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Post-Newtonian approximation for isolated systems calculated by matched asymptotic expansions

Olivier Poujade and Luc Blanchet
Institut d’Astrophysique de Paris (C.N.R.S.), 98bis boulevard Arago, 75014 Paris, France
(Received 21 December 2001; published 12 June 2002

Two long-standing problems with the post-Newtonian approximation for isolated slowly moving systems in
general relativity ardi) the appearance at high post-Newtonian orders of divergent Poisson integrals, casting
doubt on the soundness of the post-Newtonian series(ianthe domain of validity of the approximation
which is limited to the near-zone of the source, and preventsapgpri, from incorporating the condition of
no-incoming radiation to be imposed at past null infinity. In this paper, we resolve pra@blémiterating the
post-Newtonian hierarchy of equations by means of a (wisson-typg integral operator that is free of
divergencies, and probleritii) by matching the post-Newtonian near-zone field to the exterior field of the
source, known from previous work as a multipolar-post-Minkowskian expansion satisfying the relevant bound-
ary conditions at infinity. As a result, we obtain an algorithm for iterating the post-Newtonian series up to any
order, and we determine the terms, present in the post-Newtonian field, that are associated with the
gravitational-radiation reaction onto an isolated slowly moving matter system.

DOI: 10.1103/PhysRevD.65.124020 PACS nun§er04.25.Nx, 04.30-w

[. INTRODUCTION pose the practical question of the reliability of this approxi-
mation when comparing the theory’s predictions with very
) o ) precise experimental results. It is therefore highly desirable
The post-Newtonian approximation, or expansion wheng assess the nature of these difficulties—are they purely
the speed of light— +, has been formalized in the early technical or linked with some fundamental drawback of the
days of general relativity by Einste[d], Droste[2], and de  approximation scheme—and eventually to resolve them.
Sitter[3]. Since then, it has provided us with our best insightThis is especially important in view of the fact that inspiral-
into the problems of motion and gravitational radiation, twoing compact binaries, when they are detected and analyzed
of general relativity’s most important issues. Concerning thepy gravitational-wave experiments, will necessitat@riori
problem of motion, we quote the dynamics Nfseparated theoretical knowledge of the gravitational-wave signal at
bodies at the first post-Newtoniail PN, or 1¢?) order;  some very high post-Newtonian orddrl—45. In this paper,
works of Einstein, Infeld, and Hoffmanp] and other au- let us distinguisiand resolvigthe two basic problems faced
thors[5-7], and the dynamics of extended fluid systems upby the post-Newtonian expansion.
to the 2.5 PN level of gravitational radiation reaction; works  The first problem is that in higher approximations some
of Chandrasekhar and collaboratd®&-10] and followers divergentPoisson-type integrals appear. Recall that the post-
[11-19. In the case of two compact objects, we know theNewtonian expansion replaces the resolution of a hyperboli-
2.5 PN equations of motion of the binary pul§20—-23, and  clike d’Alembertian equation by a perturbatively equivalent
the 3 PN equations of motion of inspiraling compact binarieshierarchy of ellipticlike Poisson equations. Rapidly it is
[24-28. The specific contribution of the gravitational- found during the post-Newtonian iteration that the right-hand
radiation reaction has been obtained up to the 1.5 PN relativeide of the Poisson equations acquires a noncompact support
order by the method of matched asymptotic expansions fofit is distributed over all spageand that the standard Poisson
extended fluid$29-33, and by means of balance equationsintegral diverges because of the bound of the integral at spa-
for compact binary systeni84,35. Concerning the problem tial infinity, i.e., r=|x|— +, with t=const. For instance,
of gravitational radiation, the work has focused on the exsome of the potentials occurring at the 2 PN order in Chan-
pressions of the multipole moments of general fluid systemsrasekhar’'s workf9] are divergent, so the corresponding
[36—40, and on the gravitational-wave flux emitted by in- metric is formally infinite! In fact, Kerlick [14,15 showed
spiraling compact binaries, including the specific effects ofthat the post-Newtonian computation in the manner of Chan-
wave tails, up to the 3.5 PN ordpt1-45. drasekhaf8-10], following the iteration scheme of Ander-
The “standard” post-Newtonian approximation, at the ba-son and DeCani¢11], can be made well-defined up to the
sis of most of the body of work quoted previously, is known 2.5 PN order, by keeping some derivatives inside some cru-
to be plagued with some apparently inherent difficulties,cial integrals to make them finifd 2,13. However, the latter
which crop up at some high post-Newtonian order like 3 PNremedy does not solve the problem at the next 3 PN order,
Up to the 2.5 PN order, the approximation can be worked outvhich has been found to involve some inexorably divergent
without problems, and at the 3 PN order the problems can bPoisson integralfl14,15|.
solved specifically for each case at haiseée, for instance,
Ref.[27]). However, it must be admitted that these difficul- ————
ties, even appearing at higher approximations, cast doubt on'Nevertheless, these divergencies were not a problem when con-
the actual soundness, from a theoretical point of view, of th&idering the equations of motion because the gradients of these
post-Newtonian expansion. What may be worse is that theyotentials, which parametrize the equations, were finite.

A. Problems with the post-Newtonian expansion
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These divergencies come from the fact that the posttaken from outside its own domain of validity.
Newtonian expansion is actually a singular perturbation, in To the lowest post-Newtonian orders one can circumvent
the sense that the coefficients of the successive powers of 1this difficulty by consideringetardedintegrals that are for-
are not uniformly valid in space, since they typically blow up mally expanded whers— +% as series of “instantaneous”
at spatial infinity like some positive powers of For in-  Poisson-like integralgl1]. This procedure works well up to
stance, Rendall46] has shown that the post-Newtonian ex- the 2.5 PN level and has been shown to correctly fix the
pansion cannot be “asymptotically flat” starting at the 2 PN dominant radiation reaction term at the 2.5 PN ofde;,15.
or 3 PN level, depending on the adopted coordinate systen¥nfortunately, such a procedure assumes fundamentally that
The result is that the Poisson integrals are in general badl{fe@ gravitational field, after expansion of all retardations
behaving at infinity. Physically, this can be understood by thd /¢—0, depends on the state of the source at a single time,

fact that the post-Newtonian approximation is valid only ini" keepi_ng with the instantaneous character of the Newtonian
the near zone of the sourdeee below while the Poisson interaction. However, we know that from the 4 PN order the

integral extends over the whole three-dimensional space, irp_ost-Newtoma_n field(as weII_ as the source's dynamics

cluding the regions far from the source where the approxi-ce"".Ses to.be given by afunct|or_1al O.f the source parameters at
mation breaks down. Therefore, trying to solve the post-a .sm.gle time, becausg of .the imprint of gravnatlor.]gl—wlave
Newtonian equationé by mean’s of the standard Poissotr?'ls in the near zone field, in the form of some modification,

integral does noa priori make sense. This does not meanat the 1.5 PN relative order, of the radiation reaction force

that there is no solution to the problem, but simply that the[gtla_rggd -g'rirsrtofﬁ%égﬁggrgﬂop?;:"\é?v\vlggiqa%ganasﬁﬂeoz
Poisson integral does not constitute the correct solution o 9 9

the Poisson equation in the context of post-Newtonian ex: N order. We face here a true difficulty, which is fundamen-

pansions. So the difficulty is purely of a technical nature, anc{a"y linked to the nature of the post-Newtonian approxima-

will be solved once we succeed in finding the appropriateI
solution to the Poisson equatiém solution to the problem
of divergencies has been proposed by Futamase and Sch

The aim of the present paper is to resolve the two latter
lE)&oblems. We shall prove that the post-Newtonian expansion

. . . can beindefinitelyreiterated, while incorporating the correct
E::Ze] E\?\?ed :hu;ﬁr?(ilso%vab. e-ll-gvevlr I?'?Ergggg cllsoiltzrr??rt:i\;glt(\)/atlrlljee boundary conditions satisfied by the wave field at infinity. In

formalism, which avoids the appearance of divergencies beqart|pulgr, we shal'l get new II’lSI.ght.S about Fhe problem of
cause of the finiteness of the integration region. gravitational-radiation reaction inside an isolatédost-

The second problem has to do with the near-zone Iimita{,\lvgv\ﬁgzzciysima‘n-ro S(‘)Z':E;Cv?oﬂirg?%%;f (2\/6;%6;?;:22 d
tion of the approximation. Indeed the post-Newtonian expan- ' yp radg

sion assumes that all retardatiarie are small, so it can be solution .Of the Poisson equation ‘.N't.h.a noncompact support
. ! . source, in the form of an appropriafieite partof the usual
viewed as a formahear-zoneexpansion whem -0, which Poisson integral: namely, we regularize the bound at infinit
is valid only in the region surrounding the source that is of regral: Y 9 y
. . of the Poisson integral by means of a process of analytic

small extent with respect to the typical wavelength of the . . )

) - . - continuation, analogous to the one already used to regularize
emitted radiationr <\ (if we locate the origin of the coor-

dinatesr =0 inside the sourge Therefore, the fact that the the retarded integrals in Reff36,39,40. Our generalized

coefficients of the post-Newtonian expansion blow up at s a§olution constitutes a particulévell-defined solution of the
SO P exp . b b problem; the most general solution is the sum of that particu-
tial infinity, whenr — + o0, has nothing to do with the actual

. . . .lar solution and the most general solution of th rr nd-
behavior of the field at infinity. The serious consequence i ar solution and the most general solution of the correspond

that it is not possiblea priori, to implement within the post- ?ng homogeneous equation, i.., the source-free Laplace

T . o . equation. The homogeneous solution should be regular all
Newtonian iteration the physical information that the matterOver the matter systertwe are considering smooth matter

system is isolated from the rest of the universe. Most impor'distributions) and we find, after summing up the post-

tantly, the no-incoming-radiation condition, imposed at PaSi\ewtonian series, that it can be thoroughly written with the

null infinity, cannot be taken into accourd,priori, into the . . .
! N e elp of some tensorial functions of tim&[*"(t), wherelL
scheme. In a sense the post-Newtonian approximation is ngt. . s LA :
P PP =j,---i; denotes a multi-index with indices[49]. At this

“self-supporting,” because it necessitates some information s . ; .
PP g stage, considering the post-Newtonian iteration scheme

alone, we cannot do more and therefore we leave the func-
. v .

2The problem is somewhat similar to what happens in Newtoniar]t‘lons. A'— (1) u.nS}:’)’eCIfle('Zi. We refer o them as some
radiation-reaction” functions.

cosmology. Here we have to solve the Poisson equatibh= Th uti fth bl fth limitati f
—47Gp, where the density of the cosmological fluid is constant e solution of the problem of the near-zone limitation o

all over spacep=p(t). Clearly the Poisson integral of a constant € POSt-Newtonian expansion resides in the matching of the
density does not make sense, as it diverges at the bound at infinifj¢@r-zone field to the exterior field, a solution of the vacuum
like the integralfrdr . This nonsensical result has occasionally been€duations outside the source which has been developed in
referred to as the “paradox of Seeliger.” However, the problem isPrevious works[36,32 using some postinkowskianand
solved once we realize that the Poisson integral does not constituf@ultipolar expansions. In the case of post-Newtonian
the appropriate solution of the Poisson equation in the context o$ources, the near zone, i.es\, covers entirely the source,
Newtonian cosmology. A well-defined solution is simply given by because the source’s radius itself is such #w@h. Thus the
U=—2aGpr2 near zone overlaps with the exterior zone where the multi-
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pole expansion is valid. Matching together the post-Sec. IV, we show that the matching works up to any post-

Newtonian and multipolar—post-Minkowskian solutions in Newtonian order, and permits the determination of all the

this overlapping region is an application of the method ofunknowns, in both the external and inner fields. Finally, in

matched asymptotic expansions, and has frequently been a§EC. V we check that our post-Newtonian solution satisfies

p||ed in the present context, both for radiation_reacﬁﬁg_ the harmonic-coordinate condition as a consequence of the

33] and wave-generatiof87—4( problems. equations of motion of the source. The technical proofs are
The exterior multipolar—post-Minkowskian field origi- rélegated to Appendixes A, B, and C.

nally obtained in Ref[36] depends on some “multipole-

moment” functions, say</**(t) [whose components are as- B. Notation for the Einstein field equations

sociated with some source multipole moments, e.g., For the problem at hand, let us introduce an asymptoti-

[ (t), J.(t),...], which must be left unspecified as long cally Minkowskian coordinate system for which the basic

as we consider only the external vacuum solution. In theyravitational-wave amplitudeh””=/—gg"*— »*”, is di-

work [40], we have shown that the multipole momentsvergenceless, i.e., satisfies the de Donder or harmonic gauge

X{*"(t) are entirely determined, up to any post-Newtoniancondition d,h**=0. Here, g#” denotes the contravariant

order, from the requirement of matching to a post-Newtoniarmetric (satisfyingg”*g,,= &,), g is the determinant of the

solution. In the present paper, we shall further show that thgovariant metricg=det(g,,), and »*" represents an auxil-

radiation-reaction functiond/"(t), parametrizing the post- iary Minkowskian metric with signaturet2. With these

Newtonian solution, are also uniquely fixed, up to any postdefinitions the Einstein field equations can be recast into the

Newtonian order, by the matching. In particular, we shalld’Alembertian equation

find that the latter functions include correctly the contribu-

tion of wave tails, arising at the 4 PN order, as determined in [Jh# = 167G e (1.1
Refs.[31-33. We shall also recover by a different method ct ’

the result of Ref[40] concerning the multipole moments

X{(1). where O = #"d,d,=—1/c?9*/at>+ A is the (flat space-

A comment is in order regarding the possibility of deter-time) d’Alembertian operator. The source term:”, can
mining the near-zone field by matched asymptotic expanrightly be interpreted as the “effective” stress-energy
sions up toany post-Newtonian order. Indeed, the method pseudotensor of the matter and gravitational fields in har-
pre-supposes the existence of the exterior near zone fanonic coordinates. It is conserved in the usual sense, and
which a<r<\. Now if a given physical system, whose dy- that is equivalent to the condition of harmonic coordinates:
namics is described by Newton’s theory, emits gravitational
radiation at some Newtonian fundamental wavelengh d,h*"=0&4,m"=0. (1.2
we expect that when taking into account the post-Newtonian
corrections up to the post-Newtonian orderit will have a  The pseudotensor*’ is made of the contribution of the
radiation spectrum composed of harmonics betweematter fields, described by a stress-energy tefgd; and
~2\y/nand~2\y. Indeed, this is the case of the radiation the one due to the gravitational field, given by the gravita-
from a binary system moving on a circular orbit, for which tional source term\“”; thus,
we havd 2/(n+2) A=<\, pn=2\y. Therefore, ifnis large
enough, sayn=2\/a, we expect that there will be some
part of the radiation whose frequency is too high for the T'=|g|T*"+ Te-c M 1.3
exterior near zone to exist. What we want to say is that the

formulas we shall obtain for. the post—Ngwtonian.fieId _of aThe conservation properifl.2) is equivalent to the conser-
source “up to any order” are mdggd physically vallq, strictly vation, in the covariant sense, of the matter tendgit~”
speaking, only up to some finite post-Newtonian order_ g The exact expression af**, taking into account all the

~2\y/a, wherea is the size of the source, but that, if we qnjinearities of the Einstein field equations, reads
consider a source which is less relativistic, for instance

which is obtained by “slowing down” our source so that its

4

. o C 1
Newtonian Wavele_ngth gets twice its original valisay), the AFY=— hP”aiah#u d,h*79,h"°+ Eg*“’gp(,a}\hf”a,h"A
samepost-Newtonian formulas can then be used for the new
source up to approximately twice the previous post- —g"g,,d\h*"9,h™ —g*Pg,, .,h#79 ho>

Newtonian order.

The plan of this paper is as follows. In Sec. I, we recall
the construction in Ref.36] of the multipole expansion of
the external field, and we obtain thanks to a result of Ref.
[32] the near-zone expansion of that external field ready for X(nggm—gﬁgm)&ph”&gh“. (1.9
subsequent matching. In Sec. Ill, we implement the post-

Newtonian iteration of the inner field inside the matterlt is clear from this expression that*” is made of terms
source, and we find the far-zorieultipolar expansion of  which are at least quadratic in the gravitational-field strength
that post-Newtonian solution, also ready for matching. Inh#” and its first and second space-time derivatives.

1
+0p09" NN+ 2 (29409 — g ")
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In this paper, we look for the solutions of the field equa- e
tions (1.1)—(1.4) under the following hypotheses. First, we Vm=1, hf‘rﬁ)(x,t)zE nL(0, )i (). (2.2
assume that the matter tensbt” has a spatially compact 1=0
support, i.e., can be enclosed into some timelike world tub
sayr=a, wherer =|x| is the harmonic-coordinate radial dis-
tance. Second, we assume that the matter distribution insi
the source is smooth: i.eT*"(x,t) e C*(R*. We have in
mind a smooth hydrodynamical “fluid” system, without any
singularities or shockga priori), that is described by some
Eulerian-type equations including high relativistipost-
Newtonian corrections. In particular, we exclude from the ,
start any sources containing black holes. Notice, however, uN(m =0, 2.4
that it makes sense to apply the formulas derigegdriori ) ) ) .
only for smooth matter distributions to systems containing?heréA(m denotes thenth post-Minkowskian piece of the
compact objectsincluding black holes described by some ~gravitational source term defined by Hd.4), i.e., in which
sort of point-particle singularities; see, e.g., Réfl—45. we have msertgd the previous p(_)st—Mlnkowsk|ar_1 iterations
Finally, in order to select the physically sensible solution ofuP to the previous ordem—1 (with the convention that
the field equations, we choose some boundary conditions dt(1)=0). Because Eq(1.4) is at least quadratic in nonlin-
infinity corresponding to the famous no-incoming-radiation€arities, it is clear that only the preceding iteratiossm
condition. In this paper, we shall rely on a specific construc-—1, are necessary at any post-Minkowskian oner
tion of the metric outside the domain of the source-@), Now the solution that was obtained in Rg86] has two
which was achieved in Ref36] under the assumption that main characteristics. The first one is related to its particular
the gravitational field has been independent of tistation- ~ near-zone structure, which will play a fundamental role in
ary) in some remote past, in the sense tha& the present paper. Namely, it was proved that each one of the
—T=alat[h**(x,t)]=0. This condition is a means to im- multipolar—post-Minkowskian coefficientshf;yy in  Eq.
pose, by brute force, the no-incoming-radiation condifion. (2.1)—that we recall are only defined wher0—admits a
singular near-zone expansion, i.e., whren0, with the fol-
lowing structure:

eThe h{m.'s are certain functions of the radial coordinate
c%nd of timet. Inserting the MPM expansiof2.1) and (2.2)
into the vacuum field equatior{¢.1) and(1.2) we obtain, at
any post-Minkowskian ordem,

DhéLﬁl'I}):AéLn:[h(l)l e !h(m—l)]! (23)

II. EXTERIOR FIELD

A. Multipolar expansion of the nonlinear vacuum field VNel\,

In this section, we review some material from RH6]
concerning the construction ehcuummetrics by means of hiim (X, 1) = > nra(in NPFmL.ap(t) + RN,
mixed multipolar and post-MinkowskiaiMPM) expansions. lap
The so-called MPM metrics aim at describing the gravita- (2.9

tional field in the region exterior to a general isolated system.

In fact they are mathematically defined in the open domair)("here the mgltipolar ordere N, where the powers af.are
Ri X R, i.e., R* deprived from the spatial origin=|x| =0, such thatae Z with a,,,<a<N (with a,;, a negative inte-

but of course they do not agree physically with the real so-ge'j’ and where the powers of frarepe N with p<m~—1.

lution when O<r<a, since they are vacuum solutions. For Tgeenr?sg'%ﬁl ?r:\éergoesrl-cl\e/li;vi]:\?vzlgaﬁc%l:?e:o;ngn ’s\;vtri]sl;ﬁir;s
our present purpose the point is that the most general phys?— .p(m)ﬂ_w whzn ksl ; and setsre
cally admissible solution of the vacuum field equations hadimin ) Y

been obtained in Ref36] by a specific construction of the power of the Iogquthmigma)(m)zm—l, tends to |_nf|n|ty
post-Minkowskian solution, say with m. The functionsF () , ,(t) are smooth functions of

time, F{y( ap€ C”(R), which are to be computed by means

of the algorithm proposed in Reff36], and appear as com-

hée= > G™hfm), (2.)  plicated nonlinear functionals of some more elementary
m=1 functions parametrizing the linearizean& 1) approxima-

tion. The remainder term in E@2.5) is such that
whose coefficients are in the form of multipolar series, or

equivalently decompositions in symmetric-trace-fl&IF) Rf‘,ﬁ)N(X,t)ZO(rN) when r—O0 and t=const.
products of unit vectors, , that are equivalent to the usual (2.6
decomposition in spherical harmonig9]:

+

The LandauO-symbol takes its usual meaning. This remain-
der admits also some specific differentiability properties
SHowever, the condition of stationarity in the past, though muchf€l to [36] for the details. The gravitational source term
weaker than the actual no-incoming radiation condition, does nof\(m admits exactly the same near-zone structure as in Eq.
seem to entail any physical restriction on the applicability of the(2.5) with the exception thab,,,,=m—2 in this casdthat is,
formalism, even in the case of sources which have always beethe maximal power of the logarithms increases by one unit
radiating. when going from the source to the solutjon
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The second important characteristic of the MPM solutionform of a general retarded solution of the source-free wave
concerns the constructive formula which defines it. We findequation, parametrized by some tensorial functifj$, (t).
that each one of the post-Minkowskian coefficiehf§) is ~ We assume that these functions are STF with respect to the

explicitly constructed by means of the following6]: multi-index L: i.e., X4, =X | so the multiderivative),
in Eq.(2.7) is a STF ondsee Ref[49] for the notation. The
h{my = FPDRe,[rBA(m) latter construction represents the most general physical solu-

tion of the field equations outside the souf86].
; Let us now proceed with the formal resummation of the
o post-Minkowskian series. That is, once the resyRs)—
+Z a"[ X(m)"( )} @7 (2.7 have been established for any oraerwe sum them
from m=1 up to infinity. In this way, we obtain some for-
The first term involves a special type of generalized inversenulas which are valid formally for the complete post-
d’Alembertian operator, built on the standard retarded intetinkowskian series, and, presumably, could hold true in a

gral, more rigorous context of exact solutions. After summation
we shall “forget” about the post-Minkowskian expansion,
RelJ:rBA(m)](th) and consider that the exterior fieid,; represents merely the
1 ddy multipole decomposition of the actual fielo” pu_tsidg the
=— f ly|® Al (y.t=Ix=yllc), compact support of the sou'rc(eevertheless, it is wise to
4 ) pelx—yl keep in mind that the solution came from a formal post-

(2.9  Minkowskian summation We denote the multipole decom-
position by means of the calligraphic lettarf. Therefore,
which extends over the whole three-dimensional space, budur definitionis that the multipole expansiaiv{(h*”) of the
inside which a regularization factor has been “artificially” field outside the isolated source is merely the external solu-

introduced, namely tion constructed previously by means of the MPM method,
5 and resummed over the post-Minkowskian inahex
~ r
rBE(d : (2.9 M(h#")=hkr. (2.12

This definition is quite legitimatéand rather obvioysbe-
cause we know that the MPM metric constitutes the most
general solution for the exterior field. Thug{(h*") is a
solution of the vacuum field equations, now considered out-

whereB denotes a complex numb& e C, andr, represents

an arbitrary constant length scale. The indication $t&nds
B=0

for the finite partat B=0, and means that one should first > - . . ”

compute the Laurent expansion whBr-0 of (the analytic side the physical domain of the source;a (Wh!le hex had

continuation of the B-dependent integraP.8), and, second, P€€n constructed for any>0). In that domain, we have

pick up the finite part aB=0 in that expansion, i.e., the €vidently the numerical equality

coefficient of the zeroth power d@. The main property of M(h®")=h#" (when r>a). 213

this generalized retarded operator, which we shall from now

on abbreviate as After summation of Eqs(2.5 and(2.6) overm, we get the
near-zone structure

Ret[A(m)]_ FPDRet[rBA(m) (2-19
YNeN, M(h#)=2 nrd(Inn)PEE, (H)+0(rN),

is that, for source terma i) admitting a near-zone structure (2.14

of the type(2.5), in which the functionsF{";, (1) ==5%,G"F{, 4 »(1), and
wherea<N andp=0. Not|ce that there is no lower bound

D[DRe Alml=Alm) - (2.1)  for a becaus&,(m)— —* whenm— + o; similarly there

is no upper bound fop. Secondly, coming to the construc-
Because the second term in E&.7) is a retarded solutlon of tive formula(2.7) we obtain

the source-freewave equation, we see therefore t

represents indeed a solution of the wave equation we had to M(hﬂV):D';g-t[M(AMV)]

solve:Oh{y = Afy, . However, this is not sufficient because

we have also to solve the harmonic-coordinate condition v r

(1.2). We shall refer tq36] for the definition of an algorithm + 2 aL[ Xt (t_ _) ] ' (219

which permits us to compute, simply from the algebraic and

differential structure of the vacuum field equations, the necwhereX{*"(t) = GmX(m)L(t). In the following, we shall
essary form of the second term in EQ.7), in such a way regard the STF funcnoné(’”(t) as the “multipole mo-
that the harmonic-coordinate condition will be satisfied:ments” of the source, because they describe the physics of
d,h(=0. In fact, we shall not need, in the following, to be the source as seen from the exterior. We do not need to be
more precise about the latter term; simply we keep it in themore precise at this point. Let us simply comment that by

124020-5



OLIVIER POUJADE AND LUC BLANCHET PHYSICAL REVIEW D65 124020

imposing the harmonic-gauge conditiéh.2) we find that and of a particular “antisymmetric” wavé.e., retarded mi-
there are only six components of these functions which ar@us advancedsolution of the source-free d’Alembertian
independent, and this yields the definition of six independengquation. The result of Ref32], Eq. (3.2), reads

STF source multipole moments(t), J (t),--- (see Ref.

[40] for the precise definition Furthermore, the multipole- S

moment functionsX{*”(t) have already been calculated in Ord M(A#) =T Y M(A#")]

terms of the stress-energy tensor of a post-Newtonian source
in Ref. [40]. However, we prefer to leave these functions 4G 2 (). [ REY(t=rlc)—RE(t+r/C)
undetermined because we shall recover their expressions by =T a or :
means of a somewhat different method, and the agreement

we shall find with the result of Ref40] will constitute a (2.19
crucial check of our computation.

For completeness we present in Appendix A the proof of this
result—a version of it which is somewhat improved with
In anticipation of the matching we consider next the infi- respect to that given in R€f32]. The first term in Eq(2.19

nite near-zone reexpansion, when-0, of the multipole ex-  involves an operatof I, acting on each of the individual
pansionM(h*”) determined in Eq(2.15. We have already terms of the formal near-zone expansion whose structure is
obtained the general structure of that expansion, given by Egjiven by Eq.(2.16), and which is essentially defined by the
(2.14). Let us denote with the help of some overline thesolution of the wave equation that is obtained by iterated use
infinite near-zone expansiorwithout remainde, whose  of inverse Laplace operators, and regularized by means of

B. Near-zone expansion of the multipole decomposition

structure is therefore given by our B-dependent finite part procedure. Thus,
M(h#)y =D, nrd(Inr)PEEY (1), 2.1 —_——
() =2 Acrd(nnPFEL (0, (216 T )
whereaeZ andpe N (and, of course, the multipolar index e\ 2 N
| e N). We must be careful to distinguish the fully fledged = FP > (ﬁ) A YBM(AR)],
multipole decompositionM (h#”), which is defined as soon B=0 k=0
asr >0 and numerically agrees with the exact solution wher- (2.20

everr>a (in particular wherr — + ), from its formal near-
zone reexpansiomM (h#”). Later we shall indicate the post- i1 kel ] )
Newtonian expansion by means of the same overlingvhereA™*""=(A"%)""%, and the action of the inverse La-
notation. Indeed, the near-zone expansion is really an expaRlacian on the generic term of E(2.16) follows from
sion whenr/\—0, which is equivalent to an expansion
when c— +, since the wavelength of waves ls=cP A
. . . . . A l[n rB+a(|nr)p]
(with P a typical period of the internal motipnFrom the L

result(2.15 we can write ( d )p Biat2

n.r
(Brat2-D(Brat3+l)
(2.21

—

M(h#") =0 el M(A)]

dB

s [LH) 017

+|Zo o r —~
[see also Eq(A16) in Appendix A]. The operatof ! plays
The overline in the second term means that one should exhe central role in the present paper. It can be regarded as
pand the retardations-r/c whenr/c—0. More explicitly, ~ (the regularization 9fthe formal post-Newtonian expansion,
we have whenc— +o, of the inverse d’Alembert operator, sdy *
- ' _ =1/0=1[A—(1/c?)4?]. We can refer t& ~* as the opera-
I T G tor of the instantaneous potentials, because it acts on the time
a Ty ]ZO W’yl-(r IXEW, (218 yariablet only through time derivations, instead of involving
a full integration as for the operator of the retarded potentials
where the superscrig}) indicatesj successive time deriva- Ore;- Notice thatZ ~* is closely related to the operator of
tions. The main problem is how to treat the first term in Eq.the symmetric potentiali[D,;eltJr D;dl\,]; see Ref[32] for
(2.17. What we essentially want is to know how one candiscussion and the precise relation between these operators.
“commute” the operations of taking the near-zone expansioms for the second term in E¢2.19), it is made of an “anti-
and of applying the retarded integral. In fact, the problem hasymmetric” wave, which represents in fact a solution of the
already been solved in Rdf32], which succeeded in writing d’Alembertian equation that is regular in a neighborhood of
the first term in Eq(2.17) as the sum of an “instantaneous” the originr =0. Its near-zone expansiofc— 0 is composed
operator, acting on the near-zone expansion of the sourcenly of terms containing some odd powers of:1/
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REV(t—r/c)— R (t+rlc) The functionsR {*"(t) are known from Eq(2.24, but the
L or multipole moments({**(t) have not yet been specified at this
stage (though they have already been calculated in Ref.
be a o (2 +Mlv) [40]). Therefore, we have succeeded in computing the near-
_ —E are) R{'(®) zone expansiomM (h#”) as a functional of the sole unknown
=1 (2i+1)! g2+l constituted by theX{*”’s; only by matching can these func-
tions be determined.
(2k+21+1)
1 &= R (M)

- - k ot 7 Ill. INTERIOR FIELD
R kEOA V= Gz (2.22

A. Post-Newtonian expansion of the near-zone field

See also Eq42.4)—(2.7) in Ref.[32] for alternative forms of Up to now, we have solved the Einstein field equations in
the antisymmetric wave. In the second of E¢®.22, we  the vacuum outside an isolated source-@), without any
have introduced the useful object reference to the stress-energy tendof” of the matter

21+ 1)1 source. Our_ next ta}sk _is to investigate the field equations

k(XL) r2kx, (2.23 |nS|d_e an(_j in the vicinity of the matter source, and more

(2K (21 +2k+1)!! precisely in the so-called near zone, or the region for which

—_— r<\, where\ is the typical wavelength of the emitted
which represents the iterated Laplacian operatof, regu-  waves. From now on we restrict our attention to a post-
larized by means of the FRrocess, acting ow, , which ~ Newtonian source, whose radius ia<\. For post-

B=0 Newtonian sources, the near zone overlaps with the external
denotes the STF projection of the produgExil- X, [49]. region in what we shall refer to as the matching region, for
[See also Eq(C18) for an alternative expression of the samewhich a<r<\. In the matching region, both the multipolar
object] From Ref.[32], or from Eq.(A11) in Appendix A,  expansion of the exterior field and the post-Newtonian ex-
we get the expression of the functions parametrizing the arpansion of the inner field are legitimate.

tisymmetric waves, Let us denote by means of an overline the forfirdinite)
post-Newtonian expansion of the field inside the source’s
REY(t)= ij d3X|;<|B>A<Lf+wd27|(Z) near zoneh**, which is of the form
B=0 1 v
X M(747) (x,t—z|x]/©), (2.24) h#*(x,t,c) = E , i otinc). (3.1
n

where|x|=|x|/r, [see Eq(2.9)]. These functions depend on
the whole past history of the sourf80]. The z integration
involves the weighting function defined by

By definition, thenth post-Newtonian coefficiert* is the
n

factor of thenth power of 1¢; however, we know from the
21+ structure of the near-zone expan_sion of the _exteri_or fuadm
= (22-1). (2.25 Eqg. (2.16)] that the post-Newtonian expansion will involve
2 also, besides the usual powers of,13ome logarithms o€
(in fact, when stating this we are anticipating the result of the

This function is normalized so thally “dzy (2)=1, where  matching. So the coefficients” still depend orc via the
the value of the integral is obtained by analytic continuation n
for | e C (see Appendix A As shown in Ref[32] (see nota- logarithm ofc, and from Eq.(2.16 we infer that they are in
bly Sec. Il D therg, the antisymmetric waves in E.19  fact some power series in tn The first appearance of tnis
are associated with gravitational radiation reaction effects oét the 4 PN ordefi.e., corresponding to a termIn c/c® in
a nonlinear origin. In particular, they contain the contributionthe equations of motigrand is associated with the physical
of wave tails in the radiation reaction force, which appears agffect of wave tail§31]. In Eq.(3.1), we have indicated that
the 1.5 PN order relative to the lowest-order radiation dampthe expansion starts at the levet,/but we could be more

ing, i.e., 4 PN order in the equations of motig8l]. To  ,recise because thé @omponent oh”” starts only at the
summarize this subsection, we have obtained the near-zonge| 143 while theij component is at least of orderct/

reexpansion of the multipole expansigr(h*”) as This does not matter for our purpose; simply in our iteration

n(z)=(—)""*

M(h“”)zfz\/*l[M(AW)] we include these post-Newtonian coefficients as zézde):
= hi=hi= -
4G +2 R‘“’(t—r/c) RE(t+r/c) 0 and r21 2 0. For the total stress-energy pseudoten
= 2r sor (1.3) we have the same type of expansion,
4o N TR +o0
.| XEP(t—=rlc — 1
+> ﬂ[—" (r )]. (2.26 T(x,t,c)= EZET’W(X,LH’]C). 3.2
=0 n N
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The expansion starts with a term of ord#r corresponding less, i.e., it satisfies the harmonic-coordinate conditiog),
to the rest mass energy of the soure&*(has the dimension @S & consequence of the conservation of the stress-energy

of an energy densily Here we shall always understand the PSeudotensor*”. Notice that we do not fry to incorporate

infinite sums such as Eqé¢3.1) and (3.2 in the sense of into the post-Newtonian series the boundary conditions at
infinity (viz. the no-incoming-radiation conditipnindeed,

formal power series, i.e., merely as an ordered collection of,." ") . . X
. .p ] T y thls is impossible at the level of the post-Newtonian expan-
coefficients: e.g.,{*")nx. We do not attempt to control the gjon considered alone, because its validity is limited to the

mathematical nattjre of these series near zone. Even if we define an “im_proved” post-Newtonian
. : : . ._series by considering sonretarded integrals that are for-
In this paper, we make two important assumptions. First . ey nanded when— + o as series of Poisson-like inte-
we assume that the post-Newtonian coefficiemts (and  grals[11], we ultimately end up with an inconsistency, be-
_ " cause the Poisson-like integrals are some local-in-time
similarly 7#*) are smoothfunctions of space-time, functionals, depending on the source only at the current time
n t, and we know that the post-Newtonian field starts to depend
_ on the whole past history of the source from the 4 PN order
h“’(x,t) e C*(R*). (3.3 [31-33. Therefore, we do not follow this route in the
n present paper, and, instead, we incorporate into the post-
. . . . Newtonian series the boundary conditions concerning the
Evidently this comes from our consideration of regularwave field at infinity by means of the matching equation.
(smooth extended ma’gter disj[ributions, describeq by  We insert the post-Newtonian ansd&1),(3.2) into the
T (xt) e C“(R‘f)', a priori excluding black holes or point-  «rg|axed” Einstein field equatior{1.1), and equate together
par“CIe SlngularltleS. SeCOHd, we assume that the structure ﬂf]e powers of ﬂ The resu't iS an |nf|n|te set of Poisson_type
the expansion aspatial infinity i.e.,r— -+ with t=const,  equations:
is of the type _ _ _
Vn=2, Ah*’=167G7r*"+dZh*". (3.5

n n—4 n—-2

VNeN, h#=> nra(nr)PFE . (H)+0| — , .
< N 2 fur¥(inn) Liap(t) N Evidently, the second term comes from the split of the
(3.4 d’Alembertian operator into a Laplacian and a second time
B derivative: [1=A—(1/c?)#?; the time derivative d,
(and similarly for eachr*”). We have purposely written an =(1/c)d, is smaller than the spatial gradiefjt by a factor

. . . 1/c—this is the basic tenet of the approximation. When
expansion which is very similar to the one in EQ.14, =2 andn=3, the second term in E¢3.5) is zero, which we
because as we shall see the functifisn s p(t) will be a6 intg account by assuming that”=h*"=0. We pro-
equal to the post-Newtonian coefficients of the functions 0 1
Fia,p(t) appearing in Eq(2.14. However, it is importantto  ceed by induction, i.e., we fix some post-Newtonian orger
realize that in contrast to Eq2.14), which is a near-zone assume that we succeeded in constructing the sequence of
expansior(cf. the remainde©(r")], the expansion written

_ _ _ : v previous coefficient©i#?, ... h#*, and from this we infer
in Eqg. (3.4) is afar-zoneone, with remainde©O(1/r"). It 2 n—1

would have Ee(_an clearer to write the latter expansion Withye nexiorder coefficienh””. The most general solution
some (Irr)P/r® with b= —a, but since we are going to show, n

from the method of matched asymptotic expansions, that theonsists of the sum of a particular solution and of the most
infinite far-zone expansiofignoring the remainderis actu-  general admissible solution of the homogeneous equation,
ally the sameas the infinite near-zone expansion, it is betterwhich is simply the source-free Laplace equation. Let us first
to write it in this form, with the range of the powers ofn  find a particular solution. We recalled in the Introduction that
Eqg. (3.4 being —a<N instead ofa<N in Eq. (2.14. In  the usual Poisson integral cannot be used to define a solution,
doing so, we are again anticipating the result of the matchbecause the bound at infinity becomes rapidly divergent
ing. Finally, we assume that, at any given post-Newtoniarwhen going to higher and higher post-Newtonian orders.
ordern, the maximal divergency of the far-zone expansionFortunately, thanks to our two assumptioi3s3) and (3.4),
(3.4) is finite, i.e., there exists somgg,,(n) € N such that we shall be able to define generalizedhotion of a Poisson
assama{(n). integral, in a way similar to our previous definition of a
Next we perform the iteration of the post-Newtonian field retarded integral operator in E@2.10. That generalized
(3.1) up to any order. Our strategy consists of finding thePoisson integral will constitute an appropriate solution of the
general post-Newtonian solution of the relaxed Einstein fieldyost-Newtonian equation. For any source term I
equation(1.1). This solution will depend on some arbitrary n
“homogeneous” solutions, in the form of harmonic solutions which is at once smooth, E¢3.3), and admits a far-zone
solving the source-free d’Alembertian equati@m a pertur-  expansion of the typ€3.4) [note that Egs(3.3 and (3.4
bative post-Newtonian sensen a second stage, we shall g1 for h*” as well as forr*”],we multiply it by the same
obtain these harmonic solutions by imposing the matching to n n
the external multipolar field obtained in Sec. Il. Finally, we regularization factor as in Eq2.10, and then apply the
shall check that our post-Newtonian solution is divergencestandard Poisson integral. The result,
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3 +oo
ATTBrA)(x t):—ij ay [y|IBr#*(y,t), (3.6 T =3 7 ka[;w] (3.10
. A Jralx=y| 70 T TATE eat - '

wherely|B=|y/r|B, defines a certain function &e C. The _ _ _ , ,
definiteness of that integral relies heavily on the behavior aft IS cléar that we have a particular solution of d’Alembert's

the bound at infinity. There is no problem with the vicinity of €guation:

the origin because of the smoothness of the integrand. From

the asymptotic exp.ansio(BA), With a<an,y [recall that. D[’I\“—l?,w] — (3.10)
amax= ama{N) ], we find that the integral converges at infin- n n

ity when ReB)<—ana—2. Next we can prove that the

latter function ofB generates dunique analytic continua- o )

tion down to a neighborhood of the origh=0, except at We can check that the de_flnltlon we have proposed in Egs.
B=0 itself, at which value it admits a Laurent expansion(2-20 and (2.21) is a particular case of the more general
with multiple poles up to some finite order. More details aredefinition (3.9) and(3.10. Indeed, if we apply the formulas
given in Appendix B. Then, we consider the Laurent expan{3-9 and (3.10 to one of the terms composing the “far-
sion of that function whe®— 0 and pick up the finite part, Zone expansion of the post-Newtonian coefficient, i.e.,
or coefficient of the zeroth power @, of that expansion. N.r?(Inr)PF(t), we get the same result as the one resulting

This defines our generalized Poisson integral: from Egs.(2.20 and(2.21). ey
—_— o By means of the Poisson operatbr * so constructed, we
A~ ]= FPA Y[rBr#¥]. (3.7 first find aparticular solution of Eq.(3.5):
n B=0 n
The finite-part symbol FR., has exactly the same meaning (Huv o= 167GA 1747+ @ZA - 1h#,  (3.12
as in Eq.(2.10. However, notice that in contrast to Eq. n n-4 n-2

(2.10 where the regularization factof dealt with the sin-

gularity whenr—0, and hence supposes initially that B®(  To this solution we add the most general solution of the
is a large positive number, in E¢3.7) the regularization homogeneous Laplace equation. It can be written, using the
concerns the behavior of the integral whes +o, and S0 STF |anguage, as the sum of two multipolar series, one of

one must start with the situation where Be(is a Iarge_z them being of the type, , that is regular at the origim
negative number. The main properties of our generalized

Poisson operator are that it solves the Poisson equation, —0 and the other one being like (1/r), i.e., regular “at
infinity” r— +o (see Ref[49] for the notatiof. Imposing

A[F?’”] ity 3.9 the smoothness cond|t|c(8.3)Afor the post-Neyvtoman field,
n n we discard the second typed, (1/r) and retain as the only

—_ admissible homogeneous solution the first typfq_. There-
and that the solutiod ~*7#” has the same properties as thefore, we find that there must exist some STF-tensorial func-

. n tions of time, sayB{*”(t), such that
sourcer™”, i.e., the smoothness, E@.3), and the particular n
n
far-zone expansion given by Ed3.4). These facts are Foo
proved in Appendix B. Therefore, we have foungarticu- hev _ BXY(1)X 31
lar solution of the Poisson equation, and, furthermore, this (n hom go . (O 13

solution can be iterated at will, because the operator

_keeps th_e same_properties from the source to the corre_sponghe functionsB{*”(t) will be associated with the reaction of
ing solution. Quite naturally we denote the iterated Poisson rﬁ

operatorA ¥~ =(A~1)** 1+t is not difficult to show that  the field onto the source, and will depend on which boundary
. conditions are to be imposed on the gravitational field at
AR 77 (x, 1) infinity. The most general solution for theth post-
n Newtonian coefficient thus reads

1 3 =yt B_uv — = —
- EBF_ZLad Y aigr M- 39 ?"=(L\”) part+(|:'uv)hom- (3.14
From that integral we obtain the operator of the “instanta-
neous” potentials exactly in the same way as in Ej20, It is now trivial to iterate the process. We substitute fét’
but now acting on post-Newtonian coefficients suchrdg ) _ n-2
n on the right-hand side of Eq3.12 the same expression but
i.e., satisfying both Eq43.3) and (3.4): with n replaced byn—2, and similarly descend until we stop
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at either one of the coefficients*’=0 or h*”=0. At this
0 1

point, h*” is expressed in terms of the “previous™*’s and
n m

B{*"’s, with m=n-2, i.e,,
m
(-1
h#'=167G > gAY 7 ]
n k=0 n—4-2k

o [2-1 (g

LIPS B (DA KX,

=0 n-2k

(3.195

Here[n/2] denotes the integer part of2; afk means the
2kth partial time derivative 4/ 9t)? and the superscript {9
the th total time derivative; the operatdr "1 is the one
defined by Eq.3.9); the objectA "¥(x,) has already been
introduced in Eq(2.23. Once we have the resuB.15, we

“resum” it from n=2 up to infinity. After commuting the
summations oven andk, we arrive at

— 16nG—
h””=—4 7™

+o +ow (2k)

+3 T SBUOA KR, (316
=0 k=0 C

PHYSICAL REVIEW D65 124020

t<—17, the relation(3.19 determinesA{*”(t) up to a con-
stant. However it is clear that this constant will cancel out in
the antisymmetric wave in Eq3.20.] In terms of this defi-
nition, we find the final result of this section,

_ 1 —_—~
h#v =

T _
-1 v
— T ™"

< [AF(t—rIc)— AP (t+rlc)

+> 9, T

=0

. (3.20

where we recall that the overline means the post-Newtonian
or equivalently near-zone expansi@ee Eq(2.22)]. For the
time being, we shall refer to th&{*”(t)’s as theradiation-
reactionfunctions.

B. Multipole expansion of the post-Newtonian solution

In the previous section, we obtained the general solution
for the post-Newtonian expansion in the for®.20, and
parametrized by somgor the moment unknown radiation-
reaction function#A{**(t). To arrive at this, we made an as-
sumption concerning the particular structure for thezone
expansion, at spatial infinity, of the post-Newtonian coeffi-
cients: Eq.(3.4). Here we shall denote the corresponding
infinite expansion(without a remainder terinby means of
the same calligraphic lettek1 as used to denote the multi-
pole expansion, because the far-zone expansion of the post-
Newtonian coefficients is equivalent to a multipolar decom-

where we have recognized the operator of the “instantaposition. From Eq(3.4) we have

neous” potentials as defined by E.10, and where the
functionsB{*” read

+ oo
B{(1)= 2, —B{"(1). (3.17)
n=2¢c" ,
A more compact alternative form is
167G —( — &~ .
hir=——T [ ]+ > AT [Bf"(1)x,].
C =0
(3.18

M(h#) =3 ard(nnPEEY (). (3.2D)
n
So, summing up the post-Newtonian series,
M(h#) =3 nrd(Inn)PEEY (1), (3.22

where  the  functions involved are Fi ,p(1)
=E,T:°°2(1/c”)F,_,n,a,p(t). As we can see, the far-zone expan-
sion that we have just postulated is exactly the same, with
the same functionf , ,(t) as the near-zone expansion we

Actually the latter forms are not the best for our purposenad previously written in Eq2.16). This equality is already

Since the first term in Eq¥3.16 or (3.18 is a particular
solution of the d’Alembert equatidisee Eq(3.11)], the sec-

the matching equation between the near-zone expansion of
the multipolar field, M(h*"), and the multipolar—far-zone

ond term is necessarily equal (the near-zone reexpansion expansion of the post-Newtonian fielt/f (h**), whose con-
of) a homogeneous solution of the source-free wave equaequences will be investigated in Sec. IV.

tion, and most importantly a regular solution at it. So it

The fundamental result which is needed for computing the

should be in the form of some antisymmetric multipolarfar-zone expansion of the post-Newtonian series concerns

waves: retarded minus advanced. Indeed, this readily follow.

from the second equality in E@2.22. We introduce a new
definition A{**(t) by posing

(21+1)

AL (Y

B ()= — ————
i c2 (2] + 1)1

, (3.19

the expansion of the generalized integral operétot acting

on the post-Newtonian sourcg”. More precisely, we are
interested in knowing under which conditions one can com-

mute Z ~* with the operationM of taking the far-zone ex-
pansion. Clearly, the two operations can be commuted at the
price of adding some homogeneous solution of the
d’Alembert equation. We prove in Appendix C that the latter

where thel-dependent factor is chosen to match with Eq.homogeneous solution is made of multipolar waves of the
(2.22. [Because of our assumption of stationarity in the pastsymmetrictype, i.e., retardeglus advanced. We obtain
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P —v have indicated by means of an overline the fact that this
ME D=1 AM()] expression is valid only in a sense of post-Newtonian expan-
(). [FErt=ric)+ FE(t+ric) sion. Note that because the latter post-Newtonian expansion
- oL 5 is “even,” containing only even powers of d/one can re-
4m iz I r place the argumertt-z|y|/c inside F{"(t) equivalently by
(3.23  t+zlyl/c.
Finally, thanks to Eqs(3.23—(3.27), we are in a position
Here the overline notation has the same meaning as in Set® write the infinite multipolar—far-zone expansion of the
Il this is the Taylor expansion when—0, but that expan- Ppost-Newtonian solution as
sion should be considere@d, posteriori as an expansion
whenr— +, That is, our notation means

M) = TSI pp e
FE(t—rle)+ F(t+rlc) (W)= = T IM)]

(2i) (2i)
2r

L
2 4G 5 (—)'5 []—"’L‘V(t—r/c)+]-"f”(t+r/c)
1 L
mé r2i—1) MV(t) +oe R ;LV() 04 <o |I!
L( 2 (? _1)]

=0 (2i)! c?

Af¥(t—rlc)— A”“”(t+r/c)

+E { 2r

(3.29 (3.28

[see also Eq(C14)] where the right-hand sides are to be
considered as some expansions at spatial infinity, of the gen
eral type given by Eq(3.22. The functionsF{*”(t) param-

etrizing these symmetric waves are STF and explicitly given

We recall that the radiation-reaction functioAg'”(t) are
Stl|| undetermined at this stage. The symmetric and antisym-
metric waves are given by Eq$3.24) and (2.22, respec-

by tively, considered here as infinite far-zone expansions.
+0o0 1
=S T 3y|XIBA I 1921 1w
F0=3, 5P [ SRR x) N
(3.29 In Sec. Il A, we found the most general expression for the

—_—— . multipolar expansionM(h*"), satisfying the no-incoming-
whereA™'[x_] is given by Eq.(2.23. See the proof in Ap-  radiation condition, in terms of some unknown “multipole-

pendix C. An alternative form reads as moment” STF functionsX{*(t) [see Eq.(2.19]. On the
other hand, in Sec. lll A, we obtained the most general solu-
FE(t)= pr d3x[X| BY, tion for the post-Newtonian _ex_pansidn’fl”, as parametri;ed
by a set of unknown “radiation-reaction” STF functions

Al""(t) [see Eq(3.20]. We are now imposing the matching
condition

xfl dzs(z) ™" (x,t—2z|x|/c), (3.2
-1

where the integration over thedependent cone—z|y|/c M(h#")=M(h""). 4.1
involves a weighting functio,(z) that is closely related to

the functiony,(z) introduced in Eq(2.25: ) . ,
In fact, we have already postulated this equation when writ-

21+ 1)1 1 ing that the two formal expan.sioniﬁ.la gnd (3.22 are the
(2)= =~ (1-2))'=— Zy(2), (3.27) same. Recall that the matchlng equati@gnl) results from
2! 2 the numerical equalit(h*") =h*”, verified in the exterior
near zonea<r<N\. It is physically justified only for post-
and whose integral is normalized to it ,dz8,(z)=1" The = Newtonian sources, for which the exterior near zone exists.
function 8,(z) approaches the Dirac delta function in the The matching equation is actuallyfanctionalidentity, i.e.,
limit of large I:  lim,_,..8(2)=8(2). In Eq. (3.26, we true V(x,t) eR3XR; it identifies, term by term two
asymptotic smgular expansions, each of them being formally
taken outside its own domain of validity. In the present con-
“The normalization for the functios;(z) is consistent with that of ~ t€xt, the matching equation insists that the infimgar-zone
the functiony(2): J1”dzy(z)=1, owing to the fact that the expansiony—0, of the exterior multipolar field is identical
integral f Zdz(1—2z%)' is zero by complex analytic continuation in to the infinitefar-zoneexpansionr — + o, of the inner post-
leC. Newtonian field. Let us show now that E¢4.1) permits
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determining all the unknowns of the problem: i.e., at oncecoupled together as they are via the nonlinearities of the field
the multipole momentX{*” and the radiation-reaction func- equations. Nevertheless, the matching equation tells us that
tions A/ In particular, we find that the multipole moments these terms must be rigorously identical.

X{¥ are in agreement with the earlier result derived in Ref. AS soon as we have noticed that the first terms in Egs.
[40]. (4.2) and(4.3) are equal, we can compare the other ones, and

For the sake of clarity, we restate here the two results w&ecause the retarded and advanced waves have some differ-
reached for the two sides of E@.1). The left-hand side was €Nt structures, they must be matched independently, so we

obtained in Eq(2.26): gettwo relations to be satisfied. We find that these are solved
if and only if the multipole moments in the exterior fieddid
MhA) =T - M(A")] the radiation-reaction functions in the inner field are given by
4G (- [ RE(t=rIc)=RE(t+r/c)
G or w48 (),
i=o I Xt (t)=—F T FI(L), (4.5
+o0 TN
~ | Xt (t=rlc)
3 o[ ET)
=0
nv _ 4G (_)I v v
in which the functionsR {*”, which come from the nonlin- AL (D)=~ ? T [FEO+REM] (4.6

earities of the field equations in vacuum, are known from Eq.
(2.24). The right-hand-side of the matching equation was

found in Eq.(3.28: Therefore, both the multipole moments and the radiation-

reaction terms are determined as some explicit functionals of
M(h#r) = 16WGF[M(;LV)] the pseudotensor*” and nothing else.Actually, we could
ct add any constant to the definition &f”(t), but this is physi-
e cally irrelevant because the constant disappears from the an-
46 o (- )'3 {ffv(t— ric)+F{r(t+ r/c)] tisymmetric waves; see also RE50].]
4 L

or Finally, by way of summary of the results, we take back
the latter expressions and fill in the external and inner fields,
which are then entirely determined as coming from a unique

: solution of the Einstein field equations in harmonic coordi-

(4.3  hates, valid everywhere inside and outside the source. The

exterior field is

Here, the functionsF{*”, which depend on the matter and

gravitational content of the post-Newtonian source, take the

ct =0 I!

+
~ | AfP(t—rlc)— A" (t+rlc)
Jr|Z:o (?L[ 2r

definite expression given by Eq®8.25 and(3.26). M(h#”)zﬁ\gg{M(A#”)]
Comparing Eqgs(4.2) and(4.3), we readily discover that .
they share an obvious common term, that is, the first one. 4G (=) [F(t—rlc)
Indeed, we manifestly have - on T p NCN

— — _ 16nG— —
-1 pury1—7-1 MUY — -1 LV
T IMA =T IMA] c TIME D] where the multipole moments are given in terms of the post-
(4.4) Newtonian expansion of the stress-energy pseudotensor by

The first equality comes from the matching equation, as ap-

plied to the gravitational source terk*”, and the second ! _

equality comes from the fact that the matter teriBof has a Fh(t)= FPJ d3y|y|Bny dzé(z)™"(y,t—z|y|/c)
compact support, so tha¥1(T#")=0. Hence the two first B=0 -

terms in Eqs(4.2) and(4.3) match together. This is a some- g

what remarkable fact, because most of the complexity of the = E —— pr d3y|§,|B’A\*T[§,L]gfiﬁV(y,t).
Einstein field equations is actually contained in these terms, =0 c¥g-o

either Z Y M(A#")] for the external field or 4.8

(167G/chZ Y M(7#")] for the inner one. But for doing

the matching, we do not need all this complexity; these two

terms match and therefore are to be identified. Notice als@his result is in perfect agreement with the multipole decom-
that this is a nontrivial result, since the two sides of Eqgl) position of the exterior field obtained in R¢#0] [see Egs.
strongly depend on the yet unknown functiok§” andX{*", (3.13,(3.14 therd. On the other hand, the inner post-
which enter the latter two terms in a very intricate way, Newtonian field is given by
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(Indeed we have checked that these functions contain the

h#?=—0©=—7" 7] known radiation-reaction terms at the dominant 2.5 PN order
c as well as the dominant contribution of tails at the 4 PN
S T T order) We shall leave for future work the systematic study of
_ _G 2 A'— (t=ric)— Af"(t+r/c) this term, as well as the possibility to answer the latter specu-
ct & 2r ’ lation.
4.9
oL . . . V. HARMONIC-COORDINATE CONDITION
where the radiation-reaction function is composed of two
terms: The latter solution for the post-Newtonian field, Egs.

vy Y (4.9-(4.12, has been obtained without imposing, in an ex-
AT O=F(O+REWD). (4.10 plicit way, the condition of harmonic coordinaté€t.2). In-

The first term is merely the exterior multipole moment givendeed, we have assumed this condition to be true, and we

by Eq.(4.8), and one can check that it contains the standar@imply matched together the post-Newtonian and multipolar-

radiation-reaction effect at the 2.5 PN order. TR¢” term  Post-Minkowskian expansions, satisfying the relaxed Ein-

is defined by Eq(2.24), or, rather, the post-Newtonian ex- stein field equationg1.1) in their respective domains. We

pansion of it, i.e., found that the matching determines uniquely the expressions
of the multipole momentsX{*”(t) and radiation-reaction
REV(H)= FPJ' d3y|§|B§/L functions A{*"(t) as some functionals of the stress-energy
= pseudotensor*”. However, we never used the harmonic-

coordinate condition during the matching; it was not neces-

sary for the formal determination of the unknown parameters

(X", Al'™). Therefore, it is quite important to check that our

(4.11 post-Newtonian solution is divergenceless as a consequence
: of the conservation of the pseudotensdt [see Eq.(1.2)],

This term is quite interesting: it depends on the nonlinearitieso that we really grasp a solution of the full Einstein field

of the exterior field, described by the gravitational sourceequations.

term M(7**) (or, more precisely, the nonstationary partof it we check the divergenceless &f*” directly on Eq.

[50]), which are to be computed by means of the multipolar—(3.16. We apply the?,, operator on each side of the equality:
post-Minkowskian algorithm of Refd.36,32 (see, in par-

ticular, Sec. Il D in Ref[32] for some detailed computations 167G —
of this term). Physically, the functiork {*” contains the effect g ,h*'=—r—3,T "]
of wave tails in the radiation reaction force which arises at c

the 4 PN ordef31-33. It is not difficult [using notably the

X L wdz;q(z)/\/l(T’”)(y,t—2|y|/0)-

+ o0
formula (5.22) below] to derive the more explicit expression 49 Z 1 gﬁ)y(t) (x ) 5.1
for the contribution ofR {*” to the antisymmetric wave in Eq. i W Lo '
(4.9):
We must transform the two terms on the right-hand side in
MV s _ y7a
(‘9L[RL (t—rie)-R{*(t+r/c) order to make explicit the fact that these two terms are ex-
2r actly opposite The first term, that is to say, the divergence of
[ (i o "\T((X ) theZ 1 operator, |s not obvious since, even if time deriva-
L
2 20 =iy 2 A tives commute wittZ !, spatial derivatives do not,
= - = B:0

0, T =T [ag®1+0T 7. (5.2
Jd3y|y|B S M) (= lylle). .

—~—

Z-'is a sum ofA % 19? and spatial derivatives do not

(4.12 —_—
commute withA ~*~* because of thdy|® factor [see Eq.
When they are computed by post-Minkowskian approxima<3.9) for the exact expressignTo see how to tackle this

tions, the remaining integrals will typically yield, after inte- et
gration over the angles, some “hereditary-like” contribu- problem, let us start with the spatial divergenceAor™ .

tions, depending on the whole integrated past of the matté/e assume that(x,t) is a function of the “post-Newtonian
source(see Ref[32]). type, i.e., satisfies the requiremerig&3) and (3.4). The 4,

It is tempting to speculate that the second term in Eqderivative, in Eq(5.3), applies first to théth Poisson’s ker-
(4.9, made of the antisymmetric multipolar waves param-nel, but after having noticed that thé derivative of this
etrized by the functionst{**(t), can be regarded as the con- kernel was equal to minus th¢ derivative of it, we can
tribution, in a sense to be made more precise, of the radiatioffake an integration by part and distribute tfiederivative
reaction forces at work inside the post-Newtonian sourceon |y|® and on7 so that
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ﬁim(?(xl)) able since for a functionr(x,t) with compact support the
1 commutation would be trivial. Thanks to the general result
=— _FPJ d3Y|Y|B<9x'(|X8/T),)?(y,t) given by Eq.(5.9), in which we replacer by 7%, we can
determrne the spatial drvergence ijl(r' Y). We can then
1 B getd, I~ 1[T’“’] that is the sum off ~ 1[(9 "] and a non-
T _FPJ Y1yl 2k 7 () trivial term. Sinced,, 7#*=0, the result for the first term of
Eq. (5.1) reduces to the nontrivial term, that is to say,
-yt
-2 P [ v g . L
2K)! : 167G — 4G ( )
(20! =- T S SR
c” kl,n=0

(5.3
(2k+2n)

The first term in the last line of the previous equality is equal FPf dsyﬂ (VBAT a0y HIM)(y.b).
to A~K"1(4,7). Now, let us concentrate on the last term in =0 lv>
the same line. We can, of course, writg(|y|®) (5.6
=Bn;|y|®B~/r,. Moreover, sincer(y,t) is regular at the ori-
gin (ly|=0), the integral is always convergent on any neigh-Now, we want to prove that the second term on the right-
borhood of the origin. Translating these two remarks in thenand side of Eq(5.1) is exactly the opposite. In Eg5.7),
last integral of Eq.(5.3), and since we take the finite part we expand this last term in i&+1 form so that we can treat
whenB=0, this last integral is zero, because of the explicitseparately terms with time derivative and terms with spatial
factor B, when ranging fromly|=0 up to some arbitrary derivative,
finite value |y|=R. So, after replacing|x—y|?*"! by

1A K[y vyl -1 : : . (2n) 1 @y
é%gl) .rgngi(rlg O¥|eliy)|;v7e€,are left, in Eq(5.4), with one inte nJE —B'V(t)a (3™ ”(XL)]+ 20 ?aOBE”(t)A‘“(xL).

_ | |2k 1 (57)
Ff’f dgyﬁi(|y|B)WT(y t)

= The first term of Eq(5.7), thanks to a STF formula, can be
written without the use of spatial derivative. The indiex

= pr d3y3i(|§}|B)M[rA\—Jk(|x—y|—1)]/\/1(7)(y,t) coming from this derivative is distributed on the multi-index
=0JlYI>R

L as
S e ()
- AR T 1 (20
2,2 AT S B OGIA ()]
n,I=0 C
i I I X (TR el Ly oaf e
h = 2 | Bl AT )
(5.9
en
In the last line of the previous equation, we expandedkthe +IBIY (DA (X —1) |- (5.9

Poisson’s kernel foty|>|x| using Eqg.(C12. This is pos-
sible thanks to the fact th& is arbitrary and may be chosen
such thatR>|x| We also note that turned mtoM(r) In the second term of Ed5.7), we express the functioBE”

becauser=M(7) in the far zone. In this way, in terms of 71" andR " [cf. Egs.(3.19 and(4.6)] because
the time derivativeg,, will act on the integrand of these two
<9iF/k[7(x t)]zg’\l’/k[&i?(X,t)] time-varying moments:
k [ _ 21+1)
1 (= )"—kﬁ?ﬁ f 3 /B INGLIRY ov G(-) NGLIRY ( ov
=PI <xL> PP 8 Yayl®) AT OB (0= e o (xO{ao R (1)
ot 1 — (21+1)
XALo (] HIM(D) (v D), (5.5 gy FO (D). (5.9

and we notice that the commutation of the spatial derivative
and the generalizekth Poisson integral depends only on the First, we investigate the case 6§F"", using the formula

behavior ofr(x t) at spatial infinity. This fact was foresee- (3.25, where the time derivative acts of”,
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AT (X dF (1)
(2k)

=F(%L>k2 —FP f d3y[VIBA KT de  (y,t).

(5.10

We can replacel,7°” by —d,7” thanks to the conservation

equation of the pseudotensor. After integrating by part we get

(2k)
”(on —FP f dPyai([YBATX ) 7 (y,t)

(2k)

+AT (X)) D —FP f dPy[yBa[ATX YOI (y.1).

n=0 C

(5.17

The same STF formula as used in E§.8) enables one to
transform the second term of E(.11) so that, at the end,
we get the definitive result

AT(X) doF () =2 ”(qu

(2k)

f dPya,([71B)AT Y 77 (y,b)

+IAT (i 1) AL 4()

ATN(%,) (2)

c?(21+3) FiL.

(5.12

We can, now, investigate the case of the first term in Eq.

(5.9), which is a little bit more complicated since it involves
a retarded integral,

()R (1) =EP(x) FP f Ay Y155,
B=0

X J'lde%(Z)M(f?oTo”)(y.t— zlyl/c), (5.13

where the functiony,(z) is given by Eq(2.25 (for simplici-
ty’s sake we do not write the overline indicating the post-
Newtonian expansionWe do the replacement oh 7" into
—d;7'". Before integrating by part, we should notice that the
partial derivatived; acts onr'” which is then evaluated at the
event f/,t—z|y|/c); we must be careful about the space de-
pendence of the time variabte-z|y|/c. The last equation
then becomes

PHYSICAL REVIEW B®5 124020
—A""(x,) FP J d3yly|By,
B=0

Xd; Lde%(Z)M(Ti”)(y't—2|y|/C)

~TG) FP f dy[yIE5.n,
B=0

(1)

XJ dZZ%(Z)M( ) (yt=2yllc). (5.14

In this way, the first term can be integrated by part straight-
forwardly, in terms ofdy integration, showing up &(|y|?)

term and ad;(y,) term. The second term will also be inte-
grated by part, in terms oflz integration, using the fact
d/dZ y,;1(2)]= — (21 +3)zy,(2); so we have

AT"(x) FP f d3yai([y1®)y,
B=0

X fwd2y|(z)M(TiV)(y,t—z|y|/C)+F‘(§(L) FP
1 B=0

« [ @yiea [ az@me .-y

ATk
mBF OJ *yIyIByLyi

<),

The sum o_f these three terms can be transformed so that the
function R |” shows up. Since for any STF tensbyd;(y,)
=ITiL—1yL—1 and Toyyi=Toy 121+ D)]Ti -1y -1

ly|?, and keeping in mind that all the multi-indicéswill

have to be summed, we can write

n(x )FPJ dByai([yB)yL

(2)

dzy. (M) (y,t—2lyl/c). (5.19

><Lwdzm(z)/vl(r‘”)(y.t—ZIVI/C)

+IATT "(XiL—1) FPJdSY|§|B§/L—1

AT(x
SR

x L dzy(2) M) (y=2lylfe) + e F

0

(2)

X f d3yy|Byi f dzy (29 M(7)(y,t—2]yl/c)

A (X 1) f
EP B
221+ 1)(21+3)8-0 Y|Y| |Y| YL 1

© (2)
J|
1

dzy+ (2 M(77)(y,t—2lyl/c). (5.16
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An interesting relation  between v,
d?/dZy141(2D)]=(21+1)(2 +3)[ 71— (D — % (D],

tion, allows us to get the more explicit form

AT(X)doR (1)

=A"(x,) FP f dyai(1y1®)y f “dzy(2) M(7)(y
B=0 1

A @)

—zlyl/c +|rA\_-ﬁ X _ RiV, t)+ ———R /' (1).
lyl/c) (XiL )R 1(1) 2(2143) iL(t)
(5.1
Summing up Egs(5.12 and(5.17), we obtain
en
2 7B (AT ()
4G 2|(_)| ,-\*F] ~
I e
(2n+ 2k+21+1)
x| > FP | ddya(|yB)A (Y A
& P yai(ly®) (ﬂ)m
+ P [ dya 55,
B=0
(2n+21+1)
o M(7'7)
XL dZ?’l(Z)m(y,t—ZWVC)
1 (2n)
_ I S ~ 112
nl1=0 C2” 2|+3BL (t)
—_ (2n) A
XA (X )+ 1B (DA™ (X 1) |- (5.18

The last line cancels out the terms coming from Ex8).

We can therefore write down the result for the divergenc

functions,
after
integrating by part the last integral, in terms aé integra-

PHYSICAL REVIEW D65 124020

46 o 2(0) AT

¢4 nf2o (214+1)! g2n+2i+1

< P [ aya (73,
B=0

w (2n+21+1)
X . dzy,(z) M(7'7) (y,t—2|y|/c). (5.19

In the second term we have used the fact that the integral
depends only on the values for whi¢y|>R to write 7"
=M(?”) on that domain. The last term of E(.19 de-
pends on a retarded integral of the multipolar post-
Minkowskian expansionM(7'"). By integrating by part the
integral overz one can transform this last term into

e () =i s 1
e O G
~B\2 | 1(p+|)
Xf d3y(9|(|y| )yL|y|_p— 1, (1)
lyl<”R

(2n—p+1)

X M(7) (y,t—|yl/c). (5.20

The superscript f+1) on the v, function refers to thez

differentiation. It is straightforward to show, using the fact
M

that ,(z)=(—)'"%(21 + 1)1 P,(2) is directly related to the

Legendre polynomial, that

(p+D) 21+ 1)1 (1+p)!
SN
y (H)=(-) Pori—py

Since M(7'") is singular at the origiribut regular at infin-
ity), and because of the explicit factBrbrought about by the
derivative 9;(|y|®), the integral in Eq.(5.20 ranges over
ly|<R (and everly|<e, wheree is an arbitrary small num-
ben. We can then expandM(7'*)(y,t—|y|l/c) when

c— +o, Furthermore, we can change the integration over
ly|<R into an integration ovefy|>7R by simply changing
the sign in front of the integral. Indeed, this comes from a

(5.21

e[echnical lemma, which plays an important role in Refs.

of h#v Which,~at this stage, depends only on terms with in—[39,4q; see before Eq(C6) in Appendix C, and the proof
tegrals ofd;(]y|®) and having the spatial structure given by given in Ref.[51]. Thus,

A‘“(%L). After summing Eqgs(5.6), (5.8), and(5.18 we get

| — 4G 2'(—)'ﬁA > 1
d F#V:—E (=) 4 ) Tt nfReo (20+1)! (XL)pZOm
H C4 n,i k=0 || CZk+2n B=0
e e[ dya(iPn
Xf dyai([y1®)A oyl M) (.0 B=0/ />R
bR (—)K (p+1) (2n—p+1+k)
4G 2(—) AT X WPy (M. (5.22
FP '

PV | 2n+2kt2i+1
c* nikso (24 DF gznrakr2itig g By changing the labek into 2k+p—1 and X+1+p—1, in

order to cover odd and even numbers, we are able to write
the previous expression in terms of some sums of real num-
bers indexed by, i.e.,

(2n+2k+21+1)
X f dPya,([YIB)A K YOM(F)(y,b)
lyI>R
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(p+1)
4G 2(-) — . L& (—DPH (D)
_Fn,|,k>o(2l+l)!A (x0) pgo (p—1+2Kk)!

) I A
B=0JIyI>R

(2n+2k)

2 2'(—)!
M(77)(y, 1)+ - )

ATT(x
4 nik=0 (2|+1)|

XL)

L ey
- Vi
E (p—I+2k+1)!

X FPJ
B=0’ly[>R

(2n+2k+1)

dByai([y1®)n.y|?* " M(77) (y,1). (5.23

The sums in curly brackets are found to be explicit expres-
sions depending ok andl and some factorial combinations:

Vk=|+1,
| . I(p+l) |
Py @+
pZo (p=1+201  M(k—21—1)n (629
o I(DJrl)
(=P 5 (D) (21 + 1)1
vk=1, 20 (pP—1+2k+ 1)l 2k (k1)1 (2k+ D)1
(5.25
oy )
- |
Viksl, p}:'o (p—T+2K)!
(21+1)11 (21 —2k— 1)1
_ k+1+1
- 2kk! ’
(5.26)
| 1)p+l(p+l)(1)
Yi
Vk=I|—-1, EO(D_H‘T]-)'_O. (5.27)

Thanks to these formulas, one can transform B®3 into

16 (-) 1 =TT
4 1T ki (2k—21— 1)1 -

C” nl=0 k=I+1

o (2n+2k)
X FP fl AT M
>R

B=0
4G (=)@l -2k-D! — .
ct n,lzao k% [12Kk! (x)
o (2n+2k)
X FPJ dyai(ly®)n [yl M)y, 1)
B=0JlyYI>R
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4G (—) 1 —_
S A*n
4 n,IE;O g. It 212K+ 1)1 (k—1)! (xJ)
o (2n+2k+1)
X FP J d®yai(yI®)ny[* M) (1), (5.28
B=0IY>R
In the latter expression, we can recognize
Vk=I,
Ak “1— Ay ly[21-1)
Lac(lyl ] (2k— 21— 1)112%! Lyl
(5.29
Vk=I,
— (=) 2l—2k—1)1 .
K -1y1— 2k—1-1
A~ a(lyl H]= Kl nly| :
(5.30
(21+1)N

A Ky = Wz, 53
U 2kk!(2k+2I+1)!!}/L|y| (53

so that we obtain

4G 2'(— )'

_ — n
2 ot U FP

(2n+21+1)

fd3y«9(|y|5)ny dzy(z) M(7") (y,t—2z]y|/c)

4G (—)'— .
=7 2 AT
C4 n,l,k=0 I!

(2n+2k)

 EP f Bya(| T 1BYA oyl HIMT)) (v,
B=0Jly[>R

4G 2'(—) —
T n,hzkao EE R ")

(2n+2k+21+1)

XFPJ d3yr9(|y|B)A (YOM(T)(y1).  (5.32
B=0"lyl>

After replacing Eq(5.32 in Eq. (5.19, at long last we find

d,h*"=0. (5.33

In this way, we have checked that the post-Newtonian met-
ric, found by matching as a definite functional of the stress-
energy pseudotensar*”, satisfies the harmonic-coordinate
condition as a consequence of the conservation of this
pseudotensor.
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APPENDIX A: NEAR-ZONE EXPANSION 21+ 1)1 [ dO.
OF THE RETARDED INTEGRAL o (r,)= |—|J 2 MDY, (AS)

This appendix, provided here for completeness, is an ex- _ ) )
tended, and also somewhat simplified, version of the derivawhered{l is the solid-angle element around the unit vector
tion given in Appendix A of Ref[32]. We are interested in " =N =X/r. Then the expression of the retarded integral, in
source functions, say(7)(x,t), having the form of an ex- & sense_o_f analytic continuation B) is given by the follow-
terior multipole-moment decomposition, valid outside theind explicit formula, obtained in Ref36] [see Eqs(6.3-
compact-support domain of the source. We employ the sam-5 therd;
notation as in Sec. Il Aexcept that we do not write the
space-time indicgs = denotes the pseudotensor of theDRet[rBM(T)(x’t)]

source; notably we have(7)=(c*16mG) M(A), where t—r—s t+r—s

A is the gravitational source term. The two basic properties to RE( 5 ,s) — E T’S)
of the functionM(7)(x,t) are that it is smooth of* de- => f dsa,

prived from the spatial origim=0: =0 J-= r

M(7)(x,t) e C*(R3 XR), (A1) (A6)

(we posec=1 andry=1 in this appendix where the func-

and that it admits a near-zone expansion, when0 (with tion RE(p,S) reads

t=const), having the appropriate structycé. Eq. (2.14]:

i.e., VNeN, o ) {2\!-1

RE(p,s)zp'f dx(pII )(;) xBo (X,x+5).
0 :

M(7)(x1)=2 AraInr)PG . (0 +0(rY), (A2) (A7)

Following the same procedure as in E¢&6) and (A7) in
Ref.[32], we are allowed to rewrite the expressi@®6) into
the alternative form

wherea e Z with a<N andp e N. As in Sec. || B, we denote
with an overline the forma(infinite) near-zone expansion,

M(1)(6)=2 nrd(InPGL 4 p(1). (A3)  Ogalr®M(m)(x,1)]

+o
It is very important to make the distinction betwear () = Jr du&L[ERE(ﬂ,t—u)]
and its formal near-zone expansioM(7). Here we =0 J-r r 2

shall investigate the retarded integral of the product
rBM(7)(x,t), whereB e C, by means of analytic continua-
tion (we posery=1 in this appendix For this task we as- 4m = I!
sume at first that the real part 8fis large enough so as to

“kill” the divergencies, whenr —0, of the expansioifA2),  The “antisymmetric” wave is parametrized Wf(t), which
so that the retarded integral is initially well-defined. There-is related to the functioR>(p,s) by
fore, rigorously speaking, we are allowed to do this only if

there exists a finite maximal divergency, i.e., somg,<a t—s

in Eqg. (A2) with finite a,,e Z. We have seen in Sec. Il A RE(t)=8m(—)"" 1! f_wdSF‘f(T’s :
that such maximal divergency exists at any given post-

Minkowskian ordem, but no longer exists for the full post- |nserting Eq.(A7), and performing some change of vari-
Minkowskian series becausg,,(m)— —o whenm— + o, ables, we obtain

The consequence is that the analytic continuation is in prin-

ciple justified only at a given finite post-Minkowskian order. B 4! +oo lao

But, as explained in Sec. Il A, we sum up systematically all Ri()= (2|+—1)”f0 dxé

the post-Minkowskian results. In this way, we are entitled to

proceed as we do below; simply we have to remember that +oo

the end result will be priori true only in a sense of formal X L dzy (2oL (x,t=2x), (A10)
post-Minkowskian expansions.

We decompose the source term into multipoles accordingng, using the relatiofiA5), and considering the variable

1 & () [REt—n)-RE(t+
e (=) L[ L(t=r) L( r). 8)

2r

(A9)

to as the norm ok e R3, we further get
+ o0
MDx0=, Ron(r.0), (Ad) RE(W) = [ %,
where theo 's are STF functions i.=i,- - -i;. The inverse > J+de’Y|(Z)M(T)(X t—z|x|). (ALL)
formula is 1 ,
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In these expressions the functigf(z) is defined by Notice that this operatdf ~* contains only some even pow-
ers of 1€. An important point for our purpose is that
(21+1)! T Y rBM(7)] is proportional to the regularization factor
_ 1+1 2 [
n@=(=)" ol (1), (A12) 1B and it evidently satisfieg1(Z [rEM(7)])=rBM(7).

On the other hand, we have also the equatiaid®
where the particulat-dependent factor has been chosen in=r®M(), which comes from applying the overline opera-
such a way that the integral is normalized to 1 in the follow-tion onto 0JB=rBM(7). This shows thatZ “[rBM(7)]
ing sensdsee Ref[32]). Considering first thatis a complex andJ® must differ by a solution of the homogeneous equa-

number such that 1<Re()< -3, we can compute the in- tion, hence there should exist some functic@§(t) and
tegral of y,(z) by means of the Eulel’ function, with the DE(t) such that

result
JBx,1)=Z Y rBM(7)(x,1)]
Fwdzy(z)—Z( )'“F(2|+2)F(_2|_1) = [CBt—r)+DB(t+r1)
(2)=2(= NEDBNCIEE o [ Stz +Dtr
1 AL +|=Eo L - . (A18)

The right-hand side of this equation can be analytically conNote that the dependence @nof the second term is *hid-
tinued to all valued e C except half-integer values, and is den” inside the function€ andDP . Let us now prove that
found to be equal to 1 whelnis an integer: in fact the latter functions must be zero. This is a simple
consequence of the expressid@7) for the function
+oo _ . RE(p,s), from which we deduce that the expansion when
L dzy(2=1 (eN). (Al4) —0 of this function is proportional tp?; in fact, it has the
structureRE~2pB+b(ln p)%, whenp—0. From this knowl-
Next, let us treat the first term on the right-hand side of Eqedge, we easily find that the near-zone expansiod®ofs
(A8), say proportional to the factor®. Since, as we have remarked,
this is also the case of the first term in E@A1S8),
5 o (1 glutr T Y{rBM(7)], and since it is impossible théthe near-zone
J (X’t)E;o fﬁrdufﬁ TRl t=u|{. (A5  expansion ofthe second term in EGA1S) is itself propor-
tional torB—theB’s affect only the function€? andD? but
This term is a particular solution of the d’Alembertian equa-"°" thBe structure of the near-zone expansion—we conclude
tion [1J8=rBAM(r) [since the second term in E(A8) is a thatC andD are identically zero. Hence we have proved
source-free solutign We shall prove that théormal) near- B 1B o
zone expansion of that term, i.el®(x,t), is given by the FxO=TrFEM(n)(xH]. (AL9)
integral of thg “instantaneous” potentigls acting on the near-t syffices now to apply the overline operati¢ice., to take
zone expansion of the source term, i€M(7)(x,t). For  the near-zone expansiponto Eq.(A8) to get our final re-
any of the terms composing the multipolar sourfe\(7) sult,
[see Eq(A3)], we first define

Orel rEM(7)(x,1)]

-1r5 B+a Ay 1)
AP 3N PG 4 (1] =T HrBM(7)(x,1)]

{3

(this pelng justified t.)y the fact that one gets an identity bywhere we recall that the functidRE(t) has been given by
applyingA on both sides Clearly the previous formula can .

; ' k-1 Eqg. (A1l). (The formula used in Sec. Il B results from ap-
be iterated and so we can define the operaior lying the finite part operation R
=(A~Y%*1 applied on each separate terms in &) and PV part op =0
therefore on the complete serigsM(7)(x,t). From this we
obtain the instantaneous-potentials operator, as the forma

ﬁLrB+a+2GL,a,p(t)
(Brat2_D(B+at3+l)

(A16)

1 () [ REBt—r)-RB(t+r)
_E|:0 [ A 2r ’

(A20)

PPENDIX B: THE GENERALIZED POISSON OPERATOR

expansion series In Appendix A, we have been interested in source func-
tions of the multipolar typeM(7)(x,t), which are smooth in
T HrBM(7)(x,1)] Ri X R and possess laear-zoneexpansion of the typ€A3).

toe o In the present appendix, we consider some source functions
=> (_> AU rBA(7)(x,1)]. (Al7)  Of the post-Newtonian type(x,t). These are supposed to be
k=0 | Cdt smooth all overi*,
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7(x,t) e C*(RY), (B1)

and to admit dar-zoneexpansion with structure¥(N € ),

= nrA(Inn)PG , (D +Sy(x 1),  (B2)

(X,t)
whereae 7, with —N=<a, andp e N. The remainder term is
Sn(x,1)=0(1/rN) whenr— +o with t=const.

Let us consider somB e C, and a radiusk e R with R

>0. We define two integrals, corresponding to a split of theP
Poisson integral between “near-zone” and “far-zone” con-

tributions, separated by the radiis

B _ 1 d B
Z(x,t)= 47J|| = y||y| (y,t), (B3)

3

1
Bixt)=—-— y[Br(y,b). (B4)

yl>RIX— Y|

The B-dependent regularization factor{ig®=(|y|/r,)&. Itis
easily checked that the near-zone intedfa(x,t) is well-
defined(convergentwhen ReB) > —3 and that the far-zone
onel®(x,t) is well-defined when R&) < — ay.,— 2, where
amax IS the maximal power of in the expansioriB2). So we

have to assume at this stage the existence of some maximal

divergency corresponding to some powaf,,,. Strictly

speaking, our present investigation is thus valid only at some
finite post-Newtonian order. But, in the end, we sum up the
results, and we consider the complete post-Newtonian series

to hold true in a formal sense.

We want first to check that the integraB3) and(B4) can
be analytically continued down to a neighborhoodBaf 0
(except at the valuB=0 itself), say in the open domaifi,
defined by 6<|B|<e (where e<1). There is no problem
with the near-zone integraf (x,t) which is clearly conver-
gent all over3, and even at the valuB=0. Concerning the

far-zone integral 2 (x,t) we replace the function inside the
integrand by its far-zone expansioB?2):

1 dyyP

1B(x,t)=
g 4w )iy >r Ix—yl

X1 2 nL]YIRIN)YPGL 4 p(D)+Su(y, D) -

(B5)

PHYSICAL REVIEW D65 124020

diylylB.

P B7)

S | S mbin)e
Let us suppose that the field poixtlies inside the far-zone
domain, i.e.,R<|x|. We distinguish between the two cases,
where|y|<|x| and|x|<|y|. For each of these two cases we
substitute into the integrals the appropriate multipolar expan-
sion of the factor 1k—y|, for instance 1k—yj|
=3,7(=)/1y 3, (1/]x|) when |y|<|x|. This leads, after
erforming the integration over the angles, to some series of
radial integrals having the structufignoring some unimpor-
tant factors

)A('- X B+a+l+2 p
NERSIN dlyllyl (Inly[)

>

+2 X, dlyllyIB”‘ 1(nly[)P. (B8

When |x| <R the reasoning is the same but one simply ig-
nores the first term in E¢B8) and takesk as a lower bound
in the second term. Computing each of these integrals, we

find
2 )A(L |X|B+a+l+3_RB+a+|+3
|X|2'+ dB B+a+I1+3
. d\P _|X|B+a—l+2
+3 &l g8) | orarez) (B9)

Each of these terms clearly admits an analytic continuation
for any Be B, and in fact for anyB e C except at integer
values. Furthermore, we see from that expression that the
function will admit a Laurent expansion wh&i—0, with in
general some multiple polésoming from the differentiation
(d/dB)P of simple poles~1/B]. Hence our statement.

It is clear that the Laplacians of the two integrafs and
I satisfy, in the domains of the complex plane where these
functions were initially valid,

Re(B)>—3=A18(x,t) = Y(R—|x|)[X[Br(x,t),
(B10)

—R)[X[Br(x,1),
(B11)

ReEB)< —ama— 2= A1 (x,1)=Y(||

whereY denotes the Heaviside step function. Therefore, if

WhenN is large enough, the contribution due to the remain-We definefor any B € 5, the object

der Sy is convergent all oveB, and atB=0, with evidently
the value aB=0 given by

f 3yIY/IB S.t)= f d® (86)
== [x=Yl yi=rIX=Y]

Sn(y.t) +O(B).

Thus we need only to deal with the other contributions,

which consist of a finite sum of terms, say

1B(x,t)=18(x,t) +analytic continuatiofi & (
Be B,

x,t)},
(B12)

we find that it necessarily satisfies, for ale B,, the
B-dependent Poisson equation
X|Br(x,t).

A1B(x,t)= (B13)
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On the other hand, we have learned from HgP) that |8 1 d3y —
| Sy, (819

admits whenB—0 a Laurent expansion involvingn gen- I (x)=—7_FP
era) simple and multiple poles. Now the key idea, as we B=0
shall prove, is that thénite part, or coefficient of the zeroth
power ofB in the latter Laurent expansion, represents a par-
ticular solution of the Poisson equation that we want to
solve. Let the Laurent expansion bt be

yl>RIX—Y]

The near-zone integral admits an expansion at infinity which
is of the required type. Indeed, because the integrand is of
compact support|y|]<R, we can replace in it the factor

1/x—y| by its expansior® (—)'/I1y-3, (1//x|) and integrate

s term by term. So we hav&Ne N,
1B(x,t)= >, ix(x,t)B, (B14) Ly,
k=Kmin
|<(X!t)_ 477_ < I aL(F)
wherek,in€ Z, and where the coefficienig depend on the
field point (x,t). By applying the Laplacian operator onto 3 (1B L= 1
both sides of Eq(B14), and using the resulB13) together X FPJ dyly|°yt7(y,t) +O| —
. . . ~ B=0"lyl<R r

with the Taylor expansion of the regularization fact®f®,
we arrive at (B20)

Ko<k<—1=Ai =0, (B15) The right-hand side has indeed the same structure as in Eq.

(B2). The treatment of the far-zone integral is more delicate.
— We proceed in a way similar to what was done in Eg&)—
In|x|)*— . . — . i
k>0=>Aik=( 1X]) - (B16) (59). I\_lamely, we replace into it the soqr(?eby its expan
k! sion given by Eq.B2). This yields(the finite part of Eq.
(B5), which for convenience we reproduce here:
Thus, the cas&=0 shows that the finite-part coefficient in -
the expansioriB14), namelyi, is a particular solution of the (X t)=— — f d’yly[®
required equationAiy=7. We shall now forget about the - Amg_o)ly>w XY
intermediate namdao, and denote, from now on, the latter

solution byA T=ig, Or, in more explicit terms, X

> WIYIEINIYDPGL 4 p(t) + Sy, D) |-

—~

“Tr(x,t)= FPA~Y[[X[Br(x,)], (B17) (B21)
B=0

There is a contribution of the remainder and a finite sum of
terms with known structure. The remainder contribution is
S|mply given by the value &= 0 which has been written on
the right-hand side of EqB6). Let us write this term in the
orm

where A~ refers to the standard Poisson integral, and the
finite-part symbol FB_, means the previous operations of
considering the Laurent expansion whgn-0, and picking

up the the finite-part coefficient. Thus, we have proved that

A[A 7-]—7 so the generalized inverse Poisson operatorf d3y

_ (_ 1 )
ly|>R|X— y|SN(y’) ,20 T L( )fl dyy"Sy(y.t)

A~ Al defines a particular solution of the Poisson equation
which has, by construction, none of the problems of diver-
gencies of Poisson integrals which have so much plagued the +Tn-2(X1), (B22)

standard post-Newtonian approximati@19. . ] .
—— where we introduced thBl—4 first terms of the multipolar

Finally, let us prove that our generalized solutian®r ; _
. ' — = +
owns the same propertiéB1) and(B2) as the corresponding expansion of 1k—y| whenr =[x|—+¢, and where

sourcer. This verification is important because it will allow

us to iterate any number of times the operator’, and to Th-2(X%,1)= fy|>Rd3y

obtain the post-Newtonian expansion up to any post-

rN\e!vtonian order. The main problem amounts to proving that ( )'

A~17r admits the same type of expansion at infinjty _; A )

—+o0 as in Eq.(B2). To do this, we consider again the same

split into near-zone and far-zone contributions™ Lr= | _ The maximal ordeN—4 of the expansion is chosen in such

+1-, where a way that all the terms in EqB23) are given by convergent

integrals at infinity, owing to the fact that the remainder sat-

1 ddy isfies Sy=O(1/rN). Now we prove thafTy_,, defined by
pr |y|BT(yt) (B18) Eq. (B23), is also a remainder in the sense thgj_,

dag_o)yi<rlx=y| =0(Inr/rN"2). We splitT_, into two integrals, a near-zone

1
Ix—yl

Sa(y,t). (B23)

l(Xt)y=——
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near

integral TR, corresponding to the integration rangg  field [see, e.g., EQA3)]. Let us first applyM onto A~ [ 7]
e]R,IXI[, and a far-zone on@®" , corresponding tdy| as expressed as a sum of near-zone and far-zone contribu-
e]|x|,+[. In the near-zone integral, we can use the boundions,

1 N74(—)' R |y|N -2 .
PV TWL(r) <Cnper (829 MATLT) =M+ ML), (e7]

wherel - andl~. are defined by EqgB18) and(B19). The
near-zone integral is quite easy to work with. Indeed, from
Eq. (B20) we see that its expansion wher=|x|— +x is
obtained by expanding the factor|4+y| inside the inte-
grand. Therefore, the infinite far-zone expangiaithout re-

where Cy is a constant. On the other hand, becaSge
=0(1/rN), there is also a constarty, depending on the
value of R, such that the following majoration holds:

A X
1Sy(y, )| < _“,L (B25)  Maindej reads
lyl
i ; . ; 1 1
Replacing these results into the near-zone integral, we get Ml )=—— pr d3y|y|BM( )r(y 1),
4mg_oJlyl<r Ix—yl|
C3
| TREES(X, t)|\477 2In( |R|> (B26) €3
X" in which we denote
In the far-zone integral, we can no longer apply the bound
(B24) but still we can employ the majoratidB25). Then we 1 > (-) .1
can easily show the inequalitjn which |y|=|x|\) M x—y[] & I Yuoo Ix[}° (C4
N—4
T (x,t)| <47 An f“ dA 34_ > (2l - D! N On the other hand, the far-zone expansion of the far-zone
2 Ix(N"2J1 ANT2 [N =0 I ' integrall = has been obtained in Eq821),(B22), where we

(B27) found that it comes from replacing the source term by its

far-zone expansiortindeed, whenR is large enough, the
integration ranges over the domain of validity of the far-zone
expansioh So the infinite far-zone expansion of that term is
given by

The integral is convergent. At last, from Eqd26) and
(B27) we have proved thafy_,=0(Inr/rN"2). Still it re-
mains to show that the finite sum of terms in E21), i.e.,
besides the remainder, admits some expansions of the re-

quired structure. But this follows from applying the finite M(] f Y|Y|B
part operation FP_, onto the result(B9), which tells us M(l>)= 4775 oJly=® [X—Y|
immediately that we have an expansion of the correct type

~n(x)|x12(Infx))°.

——M(7(y.1)), (C5H)

where the integrand contains the expansion of the source

given by Eq.(C1). Now let us use a technical lemma which

APPENDIX C: FAR-ZONE EXPANSION OF THE POISSON is quite important in the present formalism, and has already
INTEGRAL played a crucial role in Ref§39,40. This lemma is based on

Thanks to the investigation in Appendlx B, the far-zone fhoemdlﬁwﬁsrlfa(f:ﬁ)p,a\l,czerégdel% arl]r;taeg:]agp ;r]; atrT)?tragl/pe

(or multipolay expansion of the objech ™ 1[ 7] happens to  real numbers, is identicallgero by analytic continuation in

be workable. Recall that controlling the far-zone expansiorB. See Ref[51] for the proof. Our useful lemma, which is

of the post-Newtonian field is fundamental since it is at thetrivial to relate to the previous remarkfter performing the
basis of the matching. The operation of taking the far-zonentegration over anglesis

expansion is denoted!t when applied on post-Newtonian
objects(see Sec. Il B. We therefore want to determine the

expression ofM(A Y[ 7]). That is, we want to relate it to f dyly| BM< ! )M(r(y t))=0. (C6)
the expansion of the corresponding source, which has the x=yl
same structure as in E¢3.22:

The point here is that the integral ranges over the complete

_ R three-dimensional spadé®. Now we have the “numerical”
M(T)(X,1)= 2 nra(Inr)PG 5 o(t). (CD)  equalitiesM(1/x—y])=1/x—y| when|y|<|x| and M(7)

=7 when |y|>a, where a is the radius of the compact-
By the matching equation we know that this far-zone expansupport source. From this we deduce that as SooR a8,
sion is identical with the near-zone expansion of the externalvhich we can always assume right from the beginning, and
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|x|>R, which is not a problem because we are consideringrhis formula is a consequence of the fact thag FJ d°z
the limit |x| — +c, we have the identity X[2|B(2l|z—y|) = —4mA [y ] =[— 27/ (21 +3)]|y|?Y.;
see Eq.(4.10 in Ref.[43]. Therefore, we arrive at

FP J I vty T T T
B—0J lyl<® [X=Yl ’ MAT L r)=A" " M(7)]
+ FPf dSyI?lsM(i (y,)=0 7 leC) > AT )
B=0J V>R [x=yl) 7 = T
By means of that identity, we can obtain the requested form X FPJ dyly| Bﬁ[&,_]?(y,t),
of the far-zone expansion as B=0
(C12
—_— 1 - 1 —
MA7])=~ EFPJ d3y|y|B{WM(T(y,t)) and from this it is very simple to derive the requested ex-
B0 pression concerning 1. We obtain
1 \—
+ M W) T(y,t)}. (C8) —_— .
MIZ =T M(7)]
In this particular form we see that thef operator is distrib- 1 = (—) e

uted on the two terms like a derivative operator would be. In
the first term we recognize the action of the generalized Pois-
son integral. Actually this Poisson operator has been defined > .
in Appendix A when acting on a near-zone expansion of the XE - pr d3y|§/|BAi*k[§/L]at2k7(y,t).
type (A3), but by matching that expansion is the same as the =i cZg_o

present far-zone expansion, so the definition is rigorously the
same. Finally, we can rewrite EQC8) into the alternative
form

> o 2 AT )

4ar =0 =0

(C13

This expression, though completely explicit, does not consti-
o tute our final form. Because the “instantaneous” solution is a

M(F[?])—F[M(?)]— 1 > (—)';9 (1) particular solution of the d’Alembertian equation, it must be
B ot

47 < possible to reexpress the second term in(E4.3) as a com-
bination of some source-free retarded and advanced multipo-
~BA lar waves. To see this we notice that
X FP f d®yly[Py 7(y,b), (C9
B=0
L _[r2i-1
which constitutes the main result of this appendix. Notice A'[ﬁL(fl)]IﬁL(W>, (C19

that Eq.(C9) is in agreement with the multipole expansion of

the retarded mtegrali as given by qu.-”) and (3.1 in .which shows that the latter homogeneous solution is actually
Ref. [40], when specialized to the static case where there IShe of the symmetrictype, i.e., retardecplus advanced

no dependenc_e on time. . Namely we can rewrite EC13) into the form
Next we derive the analogous result concerning the opera-

tor of the “instantaneous” potentials
MI =T {M(7)]

+ o

~— 1 —— —+ oo |
1 T2k —k—1 1 (=)'~ | FL(t=rlc)+F (t+rlc)
T kgo AT (C10 _E.ZZO L, L - L (15

We iteratek + 1 times the resultC9). There is no problem in \yhere the overline notation means taking the Taylor expan-
doing this; the only point is that we use in a repeated way thgjon of the symmetric wave when the retardatioo— 0 [the
easily checked formula telling that we are allowed to “oper-reqit is displayed in Eq3.24)]. Actually, this overline no-
ate by parts” the Poisson integral ! as tation is somewhat misleading, because, in keeping with the
real meaning of the resuliC15, one shoulda posteriori
interpret the latter Taylor expansion agag-zone(singulay
pr 4327|827 A~ Tr= pr d3y[YIBA [y, I7. expansion when— + 2. However, in view of the matching,
B=0 B=0 it is more fruitful to employ the same overline notation as for
(C1y the expansion of the antisymmetric waves occurring in the

124020-23



OLIVIER POUJADE AND LUC BLANCHET PHYSICAL REVIEW D65 124020

near-zone metric—indeed when doing the matching one is
simply interested in identifying some asymptotic expansions ATy, = |Y|ZJYLJ dZ(zj), 1(2), (C18
which are of the same form. The “multipole-moment” func-

tion F(t) in Eq. (C19 is given by which permits us to express the functiép in a form where

the post-Newtonian series is formally resummed as

+
A=, 7 [ TG R Y. :
(C16) FLt)= FPJ d3y|§|Bny 1dZ5|(Z)T(y,tiZ|y|/C)-
B=0 -
Finally, let us find an alternative, more compact, form for (C19

this result. We introduce thiedependent function . . .
P Under this form, we recognize the multipole-moment func-

tion introduced in Eq(3.14 in Ref. [40] (the function re-
mains unchanged by taking either signin the time argu-
ment of 7). This result permits us to fully determine the
exterior multipolar field by matching, and to recover the ex-
whose integral is normalized to I1,dz8,(z)=1. One can pression already obtained in RE#0] by means of a some-

21+ 1)
R €17

readily show that what different method.
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POST-NEWTONIAN APPROXIMATION FOR ISOLATED. ..

[49] Our notation for STF tensors is the following.=iqiy- - i,
denotes a multi-index, made bfspatia) indices. When sum-
ming over multi-indices we never write thesummations over
thel indicesiq,- - -,i) ranging from 1 to 3. The STF product of
unit vectorsn;=n'=x'/r is denotech, = STF(n, ), wheren, is
shorthand forni1~ --n;. For instanceﬁ”—=ninj—%6ij . Simi-
larly, we denotexszil~ . -xi|=r'nL and §(L= STF(x.). The
derivative operatop, is shorthand fow; - --4;, and we have
d_=STF(3,). For instanced;; = d;; — 5 6, A. More generally, a
function F_ is said to be STF with respect to thendices
composingL if and only if, for any pair of indices,,igeL,
we haveFu,i g T iq e ip and 5ipin~-i g
(see Appendixes A and B in Ref36] for reviews about the
STF formalism.

[50] It is clear that for stationary sourcésdependent of time the
antisymmetric waves given by Eq.22 are zero. Therefore,
the only contribution to the functio® {*"(t) comes from the
nonstationary(or radiative part of the field, which according
to our assumption of stationarity in the past is zero when

[51]
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—17, and for whichR {*(t) is perfectly well-defined. For sim-
plicity, in the notation we do not indicate th&{*"(t) should
be computed only from the “radiative” part of the source term
M(TH7).
We want to prove that the radial integral
sedlyllylB*2(In |y|])P is zero by analytic continuationv(B
e (). First we can get rid of the logarithms by considering
some repeated differentiations with respecBfdghus we need
only consider the simpler integrdy “d|y||y|B*2. We split the
integral into a near-zone integréfd|y||y|®*? and a far-zone
one [£7d]y||y|®B"?, whereR is some constant radius. When
Re(B) is a large enough positive number, the value of the
near-zone integral i® B*2*1/(B+a+ 1), while when ReB)
is a large negative number, the far-zone integral reads the op-
posite,— R B*3*1/(B+a+1). Both obtained values represent
the unique analytic continuations of the near-zone and far-zone
integrals for anyB e C except—a—1. The complete integral
[d|y|ly|®B*? is equal to the sum of these analytic continua-
tions, and is therefore identically zer® B e C, including the
value —a—1).



