = 1/2 by a fixed pθ and ±pϕ0 intersect at tl = T/2 = π/

√
1 + (1− µ2)p2

θ. To
conclude, it is sufficient to check that these two geodesics actually do not intersect
before. This is obvious since the second one is obtained by a −2t1 translation of the
first, with −2t1 ≤ T/2, and since ϕ is monotonic on the half-period [t1, t1 + T/2] for
nonnegative pϕ0. The closure of the separating line is obtained letting p2

θ tend to
G(ϕ0) (letting pθ tend to 0, one gets for tl = π the intersection of half-meridians op-
positely orientated located at θ = π which defines the center of the locus), that is for
the associated pseudo-equator, so that tl = π

√
1− (1− µ2)e20, θl = π(1− (1−µ2)e0).

As a result, we retrieve again the estimation of the injectivity radius of Theo-
rem 2.6. Indeed,

i(S2) = inf
ϕ0
π

√
1− (1− µ2) sin2 ϕ0 = µπ,

reached on the equator where the cut point is a conjugate point. This is in fact the
case for any initial point, as a consequence of the following description of the conjugate
locus.

Proposition 4.5. Conjugate times on a geodesic issuing from ϕ0 defined on
H2 = 1/2 by 0 < p2

θ < G(ϕ0) and positive pϕ0 are zeros of

(cosϕ0/(sin2 ϕ0−b)1/2−a3(1−b)(1−µ2)t/8) sin(a(t− t1))−cos(a(t− t1)) = 1 (4.3)

with a, b and t1 functions of pθ as defined by Proposition 2.3. The distance from any
point to its cut locus is attained by a conjugate point on the corresponding pseudo-
equator.

Proof. The constant adjoint state pθ parameterizes Λ0 ' S(T ∗
y0

S2) whenever pϕ

is nonzero. A straightforward differentiation of the quadratures with respect to pθ in
such cases gives the result. Letting p2

θ tend to G(ϕ0), (4.3) degenerates in sin(at) = 0
whose first admissible zero is T/2, which is thus the cut and first conjugate point on
the associated pseudo-equator.

An example of cut and conjugate loci is represented Fig. 4.1 in Kepler’s case.
The conjugate locus is a deformation of the astroid obtained for the oblate ellipsoid
of revolution to which (S2, g2) is conformal.

Corollary 4.6. A necessary and sufficient condition for a geodesic issuing
from a point on X with eccentricity e0 not to have conjugate points or points on
the separating line is e0 ≤

√
(1− c2)/(1− µ2). In Kepler’s case, the condition is

ϕ0 ≤ π/3.
Proof. Simply write that the distance from the projection of the point on S2 to

its cut locus (see Proposition 4.4) is not less than cπ.
We end the paper going back to the original non-extended averaged metric (0.2)

on the space of ellipses, Xe = R∗
+×D. The last result essentially asserts that Kepler’s
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Fig. 4.1. Wavefront, conjugate and cut loci for e0 = 9.5e−1. The bifurcation of the wavefront is
observed on (S2, g2)—realized as the oblate ellipsoid to which it is conformal—, and the swallowtail
singularities appearing run along the caustic containing the conjugate locus. The inclusion of the
cut locus in the antipodal parallel is clearly illustrated in (θ, ϕ) coordinates.

geodesics may only lose optimality because of completeness—that is existence—issues.
Theorem 4.7. Conjugate loci and separating lines of the averaged Kepler metric

on the space of ellipses are always empty.
Proof. According to the previous analysis, conjugate points or points on the

separating line define cut points in projection on the sphere. Now, cut loci on S2 are
included in antipodal parallels, so that cut points can only be reached by crossing the
equator, that is the parabolic boundary e = 1 of Xe. There are no such geodesics in
the space of ellipses.
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Linien zu sein, J. Reine Angew. Math. 91, pp. 23–53, 1881.

[15] S. B. Myers, Connections between geometry and topology I and II, Duke Math. J. 1, pp. 376–
391, 1935, and 2, pp. 95–102, 1936.

[16] T. Nagell, Introduction to number theory, Wiley, 1951.
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