
HAL Id: hal-00134698
https://hal.science/hal-00134698v1

Submitted on 9 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Post-Newtonian approximation for isolated systems
calculated by matched asymptotic expansions

Olivier Poujade, Luc Blanchet

To cite this version:
Olivier Poujade, Luc Blanchet. Post-Newtonian approximation for isolated systems calculated
by matched asymptotic expansions. Physical Review D, 2002, 65, pp.124020. �10.1103/Phys-
RevD.65.124020�. �hal-00134698�

https://hal.science/hal-00134698v1
https://hal.archives-ouvertes.fr


s

PHYSICAL REVIEW D, VOLUME 65, 124020
Post-Newtonian approximation for isolated systems calculated by matched asymptotic expansion

Olivier Poujade and Luc Blanchet
Institut d’Astrophysique de Paris (C.N.R.S.), 98bis boulevard Arago, 75014 Paris, France
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Two long-standing problems with the post-Newtonian approximation for isolated slowly moving systems in
general relativity are~i! the appearance at high post-Newtonian orders of divergent Poisson integrals, casting
doubt on the soundness of the post-Newtonian series, and~ii ! the domain of validity of the approximation
which is limited to the near-zone of the source, and prevents one,a priori, from incorporating the condition of
no-incoming radiation to be imposed at past null infinity. In this paper, we resolve problem~i! by iterating the
post-Newtonian hierarchy of equations by means of a new~Poisson-type! integral operator that is free of
divergencies, and problem~ii ! by matching the post-Newtonian near-zone field to the exterior field of the
source, known from previous work as a multipolar-post-Minkowskian expansion satisfying the relevant bound-
ary conditions at infinity. As a result, we obtain an algorithm for iterating the post-Newtonian series up to any
order, and we determine the terms, present in the post-Newtonian field, that are associated with the
gravitational-radiation reaction onto an isolated slowly moving matter system.

DOI: 10.1103/PhysRevD.65.124020 PACS number~s!: 04.25.Nx, 04.30.2w
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I. INTRODUCTION

A. Problems with the post-Newtonian expansion

The post-Newtonian approximation, or expansion wh
the speed of lightc→1`, has been formalized in the ear
days of general relativity by Einstein@1#, Droste@2#, and de
Sitter @3#. Since then, it has provided us with our best insig
into the problems of motion and gravitational radiation, tw
of general relativity’s most important issues. Concerning
problem of motion, we quote the dynamics ofN separated
bodies at the first post-Newtonian~1 PN, or 1/c2) order;
works of Einstein, Infeld, and Hoffmann@4# and other au-
thors @5–7#, and the dynamics of extended fluid systems
to the 2.5 PN level of gravitational radiation reaction; wor
of Chandrasekhar and collaborators@8–10# and followers
@11–19#. In the case of two compact objects, we know t
2.5 PN equations of motion of the binary pulsar@20–23#, and
the 3 PN equations of motion of inspiraling compact binar
@24–28#. The specific contribution of the gravitationa
radiation reaction has been obtained up to the 1.5 PN rela
order by the method of matched asymptotic expansions
extended fluids@29–33#, and by means of balance equatio
for compact binary systems@34,35#. Concerning the problem
of gravitational radiation, the work has focused on the
pressions of the multipole moments of general fluid syste
@36–40#, and on the gravitational-wave flux emitted by i
spiraling compact binaries, including the specific effects
wave tails, up to the 3.5 PN order@41–45#.

The ‘‘standard’’ post-Newtonian approximation, at the b
sis of most of the body of work quoted previously, is know
to be plagued with some apparently inherent difficulti
which crop up at some high post-Newtonian order like 3 P
Up to the 2.5 PN order, the approximation can be worked
without problems, and at the 3 PN order the problems can
solved specifically for each case at hand~see, for instance
Ref. @27#!. However, it must be admitted that these difficu
ties, even appearing at higher approximations, cast doub
the actual soundness, from a theoretical point of view, of
post-Newtonian expansion. What may be worse is that t
0556-2821/2002/65~12!/124020~25!/$20.00 65 1240
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pose the practical question of the reliability of this appro
mation when comparing the theory’s predictions with ve
precise experimental results. It is therefore highly desira
to assess the nature of these difficulties—are they pu
technical or linked with some fundamental drawback of t
approximation scheme—and eventually to resolve the
This is especially important in view of the fact that inspira
ing compact binaries, when they are detected and analy
by gravitational-wave experiments, will necessitatea priori
theoretical knowledge of the gravitational-wave signal
some very high post-Newtonian order@41–45#. In this paper,
let us distinguish~and resolve! the two basic problems face
by the post-Newtonian expansion.

The first problem is that in higher approximations som
divergentPoisson-type integrals appear. Recall that the po
Newtonian expansion replaces the resolution of a hyperb
clike d’Alembertian equation by a perturbatively equivale
hierarchy of ellipticlike Poisson equations. Rapidly it
found during the post-Newtonian iteration that the right-ha
side of the Poisson equations acquires a noncompact sup
~it is distributed over all space!, and that the standard Poisso
integral diverges because of the bound of the integral at s
tial infinity, i.e., r[uxu→1`, with t5const. For instance
some of the potentials occurring at the 2 PN order in Ch
drasekhar’s work@9# are divergent, so the correspondin
metric is formally infinite.1 In fact, Kerlick @14,15# showed
that the post-Newtonian computation in the manner of Ch
drasekhar@8–10#, following the iteration scheme of Ander
son and DeCanio@11#, can be made well-defined up to th
2.5 PN order, by keeping some derivatives inside some
cial integrals to make them finite@12,13#. However, the latter
remedy does not solve the problem at the next 3 PN or
which has been found to involve some inexorably diverg
Poisson integrals@14,15#.

1Nevertheless, these divergencies were not a problem when
sidering the equations of motion because the gradients of th
potentials, which parametrize the equations, were finite.
©2002 The American Physical Society20-1
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OLIVIER POUJADE AND LUC BLANCHET PHYSICAL REVIEW D65 124020
These divergencies come from the fact that the po
Newtonian expansion is actually a singular perturbation
the sense that the coefficients of the successive powers oc
are not uniformly valid in space, since they typically blow u
at spatial infinity like some positive powers ofr. For in-
stance, Rendall@46# has shown that the post-Newtonian e
pansion cannot be ‘‘asymptotically flat’’ starting at the 2 P
or 3 PN level, depending on the adopted coordinate sys
The result is that the Poisson integrals are in general b
behaving at infinity. Physically, this can be understood by
fact that the post-Newtonian approximation is valid only
the near zone of the source~see below! while the Poisson
integral extends over the whole three-dimensional space
cluding the regions far from the source where the appro
mation breaks down. Therefore, trying to solve the po
Newtonian equations by means of the standard Pois
integral does nota priori make sense. This does not me
that there is no solution to the problem, but simply that
Poisson integral does not constitute the correct solution
the Poisson equation in the context of post-Newtonian
pansions. So the difficulty is purely of a technical nature, a
will be solved once we succeed in finding the appropri
solution to the Poisson equation.2 A solution to the problem
of divergencies has been proposed by Futamase and S
@47# and Futamase@48#. Their approach is alternative to th
one we shall follow below. It is based on an initial-valu
formalism, which avoids the appearance of divergencies
cause of the finiteness of the integration region.

The second problem has to do with the near-zone lim
tion of the approximation. Indeed the post-Newtonian exp
sion assumes that all retardationsr /c are small, so it can be
viewed as a formalnear-zoneexpansion whenr→0, which
is valid only in the region surrounding the source that is
small extent with respect to the typical wavelength of t
emitted radiation:r !l ~if we locate the origin of the coor
dinatesr 50 inside the source!. Therefore, the fact that th
coefficients of the post-Newtonian expansion blow up at s
tial infinity, when r→1`, has nothing to do with the actua
behavior of the field at infinity. The serious consequence
that it is not possible,a priori, to implement within the post-
Newtonian iteration the physical information that the mat
system is isolated from the rest of the universe. Most imp
tantly, the no-incoming-radiation condition, imposed at p
null infinity, cannot be taken into account,a priori, into the
scheme. In a sense the post-Newtonian approximation is
‘‘self-supporting,’’ because it necessitates some informat

2The problem is somewhat similar to what happens in Newton
cosmology. Here we have to solve the Poisson equationDU5
24pGr, where the densityr of the cosmological fluid is constan
all over space:r5r(t). Clearly the Poisson integral of a consta
density does not make sense, as it diverges at the bound at in
like the integral*rdr . This nonsensical result has occasionally be
referred to as the ‘‘paradox of Seeliger.’’ However, the problem
solved once we realize that the Poisson integral does not cons
the appropriate solution of the Poisson equation in the contex
Newtonian cosmology. A well-defined solution is simply given
U52

2
3 pGrr 2.
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taken from outside its own domain of validity.
To the lowest post-Newtonian orders one can circumv

this difficulty by consideringretarded integrals that are for-
mally expanded whenc→1` as series of ‘‘instantaneous
Poisson-like integrals@11#. This procedure works well up to
the 2.5 PN level and has been shown to correctly fix
dominant radiation reaction term at the 2.5 PN order@14,15#.
Unfortunately, such a procedure assumes fundamentally
the gravitational field, after expansion of all retardatio
r /c→0, depends on the state of the source at a single ti
in keeping with the instantaneous character of the Newton
interaction. However, we know that from the 4 PN order t
post-Newtonian field~as well as the source’s dynamic!
ceases to be given by a functional of the source paramete
a single time, because of the imprint of gravitational-wa
tails in the near zone field, in the form of some modificatio
at the 1.5 PN relative order, of the radiation reaction fo
@31–33#. Therefore, the formal post-Newtonian expansion
retarded Green functions is no longer valid starting at th
PN order. We face here a true difficulty, which is fundame
tally linked to the nature of the post-Newtonian approxim
tion.

The aim of the present paper is to resolve the two la
problems. We shall prove that the post-Newtonian expans
can beindefinitelyreiterated, while incorporating the corre
boundary conditions satisfied by the wave field at infinity.
particular, we shall get new insights about the problem
gravitational-radiation reaction inside an isolated~post-
Newtonian! system. To solve the problem of divergencie
we introduce, at any post-Newtonian order, a generali
solution of the Poisson equation with a noncompact supp
source, in the form of an appropriatefinite part of the usual
Poisson integral: namely, we regularize the bound at infin
of the Poisson integral by means of a process of anal
continuation, analogous to the one already used to regula
the retarded integrals in Refs.@36,39,40#. Our generalized
solution constitutes a particular~well-defined! solution of the
problem; the most general solution is the sum of that parti
lar solution and the most general solution of the correspo
ing homogeneous equation, i.e., the source-free Lap
equation. The homogeneous solution should be regular
over the matter system~we are considering smooth matte
distributions!, and we find, after summing up the pos
Newtonian series, that it can be thoroughly written with t
help of some tensorial functions of timeAL

mn(t), where L
5 i 1••• i l denotes a multi-index withl indices @49#. At this
stage, considering the post-Newtonian iteration sche
alone, we cannot do more and therefore we leave the fu
tions AL

mn(t) unspecified. We refer to them as som
‘‘radiation-reaction’’ functions.

The solution of the problem of the near-zone limitation
the post-Newtonian expansion resides in the matching of
near-zone field to the exterior field, a solution of the vacu
equations outside the source which has been develope
previous works@36,32# using some post-Minkowskianand
multipolar expansions. In the case of post-Newton
sources, the near zone, i.e.,r !l, covers entirely the source
because the source’s radius itself is such thata!l. Thus the
near zone overlaps with the exterior zone where the mu
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POST-NEWTONIAN APPROXIMATION FOR ISOLATED . . . PHYSICAL REVIEW D65 124020
pole expansion is valid. Matching together the po
Newtonian and multipolar–post-Minkowskian solutions
this overlapping region is an application of the method
matched asymptotic expansions, and has frequently been
plied in the present context, both for radiation-reaction@29–
33# and wave-generation@37–40# problems.

The exterior multipolar–post-Minkowskian field orig
nally obtained in Ref.@36# depends on some ‘‘multipole
moment’’ functions, sayXL

mn(t) @whose components are a
sociated with some source multipole moments, e
I L(t), JL(t), . . . #, which must be left unspecified as lon
as we consider only the external vacuum solution. In
work @40#, we have shown that the multipole momen
XL

mn(t) are entirely determined, up to any post-Newtoni
order, from the requirement of matching to a post-Newton
solution. In the present paper, we shall further show that
radiation-reaction functionsAL

mn(t), parametrizing the post
Newtonian solution, are also uniquely fixed, up to any po
Newtonian order, by the matching. In particular, we sh
find that the latter functions include correctly the contrib
tion of wave tails, arising at the 4 PN order, as determined
Refs. @31–33#. We shall also recover by a different metho
the result of Ref.@40# concerning the multipole moment
XL

mn(t).
A comment is in order regarding the possibility of dete

mining the near-zone field by matched asymptotic exp
sions up toany post-Newtonian order. Indeed, the meth
pre-supposes the existence of the exterior near zone
which a,r !l. Now if a given physical system, whose d
namics is described by Newton’s theory, emits gravitatio
radiation at some Newtonian fundamental wavelengthlN ,
we expect that when taking into account the post-Newton
corrections up to the post-Newtonian ordern, it will have a
radiation spectrum composed of harmonics betw
;2lN /n and;2lN . Indeed, this is the case of the radiatio
from a binary system moving on a circular orbit, for whic
we have@2/(n12)#lN<ln PN<2lN . Therefore, ifn is large
enough, sayn*2lN /a, we expect that there will be som
part of the radiation whose frequency is too high for t
exterior near zone to exist. What we want to say is that
formulas we shall obtain for the post-Newtonian field of
source ‘‘up to any order’’ are indeed physically valid, strict
speaking, only up to some finite post-Newtonian ord
;2lN /a, wherea is the size of the source, but that, if w
consider a source which is less relativistic, for instan
which is obtained by ‘‘slowing down’’ our source so that i
Newtonian wavelength gets twice its original value~say!, the
samepost-Newtonian formulas can then be used for the n
source up to approximately twice the previous po
Newtonian order.

The plan of this paper is as follows. In Sec. II, we rec
the construction in Ref.@36# of the multipole expansion o
the external field, and we obtain thanks to a result of R
@32# the near-zone expansion of that external field ready
subsequent matching. In Sec. III, we implement the po
Newtonian iteration of the inner field inside the matt
source, and we find the far-zone~multipolar! expansion of
that post-Newtonian solution, also ready for matching.
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Sec. IV, we show that the matching works up to any po
Newtonian order, and permits the determination of all t
unknowns, in both the external and inner fields. Finally,
Sec. V we check that our post-Newtonian solution satis
the harmonic-coordinate condition as a consequence of
equations of motion of the source. The technical proofs
relegated to Appendixes A, B, and C.

B. Notation for the Einstein field equations

For the problem at hand, let us introduce an asympt
cally Minkowskian coordinate system for which the bas
gravitational-wave amplitude,hmn5A2ggmn2hmn, is di-
vergenceless, i.e., satisfies the de Donder or harmonic g
condition ]mhmn50. Here, gmn denotes the contravarian
metric ~satisfyinggmrgrn5dn

m), g is the determinant of the
covariant metric,g5det(gmn), andhmn represents an auxil
iary Minkowskian metric with signature12. With these
definitions the Einstein field equations can be recast into
d’Alembertian equation

hhmn5
16pG

c4
tmn, ~1.1!

where h5hmn]m]n521/c2]2/]t21D is the ~flat space-
time! d’Alembertian operator. The source term,tmn, can
rightly be interpreted as the ‘‘effective’’ stress-energ
pseudotensor of the matter and gravitational fields in h
monic coordinates. It is conserved in the usual sense,
that is equivalent to the condition of harmonic coordinate

]mhmn50⇔]mtmn50. ~1.2!

The pseudotensortmn is made of the contribution of the
matter fields, described by a stress-energy tensorTmn, and
the one due to the gravitational field, given by the gravi
tional source termLmn; thus,

tmn5uguTmn1
c4

16pG
Lmn. ~1.3!

The conservation property~1.2! is equivalent to the conser
vation, in the covariant sense, of the matter tensor:¹mTmn

50. The exact expression ofLmn, taking into account all the
nonlinearities of the Einstein field equations, reads

Lmn52hrs]rs
2 hmn1]rhms]shnr1

1

2
gmngrs]lhrt]th

sl

2gmrgst]lhnt]rhsl2gnrgst]lhmt]rhsl

1grsglt]lhmr]th
ns1

1

8
~2gmrgns2gmngrs!

3~2gltgep2gteglp!]rhlp]shte. ~1.4!

It is clear from this expression thatLmn is made of terms
which are at least quadratic in the gravitational-field stren
hmn and its first and second space-time derivatives.
0-3
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OLIVIER POUJADE AND LUC BLANCHET PHYSICAL REVIEW D65 124020
In this paper, we look for the solutions of the field equ
tions ~1.1!–~1.4! under the following hypotheses. First, w
assume that the matter tensorTmn has a spatially compac
support, i.e., can be enclosed into some timelike world tu
sayr<a, wherer 5uxu is the harmonic-coordinate radial dis
tance. Second, we assume that the matter distribution in
the source is smooth: i.e.,Tmn(x,t)PC`(R4). We have in
mind a smooth hydrodynamical ‘‘fluid’’ system, without an
singularities or shocks~a priori!, that is described by som
Eulerian-type equations including high relativistic~post-
Newtonian! corrections. In particular, we exclude from th
start any sources containing black holes. Notice, howe
that it makes sense to apply the formulas deriveda priori
only for smooth matter distributions to systems contain
compact objects~including black holes!, described by some
sort of point-particle singularities; see, e.g., Refs.@41–45#.
Finally, in order to select the physically sensible solution
the field equations, we choose some boundary condition
infinity corresponding to the famous no-incoming-radiati
condition. In this paper, we shall rely on a specific constr
tion of the metric outside the domain of the source (r .a),
which was achieved in Ref.@36# under the assumption tha
the gravitational field has been independent of time~station-
ary! in some remote past, in the sense thatt<
2T⇒]/]t@hmn(x,t)#50. This condition is a means to im
pose, by brute force, the no-incoming-radiation condition3

II. EXTERIOR FIELD

A. Multipolar expansion of the nonlinear vacuum field

In this section, we review some material from Ref.@36#
concerning the construction ofvacuummetrics by means o
mixed multipolar and post-Minkowskian~MPM! expansions.
The so-called MPM metrics aim at describing the gravi
tional field in the region exterior to a general isolated syste
In fact they are mathematically defined in the open dom
R

*
3 3R, i.e., R4 deprived from the spatial originr[uxu50,

but of course they do not agree physically with the real
lution when 0,r ,a, since they are vacuum solutions. F
our present purpose the point is that the most general ph
cally admissible solution of the vacuum field equations h
been obtained in Ref.@36# by a specific construction of th
post-Minkowskian solution, say

hext
mn5 (

m51

1`

Gmh(m)
mn , ~2.1!

whose coefficients are in the form of multipolar series,
equivalently decompositions in symmetric-trace-free~STF!

products of unit vectorsn̂L , that are equivalent to the usu
decomposition in spherical harmonics@49#:

3However, the condition of stationarity in the past, though mu
weaker than the actual no-incoming radiation condition, does
seem to entail any physical restriction on the applicability of
formalism, even in the case of sources which have always b
radiating.
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;m>1, h(m)
mn ~x,t !5(

l 50

1`

n̂L~u,f!h(m)L
mn ~r ,t !. ~2.2!

The h(m)L
mn ’s are certain functions of the radial coordinater

and of timet. Inserting the MPM expansion~2.1! and ~2.2!
into the vacuum field equations~1.1! and~1.2! we obtain, at
any post-Minkowskian orderm,

hh(m)
mn 5L (m)

mn @h(1) , . . . ,h(m21)#, ~2.3!

]mh(m)
mn 50, ~2.4!

whereL (m)
mn denotes themth post-Minkowskian piece of the

gravitational source term defined by Eq.~1.4!, i.e., in which
we have inserted the previous post-Minkowskian iteratio
up to the previous orderm21 ~with the convention that
L (1)

mn50). Because Eq.~1.4! is at least quadratic in nonlin
earities, it is clear that only the preceding iterations,<m
21, are necessary at any post-Minkowskian orderm.

Now the solution that was obtained in Ref.@36# has two
main characteristics. The first one is related to its particu
near-zone structure, which will play a fundamental role
the present paper. Namely, it was proved that each one o
multipolar–post-Minkowskian coefficientsh(m)

mn in Eq.
~2.1!—that we recall are only defined whenr .0—admits a
singular near-zone expansion, i.e., whenr→0, with the fol-
lowing structure:

;NPN,

h(m)
mn ~x,t !5 (

l ,a,p
n̂Lr a~ ln r !pF (m)L,a,p

mn ~ t !1R(m)N
mn ~x,t !,

~2.5!

where the multipolar orderl PN, where the powers ofr are
such thataPZ with amin<a<N ~with amin a negative inte-
ger!, and where the powers of lnr arepPN with p<m21.
The maximal divergence whenr→0 occurs foramin , which
depends on the post-Minkowskian orderm, and satisfies
amin(m)→2` when m→1`. Similarly, the maximal
power of the logarithms,pmax(m)5m21, tends to infinity
with m. The functionsF (m)L,a,p

mn (t) are smooth functions o
time,F (m)L,a,p

mn PC`(R), which are to be computed by mean
of the algorithm proposed in Ref.@36#, and appear as com
plicated nonlinear functionals of some more element
functions parametrizing the linearized (m51) approxima-
tion. The remainder term in Eq.~2.5! is such that

R(m)N
mn ~x,t !5O~r N! when r→0 and t5const.

~2.6!

The LandauO-symbol takes its usual meaning. This rema
der admits also some specific differentiability properties~re-
fer to @36# for the details!. The gravitational source term
L (m)

mn admits exactly the same near-zone structure as in
~2.5! with the exception thatpmax5m22 in this case~that is,
the maximal power of the logarithms increases by one u
when going from the source to the solution!.

h
ot

en
0-4



ion
n

rs
te

b
’’

st

e

o

e

f

d
e
io

n
ec

d
e
th

ave

the

olu-

he

-
t-
a

on
n,

st-
-

olu-
d,

ost

ut-

d

-

s of
be

by

POST-NEWTONIAN APPROXIMATION FOR ISOLATED . . . PHYSICAL REVIEW D65 124020
The second important characteristic of the MPM solut
concerns the constructive formula which defines it. We fi
that each one of the post-Minkowskian coefficientsh(m)

mn is
explicitly constructed by means of the following@36#:

h(m)
mn 5 FP

B50
hRet

21@ r̃ BL (m)
mn #

1(
l 50

1`

]̂LH 1

r
X(m)L

mn S t2
r

cD J . ~2.7!

The first term involves a special type of generalized inve
d’Alembertian operator, built on the standard retarded in
gral,

hRet
21@ r̃ BL (m)

mn #~x,t !

[2
1

4pER3

d3y

ux2yu
uỹuBL (m)

mn ~y,t2ux2yu/c!,

~2.8!

which extends over the whole three-dimensional space,
inside which a regularization factor has been ‘‘artificially
introduced, namely

r̃ B[S r

r 0
D B

, ~2.9!

whereB denotes a complex number,BPC, andr 0 represents
an arbitrary constant length scale. The indication FP

B50
stands

for the finite part at B50, and means that one should fir
compute the Laurent expansion whenB→0 of ~the analytic
continuation of! the B-dependent integral~2.8!, and, second,
pick up the finite part atB50 in that expansion, i.e., th
coefficient of the zeroth power ofB. The main property of
this generalized retarded operator, which we shall from n
on abbreviate as

hRet
21̃@L (m)

mn #[ FP
B50

hRet
21@ r̃ BL (m)

mn #, ~2.10!

is that, for source termsL (m)
mn admitting a near-zone structur

of the type~2.5!,

h@hRet
21̃L (m)

mn #5L (m)
mn . ~2.11!

Because the second term in Eq.~2.7! is a retarded solution o
the source-freewave equation, we see therefore thath(m)

mn

represents indeed a solution of the wave equation we ha
solve:hh(m)

mn 5L (m)
mn . However, this is not sufficient becaus

we have also to solve the harmonic-coordinate condit
~1.2!. We shall refer to@36# for the definition of an algorithm
which permits us to compute, simply from the algebraic a
differential structure of the vacuum field equations, the n
essary form of the second term in Eq.~2.7!, in such a way
that the harmonic-coordinate condition will be satisfie
]mh(m)

mn 50. In fact, we shall not need, in the following, to b
more precise about the latter term; simply we keep it in
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form of a general retarded solution of the source-free w
equation, parametrized by some tensorial functionsX(m)L

mn (t).
We assume that these functions are STF with respect to
multi-index L: i.e., X(m)L

mn [X̂(m)L
mn , so the multiderivative]̂L

in Eq. ~2.7! is a STF one~see Ref.@49# for the notation!. The
latter construction represents the most general physical s
tion of the field equations outside the source@36#.

Let us now proceed with the formal resummation of t
post-Minkowskian series. That is, once the results~2.5!–
~2.7! have been established for any orderm, we sum them
from m51 up to infinity. In this way, we obtain some for
mulas which are valid formally for the complete pos
Minkowskian series, and, presumably, could hold true in
more rigorous context of exact solutions. After summati
we shall ‘‘forget’’ about the post-Minkowskian expansio
and consider that the exterior fieldhext

mn represents merely the
multipole decomposition of the actual fieldhmn outside the
compact support of the source~nevertheless, it is wise to
keep in mind that the solution came from a formal po
Minkowskian summation!. We denote the multipole decom
position by means of the calligraphic letterM. Therefore,
our definitionis that the multipole expansionM(hmn) of the
field outside the isolated source is merely the external s
tion constructed previously by means of the MPM metho
and resummed over the post-Minkowskian indexm:

M~hmn![hext
mn . ~2.12!

This definition is quite legitimate~and rather obvious! be-
cause we know that the MPM metric constitutes the m
general solution for the exterior field. Thus,M(hmn) is a
solution of the vacuum field equations, now considered o
side the physical domain of the source,r .a ~while hext

mn had
been constructed for anyr .0). In that domain, we have
evidently the numerical equality

M~hmn!5hmn ~when r .a!. ~2.13!

After summation of Eqs.~2.5! and ~2.6! over m, we get the
near-zone structure

;NPN, M~hmn!5( n̂Lr a~ ln r !pFL,a,p
mn ~ t !1O~r N!,

~2.14!

in which the functionsFL,a,p
mn (t)5(m51

1` GmF (m)L,a,p
mn (t), and

wherea<N and p>0. Notice that there is no lower boun
for a becauseamin(m)→2` whenm→1`; similarly there
is no upper bound forp. Secondly, coming to the construc
tive formula ~2.7! we obtain

M~hmn!5hRet
21̃@M~Lmn!#

1(
l 50

1`

]̂LH 1

r
XL

mnS t2
r

cD J , ~2.15!

whereXL
mn(t)5(m51

1` GmX(m)L
mn (t). In the following, we shall

regard the STF functionsXL
mn(t) as the ‘‘multipole mo-

ments’’ of the source, because they describe the physic
the source as seen from the exterior. We do not need to
more precise at this point. Let us simply comment that
0-5
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OLIVIER POUJADE AND LUC BLANCHET PHYSICAL REVIEW D65 124020
imposing the harmonic-gauge condition~1.2! we find that
there are only six components of these functions which
independent, and this yields the definition of six independ
STF source multipole momentsI L(t), JL(t),••• ~see Ref.
@40# for the precise definition!. Furthermore, the multipole
moment functionsXL

mn(t) have already been calculated
terms of the stress-energy tensor of a post-Newtonian so
in Ref. @40#. However, we prefer to leave these functio
undetermined because we shall recover their expression
means of a somewhat different method, and the agreem
we shall find with the result of Ref.@40# will constitute a
crucial check of our computation.

B. Near-zone expansion of the multipole decomposition

In anticipation of the matching we consider next the in
nite near-zone reexpansion, whenr→0, of the multipole ex-
pansionM(hmn) determined in Eq.~2.15!. We have already
obtained the general structure of that expansion, given by
~2.14!. Let us denote with the help of some overline t
infinite near-zone expansion~without remainder!, whose
structure is therefore given by

M~hmn!5( n̂Lr a~ ln r !pFL,a,p
mn ~ t !, ~2.16!

whereaPZ and pPN ~and, of course, the multipolar inde
l PN). We must be careful to distinguish the fully fledge
multipole decompositionM(hmn), which is defined as soon
asr .0 and numerically agrees with the exact solution wh
everr .a ~in particular whenr→1`), from its formal near-
zone reexpansionM(hmn). Later we shall indicate the pos
Newtonian expansion by means of the same over
notation. Indeed, the near-zone expansion is really an ex
sion when r /l→0, which is equivalent to an expansio
when c→1`, since the wavelength of waves isl5cP
~with P a typical period of the internal motion!. From the
result ~2.15! we can write

M~hmn!5hRet
21̃@M~Lmn!#

1(
l 50

1`

]̂LH XL
mn~ t2r /c!

r J . ~2.17!

The overline in the second term means that one should
pand the retardationst2r /c when r /c→0. More explicitly,
we have

]̂LH XL
mn~ t2r /c!

r J 5(
j 50

1`
~2 ! j

cj j !
]̂L~r j 21!XL

mn
~ j !

~ t !, ~2.18!

where the superscript~j! indicatesj successive time deriva
tions. The main problem is how to treat the first term in E
~2.17!. What we essentially want is to know how one c
‘‘commute’’ the operations of taking the near-zone expans
and of applying the retarded integral. In fact, the problem
already been solved in Ref.@32#, which succeeded in writing
the first term in Eq.~2.17! as the sum of an ‘‘instantaneous
operator, acting on the near-zone expansion of the sou
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and of a particular ‘‘antisymmetric’’ wave~i.e., retarded mi-
nus advanced! solution of the source-free d’Alembertia
equation. The result of Ref.@32#, Eq. ~3.2!, reads

hRet
21̃@M~Lmn!#5I 21̃@M~Lmn!#

2
4G

c4 (
l 50

1`
~2 ! l

l !
]̂LHR L

mn~ t2r /c!2R L
mn~ t1r /c!

2r J .

~2.19!

For completeness we present in Appendix A the proof of t
result—a version of it which is somewhat improved wi
respect to that given in Ref.@32#. The first term in Eq.~2.19!
involves an operatorI 21̃, acting on each of the individua
terms of the formal near-zone expansion whose structur
given by Eq.~2.16!, and which is essentially defined by th
solution of the wave equation that is obtained by iterated
of inverse Laplace operators, and regularized by mean
our B-dependent finite part procedure. Thus,

I 21̃@M~Lmn!#

5 FP
B50

(
k50

1` S ]

c]t D
2k

D2k21@ r̃ BM~Lmn!#,

~2.20!

whereD2k215(D21)k11, and the action of the inverse La
placian on the generic term of Eq.~2.16! follows from

D21@ n̂Lr B1a~ ln r !p#

5S d

dBD pF n̂Lr B1a12

~B1a122 l !~B1a131 l !
G

~2.21!

@see also Eq.~A16! in Appendix A#. The operatorI 21̃ plays
the central role in the present paper. It can be regarde
~the regularization of! the formal post-Newtonian expansion
whenc→1`, of the inverse d’Alembert operator, sayI 21

51/h51/@D2(1/c2)] t
2#. We can refer toI 21 as the opera-

tor of the instantaneous potentials, because it acts on the
variablet only through time derivations, instead of involvin
a full integration as for the operator of the retarded potent
hRet

21 . Notice thatI 21 is closely related to the operator o
the symmetric potentials,12 @hRet

211hAdv
21 #; see Ref.@32# for

discussion and the precise relation between these opera
As for the second term in Eq.~2.19!, it is made of an ‘‘anti-
symmetric’’ wave, which represents in fact a solution of t
d’Alembertian equation that is regular in a neighborhood
the originr 50. Its near-zone expansionr /c→0 is composed
only of terms containing some odd powers of 1/c:
0-6
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]̂LHR L
mn~ t2r /c!2R L

mn~ t1r /c!

2r J
52(

i 5 l

1`
]̂L~r 2i !

~2i 11!!

R L
mn

~2i 11!

~ t !

c2i 11

52
1

~2l 11!!! (
k50

1`

D2 k̃~ x̂L!
R L

mn
~2k12l 11!

~ t !

c2k12l 11
. ~2.22!

See also Eqs.~2.4!–~2.7! in Ref. @32# for alternative forms of
the antisymmetric wave. In the second of Eqs.~2.22!, we
have introduced the useful object

D2 k̃~ x̂L!5
~2l 11!!!

~2k!!! ~2l 12k11!!!
r 2kx̂L , ~2.23!

which represents the iterated Laplacian operatorD2 k̃, regu-
larized by means of the FP

B50
process, acting onx̂L , which

denotes the STF projection of the productxL[xi 1
•••xi l

@49#.
@See also Eq.~C18! for an alternative expression of the sam
object.# From Ref.@32#, or from Eq.~A11! in Appendix A,
we get the expression of the functions parametrizing the
tisymmetric waves,

R L
mn~ t !5 FP

B50
E d3xux̃uBx̂LE

1

1`

dzg l~z!

3M~tmn!~x,t2zuxu/c!, ~2.24!

whereux̃u5uxu/r 0 @see Eq.~2.9!#. These functions depend o
the whole past history of the source@50#. The z integration
involves the weighting function defined by

g l~z!5~2 ! l 11
~2l 11!!!

2l l !
~z221! l . ~2.25!

This function is normalized so that*1
1`dzg l(z)51, where

the value of the integral is obtained by analytic continuat
for l PC ~see Appendix A!. As shown in Ref.@32# ~see nota-
bly Sec. III D there!, the antisymmetric waves in Eq.~2.19!
are associated with gravitational radiation reaction effects
a nonlinear origin. In particular, they contain the contributi
of wave tails in the radiation reaction force, which appear
the 1.5 PN order relative to the lowest-order radiation dam
ing, i.e., 4 PN order in the equations of motion@31#. To
summarize this subsection, we have obtained the near-
reexpansion of the multipole expansionM(hmn) as

M~hmn!5I 21̃@M~Lmn!#

2
4G

c4 (
l 50

1`
~2 ! l

l !
]̂LHR L

mn~ t2r /c!2R L
mn~ t1r /c!

2r J
1(

l 50

1`

]̂LH XL
mn~ t2r /c!

r J . ~2.26!
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The functionsR L
mn(t) are known from Eq.~2.24!, but the

multipole momentsXL
mn(t) have not yet been specified at th

stage ~though they have already been calculated in R
@40#!. Therefore, we have succeeded in computing the n
zone expansionM(hmn) as a functional of the sole unknow
constituted by theXL

mn’s; only by matching can these func
tions be determined.

III. INTERIOR FIELD

A. Post-Newtonian expansion of the near-zone field

Up to now, we have solved the Einstein field equations
the vacuum outside an isolated source (r .a), without any
reference to the stress-energy tensorTmn of the matter
source. Our next task is to investigate the field equati
inside and in the vicinity of the matter source, and mo
precisely in the so-called near zone, or the region for wh
r !l, where l is the typical wavelength of the emitte
waves. From now on we restrict our attention to a po
Newtonian source, whose radius isa!l. For post-
Newtonian sources, the near zone overlaps with the exte
region in what we shall refer to as the matching region,
which a,r !l. In the matching region, both the multipola
expansion of the exterior field and the post-Newtonian
pansion of the inner field are legitimate.

Let us denote by means of an overline the formal~infinite!
post-Newtonian expansion of the field inside the sourc
near zone,h̄mn, which is of the form

h̄mn~x,t,c!5 (
n52

1`
1

cn
h̄
n

mn~x,t, ln c!. ~3.1!

By definition, thenth post-Newtonian coefficienth̄
n

mn is the

factor of thenth power of 1/c; however, we know from the
structure of the near-zone expansion of the exterior field@see
Eq. ~2.16!# that the post-Newtonian expansion will involv
also, besides the usual powers of 1/c, some logarithms ofc
~in fact, when stating this we are anticipating the result of
matching!. So the coefficientsh̄

n

mn still depend onc via the

logarithm ofc, and from Eq.~2.16! we infer that they are in
fact some power series in lnc. The first appearance of lnc is
at the 4 PN order~i.e., corresponding to a term; ln c/c8 in
the equations of motion! and is associated with the physic
effect of wave tails@31#. In Eq. ~3.1!, we have indicated tha
the expansion starts at the level 1/c2, but we could be more
precise because the 0i component ofh̄mn starts only at the
level 1/c3, while the i j component is at least of order 1/c4.
This does not matter for our purpose; simply in our iterati
we include these post-Newtonian coefficients as zero:h̄

2

0i

50 and h̄
2

i j 5h̄
3

i j 50. For the total stress-energy pseudote

sor ~1.3! we have the same type of expansion,

t̄mn~x,t,c!5 (
n522

1`
1

cn
t̄
n

mn~x,t, ln c!. ~3.2!
0-7
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OLIVIER POUJADE AND LUC BLANCHET PHYSICAL REVIEW D65 124020
The expansion starts with a term of orderc2 corresponding
to the rest mass energy of the source (t̄mn has the dimension
of an energy density!. Here we shall always understand th
infinite sums such as Eqs.~3.1! and ~3.2! in the sense of
formal power series, i.e., merely as an ordered collection
coefficients: e.g., (h̄

n

mn)nPN . We do not attempt to control th

mathematical nature of these series.
In this paper, we make two important assumptions. Fi

we assume that the post-Newtonian coefficientsh̄
n

mn ~and

similarly t̄
n

mn) aresmoothfunctions of space-time,

h̄
n

mn~x,t !PC`~R4!. ~3.3!

Evidently this comes from our consideration of regu
~smooth! extended matter distributions, described
Tmn(x,t)PC`(R4), a priori excluding black holes or point
particle singularities. Second, we assume that the structu
the expansion atspatial infinity, i.e., r→1` with t5const,
is of the type

;NPN, h̄
n

mn5( n̂Lr a~ ln r !pFL,n,a,p
mn ~ t !1OS 1

r ND
~3.4!

~and similarly for eacht̄
n

mn). We have purposely written a

expansion which is very similar to the one in Eq.~2.14!,
because as we shall see the functionsFL,n,a,p(t) will be
equal to the post-Newtonian coefficients of the functio
FL,a,p(t) appearing in Eq.~2.14!. However, it is important to
realize that in contrast to Eq.~2.14!, which is a near-zone
expansion@cf. the remainderO(r N)#, the expansion written
in Eq. ~3.4! is a far-zoneone, with remainderO(1/r N). It
would have been clearer to write the latter expansion w
some (lnr)p/rb with b52a, but since we are going to show
from the method of matched asymptotic expansions, that
infinite far-zone expansion~ignoring the remainder! is actu-
ally the sameas the infinite near-zone expansion, it is bet
to write it in this form, with the range of the powers ofr in
Eq. ~3.4! being 2a<N instead ofa<N in Eq. ~2.14!. In
doing so, we are again anticipating the result of the mat
ing. Finally, we assume that, at any given post-Newton
order n, the maximal divergency of the far-zone expansi
~3.4! is finite, i.e., there exists someamax(n)PN such that
a<amax(n).

Next we perform the iteration of the post-Newtonian fie
~3.1! up to any order. Our strategy consists of finding t
general post-Newtonian solution of the relaxed Einstein fi
equation~1.1!. This solution will depend on some arbitrar
‘‘homogeneous’’ solutions, in the form of harmonic solutio
solving the source-free d’Alembertian equation~in a pertur-
bative post-Newtonian sense!. In a second stage, we sha
obtain these harmonic solutions by imposing the matchin
the external multipolar field obtained in Sec. II. Finally, w
shall check that our post-Newtonian solution is divergen
12402
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less, i.e., it satisfies the harmonic-coordinate condition~1.2!,
as a consequence of the conservation of the stress-en
pseudotensortmn. Notice that we do not try to incorporat
into the post-Newtonian series the boundary conditions
infinity ~viz. the no-incoming-radiation condition!. Indeed,
this is impossible at the level of the post-Newtonian exp
sion considered alone, because its validity is limited to
near zone. Even if we define an ‘‘improved’’ post-Newtonia
series by considering someretarded integrals that are for-
mally expanded whenc→1` as series of Poisson-like inte
grals @11#, we ultimately end up with an inconsistency, b
cause the Poisson-like integrals are some local-in-t
functionals, depending on the source only at the current t
t, and we know that the post-Newtonian field starts to dep
on the whole past history of the source from the 4 PN or
@31–33#. Therefore, we do not follow this route in th
present paper, and, instead, we incorporate into the p
Newtonian series the boundary conditions concerning
wave field at infinity by means of the matching equation.

We insert the post-Newtonian ansatz~3.1!,~3.2! into the
‘‘relaxed’’ Einstein field equation~1.1!, and equate togethe
the powers of 1/c. The result is an infinite set of Poisson-typ
equations:

;n>2, Dh̄
n

mn516pGt̄mn

n24
1] t

2h̄mn

n22
. ~3.5!

Evidently, the second term comes from the split of t
d’Alembertian operator into a Laplacian and a second ti
derivative: h5D2(1/c2)] t

2 ; the time derivative ]0

5(1/c)] t is smaller than the spatial gradient] i by a factor
1/c—this is the basic tenet of the approximation. Whenn
52 andn53, the second term in Eq.~3.5! is zero, which we
take into account by assuming thath̄

0

mn5h̄
1

mn50. We pro-

ceed by induction, i.e., we fix some post-Newtonian orden,
assume that we succeeded in constructing the sequenc
previous coefficientsh̄

2

mn, . . . ,h̄mn

n21
, and from this we infer

the next-order coefficienth̄
n

mn. The most general solution

consists of the sum of a particular solution and of the m
general admissible solution of the homogeneous equat
which is simply the source-free Laplace equation. Let us fi
find a particular solution. We recalled in the Introduction th
the usual Poisson integral cannot be used to define a solu
because the bound at infinity becomes rapidly diverg
when going to higher and higher post-Newtonian orde
Fortunately, thanks to our two assumptions~3.3! and ~3.4!,
we shall be able to define ageneralizednotion of a Poisson
integral, in a way similar to our previous definition of
retarded integral operator in Eq.~2.10!. That generalized
Poisson integral will constitute an appropriate solution of
post-Newtonian equation. For any source term liket̄

n

mn

which is at once smooth, Eq.~3.3!, and admits a far-zone
expansion of the type~3.4! @note that Eqs.~3.3! and ~3.4!
hold for h̄

n

mn as well as fort̄
n

mn],we multiply it by the same

regularization factor as in Eq.~2.10!, and then apply the
standard Poisson integral. The result,
0-8
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D21@ r̃ Bt̄
n

mn#~x,t !52
1

4pER3

d3y

ux2yu
uỹuBt̄

n

mn~y,t !, ~3.6!

whereuỹuB[uy/r 0uB, defines a certain function ofBPC. The
definiteness of that integral relies heavily on the behavio
the bound at infinity. There is no problem with the vicinity
the origin because of the smoothness of the integrand. F
the asymptotic expansion~3.4!, with a<amax @recall that
amax5amax(n)#, we find that the integral converges at infi
ity when Re(B),2amax22. Next we can prove that th
latter function ofB generates a~unique! analytic continua-
tion down to a neighborhood of the originB50, except at
B50 itself, at which value it admits a Laurent expansi
with multiple poles up to some finite order. More details a
given in Appendix B. Then, we consider the Laurent exp
sion of that function whenB→0 and pick up the finite part
or coefficient of the zeroth power ofB, of that expansion.
This defines our generalized Poisson integral:

D21̃@ t̄
n

mn#[ FP
B50

D21@ r̃ Bt̄
n

mn#. ~3.7!

The finite-part symbol FPB50 has exactly the same meanin
as in Eq. ~2.10!. However, notice that in contrast to Eq
~2.10! where the regularization factorr̃ B dealt with the sin-
gularity whenr→0, and hence supposes initially that Re(B)
is a large positive number, in Eq.~3.7! the regularization
concerns the behavior of the integral whenr→1`, and so
one must start with the situation where Re(B) is a large
negativenumber. The main properties of our generaliz
Poisson operator are that it solves the Poisson equation

D@D21̃t̄
n

mn#5 t̄
n

mn, ~3.8!

and that the solutionD21̃t̄
n

mn has the same properties as t

sourcet̄
n

mn, i.e., the smoothness, Eq.~3.3!, and the particular

far-zone expansion given by Eq.~3.4!. These facts are
proved in Appendix B. Therefore, we have found aparticu-
lar solution of the Poisson equation, and, furthermore, t

solution can be iterated at will, because the operatorD21̃

keeps the same properties from the source to the corresp
ing solution. Quite naturally we denote the iterated Pois

operatorD2k21̃[(D21̃)k11; it is not difficult to show that

D2k21̃@ t̄
n

mn#~x,t !

52
1

4p
FP

B50
E

R3
d3y

ux2yu2k21

~2k!!
uỹuBt̄

n

mn~y,t !. ~3.9!

From that integral we obtain the operator of the ‘‘instan
neous’’ potentials exactly in the same way as in Eq.~2.20!,
but now acting on post-Newtonian coefficients such ast̄

n

mn,

i.e., satisfying both Eqs.~3.3! and ~3.4!:
12402
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I 21̃@ t̄
n

mn#5 (
k50

1` S ]

c]t D
2k

D2k21̃@ t̄
n

mn#. ~3.10!

It is clear that we have a particular solution of d’Alember
equation:

h@I 21̃t̄
n

mn#5 t̄
n

mn. ~3.11!

We can check that the definition we have proposed in E
~2.20! and ~2.21! is a particular case of the more gener
definition ~3.9! and ~3.10!. Indeed, if we apply the formulas
~3.9! and ~3.10! to one of the terms composing the ‘‘far
zone’’ expansion of the post-Newtonian coefficient, i.
n̂Lr a(ln r)pF(t), we get the same result as the one result
from Eqs.~2.20! and ~2.21!.

By means of the Poisson operatorD21̃ so constructed, we
first find aparticular solution of Eq.~3.5!:

S h̄
n

mn D part516pGD21̃t̄mn

n24
1] t

2D21̃h̄mn

n22
. ~3.12!

To this solution we add the most general solution of t
homogeneous Laplace equation. It can be written, using
STF language, as the sum of two multipolar series, one
them being of the typex̂L , that is regular at the originr
50 and the other one being like]̂L(1/r ), i.e., regular ‘‘at
infinity’’ r→1` ~see Ref.@49# for the notation!. Imposing
the smoothness condition~3.3! for the post-Newtonian field,
we discard the second type;]̂L(1/r ) and retain as the only
admissible homogeneous solution the first type; x̂L . There-
fore, we find that there must exist some STF-tensorial fu
tions of time, sayBL

mn

n

(t), such that

S h̄
n

mn D hom5(
l 50

1`

BL
mn

n

~ t !x̂L . ~3.13!

The functionsBL
mn

n

(t) will be associated with the reaction o

the field onto the source, and will depend on which bound
conditions are to be imposed on the gravitational field
infinity. The most general solution for thenth post-
Newtonian coefficient thus reads

h̄
n

mn5 S h̄
n

mn D part1 S h̄
n

mn D hom. ~3.14!

It is now trivial to iterate the process. We substitute forh̄mn

n22

on the right-hand side of Eq.~3.12! the same expression bu
with n replaced byn22, and similarly descend until we sto
0-9
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at either one of the coefficientsh̄
0

mn50 or h̄
1

mn50. At this

point, h̄
n

mn is expressed in terms of the ‘‘previous’’t̄
m

mn’s and

BL
mn

m

’s, with m<n22, i.e.,

h̄
n

mn516pG (
k50

[n/2]21

] t
2kD2k21̃@ t̄mn

n2422k
#

1(
l 50

1`

(
k50

[n/2]21

BL
mn

n22k

~2k!

~ t !D2 k̃~ x̂L!. ~3.15!

Here @n/2# denotes the integer part ofn/2; ] t
2k means the

2kth partial time derivative (]/]t)2k and the superscript (2k)

the 2kth total time derivative; the operatorD2k21̃ is the one

defined by Eq.~3.9!; the objectD2 k̃( x̂L) has already been
introduced in Eq.~2.23!. Once we have the result~3.15!, we
‘‘resum’’ it from n52 up to infinity. After commuting the
summations overn andk, we arrive at

h̄mn5
16pG

c4
I 21̃@ t̄mn#

1(
l 50

1`

(
k50

1`
1

c2k
BL

mn
~2k!

~ t !D2 k̃~ x̂L!, ~3.16!

where we have recognized the operator of the ‘‘instan
neous’’ potentials as defined by Eq.~3.10!, and where the
functionsBL

mn read

BL
mn~ t !5 (

n52

1`
1

cn
BL

mn

n

~ t !. ~3.17!

A more compact alternative form is

h̄mn5
16pG

c4
I 21̃@ t̄mn#1(

l 50

1`

DI 21̃@BL
mn~ t !x̂L#.

~3.18!

Actually the latter forms are not the best for our purpo
Since the first term in Eqs.~3.16! or ~3.18! is a particular
solution of the d’Alembert equation@see Eq.~3.11!#, the sec-
ond term is necessarily equal to~the near-zone reexpansio
of! a homogeneous solution of the source-free wave eq
tion, and most importantly a regular solution at it. So
should be in the form of some antisymmetric multipo
waves: retarded minus advanced. Indeed, this readily foll
from the second equality in Eq.~2.22!. We introduce a new
definition AL

mn(t) by posing

BL
mn~ t !52

AL
mn

~2l 11!

~ t!

c2l 11~2l 11!!!
, ~3.19!

where thel-dependent factor is chosen to match with E
~2.22!. @Because of our assumption of stationarity in the pa
12402
-

.

a-

s

.
t,

t<2T, the relation~3.19! determinesAL
mn(t) up to a con-

stant. However it is clear that this constant will cancel out
the antisymmetric wave in Eq.~3.20!.# In terms of this defi-
nition, we find the final result of this section,

h̄mn5
16pG

c4
I 21̃@ t̄mn#

1(
l 50

1`

]̂LH AL
mn~ t2r /c!2AL

mn~ t1r /c!

2r J , ~3.20!

where we recall that the overline means the post-Newton
or equivalently near-zone expansion@see Eq.~2.22!#. For the
time being, we shall refer to theAL

mn(t)’s as theradiation-
reaction functions.

B. Multipole expansion of the post-Newtonian solution

In the previous section, we obtained the general solut
for the post-Newtonian expansion in the form~3.20!, and
parametrized by some~for the moment! unknown radiation-
reaction functionsAL

mn(t). To arrive at this, we made an as
sumption concerning the particular structure for thefar-zone
expansion, at spatial infinity, of the post-Newtonian coe
cients: Eq.~3.4!. Here we shall denote the correspondi
infinite expansion~without a remainder term! by means of
the same calligraphic letterM as used to denote the mult
pole expansion, because the far-zone expansion of the p
Newtonian coefficients is equivalent to a multipolar deco
position. From Eq.~3.4! we have

MS h̄
n

mn D5( n̂Lr a~ ln r !pFL,n,a,p
mn ~ t !. ~3.21!

So, summing up the post-Newtonian series,

M~ h̄mn!5( n̂Lr a~ ln r !pFL,a,p
mn ~ t !, ~3.22!

where the functions involved are FL,a,p(t)
5(n52

1` (1/cn)FL,n,a,p(t). As we can see, the far-zone expa
sion that we have just postulated is exactly the same, w
the same functionsFL,a,p(t) as the near-zone expansion w
had previously written in Eq.~2.16!. This equality is already
the matching equation between the near-zone expansio
the multipolar field,M(hmn), and the multipolar–far-zone
expansion of the post-Newtonian field,M(h̄mn), whose con-
sequences will be investigated in Sec. IV.

The fundamental result which is needed for computing
far-zone expansion of the post-Newtonian series conce

the expansion of the generalized integral operatorI 21̃ acting
on the post-Newtonian sourcet̄mn. More precisely, we are
interested in knowing under which conditions one can co

muteI 21̃ with the operationM of taking the far-zone ex-
pansion. Clearly, the two operations can be commuted at
price of adding some homogeneous solution of
d’Alembert equation. We prove in Appendix C that the latt
homogeneous solution is made of multipolar waves of
symmetrictype, i.e., retardedplus advanced. We obtain
0-10
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M~I 21̃@ t̄mn#!5I 21̃@M~ t̄mn!#

2
1

4p (
l 50

1`
~2 ! l

l !
]̂LHF L

mn~ t2r /c!1F L
mn~ t1r /c!

2r J .

~3.23!

Here the overline notation has the same meaning as in
II: this is the Taylor expansion whenr→0, but that expan-
sion should be considered,a posteriori, as an expansion
when r→1`. That is, our notation means

]̂LHF L
mn~ t2r /c!1F L

mn~ t1r /c!

2r J
5(

i 50

1`
]̂L~r 2i 21!

~2i !!

F L
mn

~2i !

~ t !

c2i
5(

i 50

1`

D2 ĩ@ ]̂L~r 21!#
F L

mn
~2i !

~ t !

c2i

~3.24!

@see also Eq.~C14!# where the right-hand sides are to b
considered as some expansions at spatial infinity, of the g
eral type given by Eq.~3.22!. The functionsF L

mn(t) param-
etrizing these symmetric waves are STF and explicitly giv
by

F L
mn~ t !5(

j 50

1`
1

c2 j
FP

B50
E d3xux̃uBD2 j̃@ x̂L#] t

2 j t̄mn~x,t !,

~3.25!

whereD2 j̃@ x̂L# is given by Eq.~2.23!. See the proof in Ap-
pendix C. An alternative form reads as

F L
mn~ t !5 FP

B50
E d3xux̃uBx̂L

3E
21

1

dzd l~z!t̄mn~x,t2zuxu/c!, ~3.26!

where the integration over thez-dependent conet2zuyu/c
involves a weighting functiond l(z) that is closely related to
the functiong l(z) introduced in Eq.~2.25!:

d l~z!5
~2l 11!!!

2l 11l !
~12z2! l52

1

2
g l~z!, ~3.27!

and whose integral is normalized to 1:*21
1 dzd l(z)51.4 The

function d l(z) approaches the Dirac delta function in th
limit of large l : lim l→1`d l(z)5d(z). In Eq. ~3.26!, we

4The normalization for the functiond l(z) is consistent with that of
the functiong l(z): *1

1`dzg l(z)51, owing to the fact that the
integral*2`

1`dz(12z2) l is zero by complex analytic continuation i
l PC.
12402
ec.

n-

n

have indicated by means of an overline the fact that t
expression is valid only in a sense of post-Newtonian exp
sion. Note that because the latter post-Newtonian expan
is ‘‘even,’’ containing only even powers of 1/c, one can re-
place the argumentt2zuyu/c insideF L

mn(t) equivalently by
t1zuyu/c.

Finally, thanks to Eqs.~3.23!–~3.27!, we are in a position
to write the infinite multipolar–far-zone expansion of th
post-Newtonian solution as

M~ h̄mn!5
16pG

c4
I 21̃@M~ t̄mn!#

2
4G

c4 (
l 50

1`
~2 ! l

l !
]̂LHF L

mn~ t2r /c!1F L
mn~ t1r /c!

2r J
1(

l 50

1`

]̂LH AL
mn~ t2r /c!2AL

mn~ t1r /c!

2r J .

~3.28!

We recall that the radiation-reaction functionsAL
mn(t) are

still undetermined at this stage. The symmetric and antisy
metric waves are given by Eqs.~3.24! and ~2.22!, respec-
tively, considered here as infinite far-zone expansions.

IV. MATCHING

In Sec. II A, we found the most general expression for
multipolar expansionM(hmn), satisfying the no-incoming-
radiation condition, in terms of some unknown ‘‘multipole
moment’’ STF functionsXL

mn(t) @see Eq.~2.15!#. On the
other hand, in Sec. III A, we obtained the most general so
tion for the post-Newtonian expansionh̄mn, as parametrized
by a set of unknown ‘‘radiation-reaction’’ STF function
AL

mn(t) @see Eq.~3.20!#. We are now imposing the matchin
condition

M~hmn![M~ h̄mn!. ~4.1!

In fact, we have already postulated this equation when w
ing that the two formal expansions~2.16! and ~3.22! are the
same. Recall that the matching equation~4.1! results from
the numerical equalityM(hmn)5h̄mn, verified in the exterior
near zone:a,r !l. It is physically justified only for post-
Newtonian sources, for which the exterior near zone exi
The matching equation is actually afunctional identity, i.e.,
true ;(x,t)PR

*
3 3R; it identifies, term by term, two

asymptotic singular expansions, each of them being form
taken outside its own domain of validity. In the present co
text, the matching equation insists that the infinitenear-zone
expansion,r→0, of the exterior multipolar field is identica
to the infinitefar-zoneexpansion,r→1`, of the inner post-
Newtonian field. Let us show now that Eq.~4.1! permits
0-11
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determining all the unknowns of the problem: i.e., at on
the multipole momentsXL

mn and the radiation-reaction func
tions AL

mn . In particular, we find that the multipole momen
XL

mn are in agreement with the earlier result derived in R
@40#.

For the sake of clarity, we restate here the two results
reached for the two sides of Eq.~4.1!. The left-hand side was
obtained in Eq.~2.26!:

M~hmn!5I 21̃@M~Lmn!#

2
4G

c4 (
l 50

1`
~2 ! l

l !
]̂LHR L

mn~ t2r /c!2R L
mn~ t1r /c!

2r J
1(

l 50

1`

]̂LH XL
mn~ t2r /c!

r J , ~4.2!

in which the functionsR L
mn , which come from the nonlin-

earities of the field equations in vacuum, are known from
~2.24!. The right-hand-side of the matching equation w
found in Eq.~3.28!:

M~ h̄mn!5
16pG

c4
I 21̃@M~ t̄mn!#

2
4G

c4 (
l 50

1`
~2 ! l

l !
]̂LHF L

mn~ t2r /c!1F L
mn~ t1r /c!

2r J
1(

l 50

1`

]̂LH AL
mn~ t2r /c!2AL

mn~ t1r /c!

2r J .

~4.3!

Here, the functionsF L
mn , which depend on the matter an

gravitational content of the post-Newtonian source, take
definite expression given by Eqs.~3.25! and ~3.26!.

Comparing Eqs.~4.2! and ~4.3!, we readily discover tha
they share an obvious common term, that is, the first o
Indeed, we manifestly have

I 21̃@M~Lmn!#5I 21̃@M~Lmn!#5
16pG

c4
I 21̃@M~ t̄mn!#.

~4.4!

The first equality comes from the matching equation, as
plied to the gravitational source termLmn, and the second
equality comes from the fact that the matter tensorTmn has a
compact support, so thatM(Tmn)50. Hence the two first
terms in Eqs.~4.2! and~4.3! match together. This is a some
what remarkable fact, because most of the complexity of
Einstein field equations is actually contained in these ter
either I 21@M(Lmn)# for the external field or
(16pG/c4)I 21@M( t̄mn)# for the inner one. But for doing
the matching, we do not need all this complexity; these t
terms match and therefore are to be identified. Notice a
that this is a nontrivial result, since the two sides of Eq.~4.1!
strongly depend on the yet unknown functionsAL

mn andXL
mn ,

which enter the latter two terms in a very intricate wa
12402
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coupled together as they are via the nonlinearities of the fi
equations. Nevertheless, the matching equation tells us
these terms must be rigorously identical.

As soon as we have noticed that the first terms in E
~4.2! and~4.3! are equal, we can compare the other ones,
because the retarded and advanced waves have some d
ent structures, they must be matched independently, so
get two relations to be satisfied. We find that these are sol
if and only if the multipole moments in the exterior fieldand
the radiation-reaction functions in the inner field are given

XL
mn~ t !52

4G

c4

~2 ! l

l !
F L

mn~ t !, ~4.5!

AL
mn~ t !52

4G

c4

~2 ! l

l !
@F L

mn~ t !1R L
mn~ t !#. ~4.6!

Therefore, both the multipole moments and the radiati
reaction terms are determined as some explicit functional
the pseudotensortmn and nothing else.@Actually, we could
add any constant to the definition ofAL

mn(t), but this is physi-
cally irrelevant because the constant disappears from the
tisymmetric waves; see also Ref.@50#.#

Finally, by way of summary of the results, we take ba
the latter expressions and fill in the external and inner fie
which are then entirely determined as coming from a uniq
solution of the Einstein field equations in harmonic coor
nates, valid everywhere inside and outside the source.
exterior field is

M~hmn!5hRet
21̃@M~Lmn!#

2
4G

c4 (
l 50

1`
~2 ! l

l !
]̂LHF L

mn~ t2r /c!

r J , ~4.7!

where the multipole moments are given in terms of the po
Newtonian expansion of the stress-energy pseudotensor

F L
mn~ t !5 FP

B50
E d3yuỹuBŷLE

21

1

dzd l~z!tmn~y,t2zuyu/c!

5(
j 50

1`
1

c2 j
FP

B50
E d3yuỹuBD2 j̃@ ŷL#] t

2 j t̄mn~y,t !.

~4.8!

This result is in perfect agreement with the multipole deco
position of the exterior field obtained in Ref.@40# @see Eqs.
~3.13!,~3.14! there#. On the other hand, the inner pos
Newtonian field is given by
0-12
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h̄mn5
16pG

c4
I 21̃@ t̄mn#

2
4G

c4 (
l 50

1`
~2 ! l

l !
]̂LHA L

mn~ t2r /c!2A L
mn~ t1r /c!

2r J ,

~4.9!

where the radiation-reaction function is composed of t
terms:

A L
mn~ t !5F L

mn~ t !1R L
mn~ t !. ~4.10!

The first term is merely the exterior multipole moment giv
by Eq. ~4.8!, and one can check that it contains the stand
radiation-reaction effect at the 2.5 PN order. TheR L

mn term
is defined by Eq.~2.24!, or, rather, the post-Newtonian ex
pansion of it, i.e.,

R L
mn~ t !5 FP

B50
E d3yuỹuBŷL

3E
1

1`

dzg l~z!M~tmn!~y,t2zuyu/c!.

~4.11!

This term is quite interesting: it depends on the nonlineari
of the exterior field, described by the gravitational sou
termM(tmn) ~or, more precisely, the nonstationary part of
@50#!, which are to be computed by means of the multipola
post-Minkowskian algorithm of Refs.@36,32# ~see, in par-
ticular, Sec. III D in Ref.@32# for some detailed computation
of this term!. Physically, the functionR L

mn contains the effect
of wave tails in the radiation reaction force which arises
the 4 PN order@31–33#. It is not difficult @using notably the
formula ~5.21! below# to derive the more explicit expressio
for the contribution ofR L

mn to the antisymmetric wave in Eq
~4.9!:

]̂LHR L
mn~ t2r /c!2R L

mn~ t1r /c!

2r J
5(

i 50

l
~2 ! l~ l 1 i !!

2i i ! ~ l 2 i !!
(
k50

1`
D2 k̃~ x̂L!

c2k1 l 2 i
FP

B50

3E d3yuỹuB
ŷL

uyu l 1 i 11
] t

2k1 l 2 iM~tmn!~y,t2uyu/c!.

~4.12!

When they are computed by post-Minkowskian approxim
tions, the remaining integrals will typically yield, after inte
gration over the angles, some ‘‘hereditary-like’’ contrib
tions, depending on the whole integrated past of the ma
source~see Ref.@32#!.

It is tempting to speculate that the second term in E
~4.9!, made of the antisymmetric multipolar waves para
etrized by the functionsA L

mn(t), can be regarded as the co
tribution, in a sense to be made more precise, of the radia
reaction forces at work inside the post-Newtonian sour
12402
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er
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~Indeed we have checked that these functions contain
known radiation-reaction terms at the dominant 2.5 PN or
as well as the dominant contribution of tails at the 4 P
order.! We shall leave for future work the systematic study
this term, as well as the possibility to answer the latter spe
lation.

V. HARMONIC-COORDINATE CONDITION

The latter solution for the post-Newtonian field, Eq
~4.9!–~4.12!, has been obtained without imposing, in an e
plicit way, the condition of harmonic coordinates~1.2!. In-
deed, we have assumed this condition to be true, and
simply matched together the post-Newtonian and multipo
post-Minkowskian expansions, satisfying the relaxed E
stein field equations~1.1! in their respective domains. W
found that the matching determines uniquely the express
of the multipole momentsXL

mn(t) and radiation-reaction
functions AL

mn(t) as some functionals of the stress-ener
pseudotensortmn. However, we never used the harmoni
coordinate condition during the matching; it was not nec
sary for the formal determination of the unknown paramet
(XL

mn, AL
mn). Therefore, it is quite important to check that o

post-Newtonian solution is divergenceless as a consequ
of the conservation of the pseudotensortmn @see Eq.~1.2!#,
so that we really grasp a solution of the full Einstein fie
equations.

We check the divergenceless ofh̄mn directly on Eq.
~3.16!. We apply the]m operator on each side of the equalit

]mh̄mn5
16pG

c4
]mI 21̃@ t̄mn#

1]mF (
l ,k50

1`
1

c2k
BL

mn
~2k!

~ t !D2 k̃~ x̂L!G . ~5.1!

We must transform the two terms on the right-hand side
order to make explicit the fact that these two terms are
actly opposite. The first term, that is to say, the divergence
the I 21̃ operator, is not obvious since, even if time deriv

tives commute withI 21̃, spatial derivatives do not,

]mI 21̃@ t̄mn#5I 21̃@]0t̄0n#1] iI 21̃@ t̄ in#. ~5.2!

I 21̃ is a sum ofD2k21̃] t
2k , and spatial derivatives do no

commute withD2k21̃ because of theuỹuB factor @see Eq.
~3.9! for the exact expression#. To see how to tackle this

problem, let us start with the spatial divergence ofD2k21̃.
We assume thatt̄(x,t) is a function of the ‘‘post-Newtonian’’
type, i.e., satisfies the requirements~3.3! and ~3.4!. The ] i
derivative, in Eq.~5.3!, applies first to thekth Poisson’s ker-
nel, but after having noticed that thexi derivative of this
kernel was equal to minus theyi derivative of it, we can
make an integration by part and distribute theyi derivative
on uỹuB and ont̄ so that
0-13
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] iD
2k21̃

„t̄~x,t !…

52
1

4p
FP

B50
E d3yuỹuB]xiS ux2yu2k21

~2k!! D t̄~y,t !

52
1

4p
FP

B50
E d3yuỹuB

ux2yu2k21

~2k!!
] i t̄~y,t !

2
1

4p
FP

B50
E d3y] i~ uỹuB!

ux2yu2k21

~2k!!
t̃~y,t !.

~5.3!

The first term in the last line of the previous equality is eq

to D2k21̃(] i t̄). Now, let us concentrate on the last term
the same line. We can, of course, write] i(uỹuB)
5Bni uỹuB21/r 0. Moreover, sincet̄(y,t) is regular at the ori-
gin (uyu50), the integral is always convergent on any neig
borhood of the origin. Translating these two remarks in
last integral of Eq.~5.3!, and since we take the finite pa
whenB50, this last integral is zero, because of the expl
factor B, when ranging fromuyu50 up to some arbitrary
finite value uyu5R. So, after replacingux2yu2k21 by

(2k)!D2 k̃(ux2yu21) we are left, in Eq.~5.4!, with one inte-
gral ranging overuyu.R,

FP
B50

E d3y] i~ uỹuB!
ux2yu2k21

~2k!!
t̄~y,t !

5 FP
B50

E
uyu.R

d3y] i~ uỹuB!M@D2 k̃~ ux2yu21!#M~ t̄ !~y,t !

5 (
n50

k

(
l>0

~2 ! l

l !
D2k1ñ~ x̂L!

3 FP
B50

E
uyu.R

d3y] i~ uỹuB!D2ñ
„]̂L~ uyu21!…M~ t̄ !~y,t !.

~5.4!

In the last line of the previous equation, we expanded thekth
Poisson’s kernel foruyu@uxu using Eq.~C12!. This is pos-
sible thanks to the fact thatR is arbitrary and may be chose
such thatR@uxu. We also note thatt̄ turned intoM( t̄)
becauset̄5M( t̄) in the far zone. In this way,

] iD
212 k̃@ t̄~x,t !#5D212 k̃@] i t̄~x,t !#

2
1

4p (
n50

k

(
l>0

~2 ! l

l !
D2k1ñ~ x̂L! FP

B50
E

uyu.R
d3y] i~ uỹuB!

3D2ñ@ ]̂L~ uyu21!#M~ t̄ !~y,t !, ~5.5!

and we notice that the commutation of the spatial deriva
and the generalizedkth Poisson integral depends only on t
behavior oft̄(x,t) at spatial infinity. This fact was foresee
12402
l

-
e

t

e

able since for a functiont̄(x,t) with compact support the
commutation would be trivial. Thanks to the general res
given by Eq.~5.5!, in which we replacet̄ by t̄ in, we can

determine the spatial divergence ofI 21̃( t̄ in). We can then

get ]mI 21̃@ t̄mn# that is the sum ofI 21̃@]mt̄mn# and a non-
trivial term. Since]mt̄mn50, the result for the first term o
Eq. ~5.1! reduces to the nontrivial term, that is to say,

16pG

c4
]mI 21̃@ t̄mn#52

4G

c4 (
k,l ,n>0

~2 ! l

l !
D2 k̃~ x̂L!

3 FP
B50

E
uyu.R

d3y] i~ uỹuB!D2ñ@ ]̂L~ uyu21!#M~ t̄ in!

~2k12n!

~y,t !.

~5.6!

Now, we want to prove that the second term on the rig
hand side of Eq.~5.1! is exactly the opposite. In Eq.~5.7!,
we expand this last term in its311 form so that we can trea
separately terms with time derivative and terms with spa
derivative,

(
n,l>0

1

c2n
BL

in
~2n!

~ t !] i@D2ñ~ x̂L!#1 (
n,l>0

1

c2n
]0BL

0n
~2n!

~ t !D2ñ~ x̂L!.

~5.7!

The first term of Eq.~5.7!, thanks to a STF formula, can b
written without the use of spatial derivative. The indexi
coming from this derivative is distributed on the multi-inde
L as

(
n,l>0

1

c2n
BL

in
~2n!

~ t !] i@D2ñ~ x̂L!#

5 (
n,l>0

1

c2n
H 1

2l 13
BL

in
~2n!

~ t !D2n11̃~ x̂iL !

1 lBiL 21
in
~2n!

~ t !D2ñ~ x̂L21!J . ~5.8!

In the second term of Eq.~5.7!, we express the functionBL
0n

in terms ofF L
0n andR L

0n @cf. Eqs.~3.19! and~4.6!# because
the time derivative,]0, will act on the integrand of these tw
time-varying moments:

D2ñ~ x̂L!]0BL
0n~ t !5

4G~2 ! l

c512l~2l 11!!! l !
D2ñ~ x̂L!$]0 R L

0n
~2l 11!

~ t !

1]0 F L
0n

~2l 11!

~ t !%. ~5.9!

First, we investigate the case of]0F L
0n , using the formula

~3.25!, where the time derivative acts ont̄0n,
0-14
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D2ñ~ x̂L!]0F L
0n~ t !

5D2ñ~ x̂L!(
k>0

1

c2k
FP

B50
E d3yuỹuBD2 k̃~ ŷL!]0t̄0n

~2k!

~y,t !.

~5.10!

We can replace]0t̄0n by 2] i t̄
in thanks to the conservatio

equation of the pseudotensor. After integrating by part we

D2ñ~ x̂L!(
k>0

1

c2k
FP

B50
E d3y] i~ uỹuB!D2 k̃~ ŷL! t̄ in

~2k!

~y,t !

1D2ñ~ x̂L! (
n>0

1

c2k
FP

B50
E d3yuỹuB] i@D2 k̃~ ŷL!# t̄ in

~2k!

~y,t !.

~5.11!

The same STF formula as used in Eq.~5.8! enables one to
transform the second term of Eq.~5.11! so that, at the end
we get the definitive result

D2ñ~ x̂L!]0F L
0n~ t !5D2ñ~ x̂L!(

k>0

1

c2k
FP

B50

3E d3y] i~ uỹuB!D2 k̃~ ŷL! t̄ in
~2k!

~y,t !

1 lD2ñ~ x̂iL 21!FL21
in ~ t !

1
D2ñ~ x̂L!

c2~2l 13!
F iL

in
~2!

~ t !. ~5.12!

We can, now, investigate the case of the first term in
~5.9!, which is a little bit more complicated since it involve
a retarded integral,

D2ñ~ x̂L!]0R L
0n~ t !5D2ñ~ x̂L! FP

B50
E d3yuỹuBŷL

3E
1

`

dzg l~z!M~]0t0n!~y,t2zuyu/c!, ~5.13!

where the functiong l(z) is given by Eq.~2.25! ~for simplici-
ty’s sake we do not write the overline indicating the po
Newtonian expansion!. We do the replacement of]0t0n into
2] it

in. Before integrating by part, we should notice that t
partial derivative] i acts ont in which is then evaluated at th
event (y,t2zuyu/c); we must be careful about the space d
pendence of the time variablet2zuyu/c. The last equation
then becomes
12402
et
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2D2ñ~ x̂L! FP
B50

E d3yuỹuBŷL

3] i S E
1

`

dzg l~z!M~t in!~y,t2zuyu/c! D
2D2ñ~ x̂L! FP

B50
E d3yuỹuBŷLni

3E
1

`

dz
z

c
g l~z!M~t in!

~1!

~y,t2zuyu/c!. ~5.14!

In this way, the first term can be integrated by part straig
forwardly, in terms ofd3y integration, showing up a] i(uỹuB)
term and a] i( ŷL) term. The second term will also be inte
grated by part, in terms ofdz integration, using the fac
d/dz@g l 11(z)#52(2l 13)zg l(z); so we have

D2ñ~ x̂L! FP
B50

E d3y] i~ uỹuB!ŷL

3E
1

`

dzg l~z!M~t in!~y,t2zuyu/c!1D2ñ~ x̂L! FP
B50

3E d3yuỹuB] i~ ŷL!E
1

`

dzg l~z!M~t in!~y,t2zuyu/c!

1
D2ñ~ x̂L!

c2~2l 13!
FP

B50
E d3yuỹuBŷLyi

3E
1

`

dzg l 11~z!M~t in!
~2!

~y,t2zuyu/c!. ~5.15!

The sum of these three terms can be transformed so tha
function R L

in shows up. Since for any STF tensorT̂L] i( ŷL)
5 l T̂ iL 21ŷL21 and T̂LŷLyi5T̂LŷiL1@ l /(2l 11)#T̂iL 21ŷL21
uyu2, and keeping in mind that all the multi-indicesL will
have to be summed, we can write

D2ñ~ x̂L! FP
B50

E d3y] i~ uỹuB!ŷL

3E
1

`

dzg l~z!M~t in!~y,t2zuyu/c!

1 lD2ñ~ x̂iL 21! FP
B50

E d3yuỹuBŷL21

3E
1

`

dzg l~z!M~t in!~y,t2zuyu/c!1
D2ñ~ x̂L!

c2~2l 13!
FP

B50

3E d3yuỹuBŷiLE
1

`

dzg l 11~z!M~t in!
~2!

~y,t2zuyu/c!

1
lD2ñ~ x̂iL 21!

c2~2l 11!~2l 13!
FP

B50
E d3yuỹuBuyu2ŷL21

3E
1

`

dzg l 11~z!M~t in!
~2!

~y,t2zuyu/c!. ~5.16!
0-15
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An interesting relation between g l functions,
d2/dz2@g l 11(z)#5(2l 11)(2l 13)@g l 21(z)2g l(z)#, after
integrating by part the last integral, in terms ofdz integra-
tion, allows us to get the more explicit form

D2ñ~ x̂L!]0R L
0n~ t !

5D2ñ~ x̂L! FP
B50

E d3y] i~ uỹuB!ŷLE
1

`

dzg l~z!M~t in!~y,t

2zuyu/c!1 lD2ñ~ x̂iL 21!RL21
in ~ t !1

D2ñ~ x̂L!

c2~2l 13!
R iL

in
~2!

~ t !.

~5.17!

Summing up Eqs.~5.12! and ~5.17!, we obtain

(
n>0

]0BL
0n

~2n!

~ t !D2ñ~ x̂L!

5
4G

c4 (
l ,n>0

2l~2 ! l

~2l 11!!
D2ñ~ x̂L!

3F (
k>0

FP
B50

E d3y] i~ uỹuB!D2ñ~ ŷL!
t̄ in~y,t !

~2n12k12l 11!

c2n12k12l 11

1 FP
B50

E d3y] i~ uỹuB!ŷL

3E
1

`

dzg l~z!
M~t in!

~2n12l 11!

c2n12l 11
~y,t2zuyu/c!G

2 (
n,l>0

1

c2n
H 1

2l 13
BL

in
~2n!

~ t !

3D2n11̃~ x̂iL !1 lBiL 21
in
~2n!

~ t !D2ñ~ x̂L21!J . ~5.18!

The last line cancels out the terms coming from Eq.~5.8!.
We can therefore write down the result for the divergen

of h̄mn which, at this stage, depends only on terms with
tegrals of] i(uỹuB) and having the spatial structure given b
D2ñ( x̂L). After summing Eqs.~5.6!, ~5.8!, and~5.18! we get

]mh̄mn52
4G

c4 (
n,l ,k>0

~2 ! l

l !

D2ñ~ x̂L!

c2k12n
FP

B50

3E
uyu.R

d3y] i~ uỹuB!D2 k̃@ ]̂L~ uyu21!#M~ t̄ in!

~2n12k!

~y,t !

1
4G

c4 (
n,l ,k>0

2l~2 ! l

~2l 11!!

D2ñ~ x̂L!

c2n12k12l 11
FP

B50

3E
uyu.R

d3y] i~ uỹuB!D2 k̃~ ŷL!M~ t̄ in!~y,t !
~2n12k12l 11!
12402
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1
4G

c4 (
n,l>0

2l~2 ! l

~2l 11!!

D2ñ~ x̂L!

c2n12l 11

3 FP
B50

E d3y] i~ uỹuB!ŷL

3E
1

`

dzg l~z! M~t in!
~2n12l 11!

~y,t2zuyu/c!. ~5.19!

In the second term we have used the fact that the inte
depends only on the values for whichuyu.R to write t̄ in

5M( t̄ in) on that domain. The last term of Eq.~5.19! de-
pends on a retarded integral of the multipolar po
Minkowskian expansionM(t in). By integrating by part the
integral overz one can transform this last term into

4G

c4 (
l ,n>0

2l~2 ! l

~2l 11!!
D2ñ~ x̂L! (

p>0

1

c2n2p1 l
FP

B50

3E
uyu,R

d3y] i~ uỹuB!ŷLuyu2p2 l 21 g l

~p1 l !

~1!

3M~t in!
~2n2p1 l !

~y,t2uyu/c!. ~5.20!

The superscript (p1 l ) on the g l function refers to thez
differentiation. It is straightforward to show, using the fa

that g l

( l )

(z)5(2) l 11(2l 11)!! Pl(z) is directly related to the
Legendre polynomial, that

g l

~p1 l !

~1!5~2 ! l 11
~2l 11!!! ~ l 1p!!

2pp! ~ l 2p!!
. ~5.21!

SinceM(t in) is singular at the origin~but regular at infin-
ity!, and because of the explicit factorB brought about by the
derivative ] i(uỹuB), the integral in Eq.~5.20! ranges over
uyu,R ~and evenuyu,e, wheree is an arbitrary small num-
ber!. We can then expandM(t in)(y,t2uyu/c) when
c→1`. Furthermore, we can change the integration o
uyu,R into an integration overuyu.R by simply changing
the sign in front of the integral. Indeed, this comes from
technical lemma, which plays an important role in Re
@39,40#; see before Eq.~C6! in Appendix C, and the proof
given in Ref.@51#. Thus,

2
4G

c4 (
n,l ,k>0

2l~2 ! l

~2l 11!!
D2ñ~ x̂L! (

p>0

1

c2n2p1 l 1k

3 FP
B50

E
uyu.R

d3y] i~ uỹuB!n̂L

3
~2 !k

k!
uyuk2p21 g l

~p1 l !

~1!M~t in!~y,t !
~2n2p1 l 1k!

. ~5.22!

By changing the labelk into 2k1p2 l and 2k111p2 l , in
order to cover odd and even numbers, we are able to w
the previous expression in terms of some sums of real n
bers indexed byp, i.e.,
0-16
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2
4G

c4 (
n,l ,k>0

2l~2 ! l

~2l 11!!
D2ñ~ x̂L!H (

p50

l
~21!p1 l g l

~p1 l !

~1!

~p2 l 12k!!
J

3 FP
B50

E
uyu.R

d3y] i~ uỹuB!n̂Luyu2k2 l 21

3M~t in!
~2n12k!

~y,t !1
4G

c4 (
n,l ,k>0

2l~2 ! l

~2l 11!!
D2ñ~ x̂L!

3H (
p50

l
~21!p1 l g l

~p1 l !

~1!

~p2 l 12k11!!
J

3 FP
B50

E
uyu.R

d3y] i~ uỹuB!n̂Luyu2k2 l M~t in!
~2n12k11!

~y,t !. ~5.23!

The sums in curly brackets are found to be explicit expr
sions depending onk and l and some factorial combinations

;k> l 11,

(
p50

l
~21!p1l gl

~p1l!

~1!

~p2l12k!!
52

~2l11!!!

2kk!~2k22l21!!!
, ~5.24!

;k> l , (
p50

l
~21!p1 l g l

~p1 l !

~1!

~p2 l 12k11!!
52

~2l 11!!!

2k2 l~k2 l !! ~2k11!!!
,

~5.25!

;k< l , (
p50

l
~21!p1 l g l

~p1 l !

~1!

~p2 l 12k!!

5~21!k1 l 11
~2l 11!!! ~2l 22k21!!!

2kk!
,

~5.26!

;k< l 21, (
p50

l
~21!p1 l g l

~p1 l !

~1!

~p2 l 12k11!!
50. ~5.27!

Thanks to these formulas, one can transform Eq.~5.23! into

4G

c4 (
n,l>0

(
k> l 11

~2 ! l

l !

1

2kk! ~2k22l 21!!!
D2ñ~ x̂L!

3 FP
B50

E
uyu.R

d3y] i~ uỹuB!n̂Luyu2k2 l 21M~t in!
~2n12k!

~y,t !

1
4G

c4 (
n,l>0

(
k< l

~2 !k~2l 22k21!!!

l !2kk!
D2ñ~ x̂L!

3 FP
B50

E
uyu.R

d3y] i~ uỹuB!n̂Luyu2k2 l 21M~t in!
~2n12k!

~y,t !
12402
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2
4G

c4 (
n,l>0

(
k> l

~2 ! l

l !

1

2k2 l~2k11!!! ~k2 l !!
D2ñ~ x̂L!

3 FP
B50

E
uyu.R

d3y] i~ uỹuB!n̂Luyu2k2 l M~t in!
~2n12k11!

~y,t !. ~5.28!

In the latter expression, we can recognize

;k> l ,

D2 k̃@ ]̂L~ uyu21!#5
1

~2k22l 21!!!2 kk!
n̂Luyu2k2 l 21,

~5.29!

;k< l ,

D2 k̃@ ]̂L~ uyu21!#5
~2 !k1 l~2l 22k21!!!

2kk!
n̂Luyu2k2 l 21,

~5.30!

D2 k̃~ ŷL!5
~2l 11!!!

2kk! ~2k12l 11!!!
ŷLuyu2k, ~5.31!

so that we obtain

4G

c4 (
l ,n>0

2l~2 ! l

~2l 11!!
D2ñ~ x̂L! FP

B50

3E d3y] i~ uỹuB!ŷLE
1

`

dzg l~z! M~t in!
~2n12l 11!

~y,t2zuyu/c!

5
4G

c4 (
n,l ,k>0

~2 ! l

l !
D2ñ~ x̂L!

3 FP
B50

E
uyu.R

d3y] i~ u ỹ uB!D2 k̃@ ]̂L~ uyu21!#M~ t̄ in!

~2n12k!

)~y,t !

2
4G

c4 (
n,l ,k>0

2l~2 ! l

~2l 11!!
D2ñ~ x̂L!

3 FP
B50

E
uyu.R

d3y] i~ uỹuB!D2 k̃~ ŷL!M~ t̄ in!~y,t !
~2n12k12l 11!

. ~5.32!

After replacing Eq.~5.32! in Eq. ~5.19!, at long last we find

]mh̄mn50. ~5.33!

In this way, we have checked that the post-Newtonian m
ric, found by matching as a definite functional of the stre
energy pseudotensortmn, satisfies the harmonic-coordina
condition as a consequence of the conservation of
pseudotensor.
0-17
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APPENDIX A: NEAR-ZONE EXPANSION
OF THE RETARDED INTEGRAL

This appendix, provided here for completeness, is an
tended, and also somewhat simplified, version of the der
tion given in Appendix A of Ref.@32#. We are interested in
source functions, sayM(t)(x,t), having the form of an ex-
terior multipole-moment decomposition, valid outside t
compact-support domain of the source. We employ the s
notation as in Sec. II A~except that we do not write th
space-time indices!: t denotes the pseudotensor of t
source; notably we haveM(t)5(c4/16pG)M(L), where
L is the gravitational source term. The two basic proper
of the functionM(t)(x,t) are that it is smooth onR4 de-
prived from the spatial originr 50:

M~t!~x,t !PC`~R
*
3 3R!, ~A1!

and that it admits a near-zone expansion, whenr→0 ~with
t5const), having the appropriate structure@cf. Eq. ~2.14!#:
i.e., ;NPN,

M~t!~x,t !5( n̂Lr a~ ln r !pGL,a,p~ t !1O~r N!, ~A2!

whereaPZ with a<N andpPN. As in Sec. II B, we denote
with an overline the formal~infinite! near-zone expansion,

M~t!~x,t !5( n̂Lr a~ ln r !pGL,a,p~ t !. ~A3!

It is very important to make the distinction betweenM(t)
and its formal near-zone expansionM(t). Here we
shall investigate the retarded integral of the prod
r BM(t)(x,t), whereBPC, by means of analytic continua
tion ~we poser 051 in this appendix!. For this task we as-
sume at first that the real part ofB is large enough so as t
‘‘kill’’ the divergencies, whenr→0, of the expansion~A2!,
so that the retarded integral is initially well-defined. The
fore, rigorously speaking, we are allowed to do this only
there exists a finite maximal divergency, i.e., someamin<a
in Eq. ~A2! with finite aminPZ. We have seen in Sec. II A
that such maximal divergency exists at any given po
Minkowskian orderm, but no longer exists for the full post
Minkowskian series becauseamin(m)→2` whenm→1`.
The consequence is that the analytic continuation is in p
ciple justified only at a given finite post-Minkowskian orde
But, as explained in Sec. II A, we sum up systematically
the post-Minkowskian results. In this way, we are entitled
proceed as we do below; simply we have to remember
the end result will bea priori true only in a sense of forma
post-Minkowskian expansions.

We decompose the source term into multipoles accord
to

M~t!~x,t !5(
l 50

1`

n̂LsL~r ,t !, ~A4!

where thesL’s are STF functions inL5 i 1••• i l . The inverse
formula is
12402
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a-
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g

sL~r ,t !5
~2l 11!!!

l ! E dV

4p
n̂LM~t!~x,t !, ~A5!

wheredV is the solid-angle element around the unit vec
ni5ni5xi /r . Then the expression of the retarded integral,
a sense of analytic continuation inB, is given by the follow-
ing explicit formula, obtained in Ref.@36# @see Eqs.~6.3!–
~6.5! there#:

hRet
21@r BM~t!~x,t !#

5(
l 50

1` E
2`

t2r

ds]̂L
H RL

BS t2r 2s

2
,sD2RL

BS t1r 2s

2
,sD

r
J
~A6!

~we posec51 andr 051 in this appendix!, where the func-
tion RL

B(r,s) reads

RL
B~r,s!5r lE

0

r

dx
~r2x! l

l ! S 2

xD l 21

xBsL~x,x1s!.

~A7!

Following the same procedure as in Eqs.~A6! and ~A7! in
Ref. @32#, we are allowed to rewrite the expression~A6! into
the alternative form

hRet
21@r BM~t!~x,t !#

5(
l 50

1` E
2r

r

du]̂LH 1

r
RL

BS u1r

2
,t2uD J

2
1

4p (
l 50

1`
~2 ! l

l !
]̂LFR L

B~ t2r !2R L
B~ t1r !

2r G . ~A8!

The ‘‘antisymmetric’’ wave is parametrized byR L
B(t), which

is related to the functionRL
B(r,s) by

R L
B~ t !58p~2 ! l 11l ! E

2`

t

dsRL
BS t2s

2
,sD . ~A9!

Inserting Eq.~A7!, and performing some change of var
ables, we obtain

R L
B~ t !5

4p l !

~2l 11!!! E0

1`

dxxB1 l 12

3E
1

1`

dzg l~z!sL~x,t2zx!, ~A10!

and, using the relation~A5!, and considering the variablex
as the norm ofxPR3, we further get

R L
B~ t !5E d3xuxuBx̂L

3E
1

1`

dzg l~z!M~t!~x,t2zuxu!. ~A11!
0-18
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In these expressions the functiong l(z) is defined by

g l~z!5~2 ! l 11
~2l 11!!!

2l l !
~z221! l , ~A12!

where the particularl-dependent factor has been chosen
such a way that the integral is normalized to 1 in the follo
ing sense~see Ref.@32#!. Considering first thatl is a complex
number such that21,Re(l ),2 1

2 , we can compute the in
tegral of g l(z) by means of the EulerG function, with the
result

E
1

1`

dzg l~z!52~2 ! l 11
G~2l 12!G~22l 21!

G~ l 11!G~2 l !
.

~A13!

The right-hand side of this equation can be analytically c
tinued to all valuesl PC except half-integer values, and
found to be equal to 1 whenl is an integer:

E
1

1`

dzg l~z!51 ~ l PN!. ~A14!

Next, let us treat the first term on the right-hand side of E
~A8!, say

JB~x,t ![(
l 50

1` E
2r

r

du]̂LH 1

r
RL

BS u1r

2
,t2uD J . ~A15!

This term is a particular solution of the d’Alembertian equ
tion hJB5r BM(t) @since the second term in Eq.~A8! is a
source-free solution#. We shall prove that the~formal! near-
zone expansion of that term, i.e.,JB(x,t), is given by the
integral of the ‘‘instantaneous’’ potentials acting on the ne
zone expansion of the source term, i.e.,r BM(t)(x,t). For
any of the terms composing the multipolar sourcer BM(t)
@see Eq.~A3!#, we first define

D21@ n̂Lr B1a~ ln r !pGL,a,p~ t !#

5S d

dBD pF n̂Lr B1a12GL,a,p~ t !

~B1a122 l !~B1a131 l !
G

~A16!

~this being justified by the fact that one gets an identity
applyingD on both sides!. Clearly the previous formula ca
be iterated and so we can define the operatorD2k21

[(D21)k11, applied on each separate terms in Eq.~A3! and
therefore on the complete seriesr BM(t)(x,t). From this we
obtain the instantaneous-potentials operator, as the fo
expansion series

I 21@r BM~t!~x,t !#

5 (
k50

1` S ]

c]t D
2k

D2k21@r BM~t!~x,t !#. ~A17!
12402
-

-

.

-

-

y

al

Notice that this operatorI 21 contains only some even pow
ers of 1/c. An important point for our purpose is tha
I 21@r BM(t)# is proportional to the regularization factor
r B, and it evidently satisfiesh„I 21@r BM(t)#…5r BM(t).
On the other hand, we have also the equationhJB

5r BM(t), which comes from applying the overline oper
tion onto hJB5r BM(t). This shows thatI 21@r BM(t)#
andJB must differ by a solution of the homogeneous equ
tion, hence there should exist some functionsCL

B(t) and
DL

B(t) such that

JB~x,t !5I 21@r BM~t!~x,t !#

1(
l 50

1`

]̂LH CL
B~ t2r !1DL

B~ t1r !

r J . ~A18!

Note that the dependence onB of the second term is ‘‘hid-
den’’ inside the functionsCL

B andDL
B . Let us now prove that

in fact the latter functions must be zero. This is a simp
consequence of the expression~A7! for the function
RL

B(r,s), from which we deduce that the expansion whenr
→0 of this function is proportional torB; in fact, it has the
structureRL

B;(rB1b(ln r)q, whenr→0. From this knowl-
edge, we easily find that the near-zone expansion ofJB is
proportional to the factorr B. Since, as we have remarke
this is also the case of the first term in Eq.~A18!,
I 21@r BM(t)#, and since it is impossible that~the near-zone
expansion of! the second term in Eq.~A18! is itself propor-
tional tor B—theB’s affect only the functionsCL

B andDL
B but

not the structure of the near-zone expansion—we concl
that CL

B andDL
B are identically zero. Hence we have prove

JB~x,t !5I 21@r BM~t!~x,t !#. ~A19!

It suffices now to apply the overline operation~i.e., to take
the near-zone expansion! onto Eq.~A8! to get our final re-
sult,

hRet
21@r BM~t!~x,t !#

5I 21@r BM~t!~x,t !#

2
1

4p (
l 50

1`
~2 ! l

l !
]̂LFR L

B~ t2r !2R L
B~ t1r !

2r
G ,

~A20!

where we recall that the functionR L
B(t) has been given by

Eq. ~A11!. ~The formula used in Sec. II B results from ap
plying the finite part operation FPB50.!

APPENDIX B: THE GENERALIZED POISSON OPERATOR

In Appendix A, we have been interested in source fun
tions of the multipolar typeM(t)(x,t), which are smooth in
R

*
3 3R and possess anear-zoneexpansion of the type~A3!.

In the present appendix, we consider some source funct
of the post-Newtonian typet̄(x,t). These are supposed to b
smooth all overR4,
0-19
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t̄~x,t !PC`~R4!, ~B1!

and to admit afar-zoneexpansion with structure (;NPN),

t̄~x,t !5( n̂Lr a~ ln r !pGL,a,p~ t !1SN~x,t !, ~B2!

whereaPZ, with 2N<a, andpPN. The remainder term is
SN(x,t)5O(1/r N) when r→1` with t5const.

Let us consider someBPC, and a radiusRPR with R
.0. We define two integrals, corresponding to a split of
Poisson integral between ‘‘near-zone’’ and ‘‘far-zone’’ co
tributions, separated by the radiusR:

I ,
B ~x,t !52

1

4pEuyu,R

d3y

ux2yu
uỹuBt̄~y,t !, ~B3!

I .
B ~x,t !52

1

4pEuyu.R

d3y

ux2yu
uỹuBt̄~y,t !. ~B4!

TheB-dependent regularization factor isuỹuB[(uyu/r 0)B. It is
easily checked that the near-zone integralI ,

B (x,t) is well-
defined~convergent! when Re(B).23 and that the far-zone
oneI .

B (x,t) is well-defined when Re(B),2amax22, where
amax is the maximal power ofr in the expansion~B2!. So we
have to assume at this stage the existence of some max
divergency corresponding to some poweramax. Strictly
speaking, our present investigation is thus valid only at so
finite post-Newtonian order. But, in the end, we sum up
results, and we consider the complete post-Newtonian se
to hold true in a formal sense.

We want first to check that the integrals~B3! and~B4! can
be analytically continued down to a neighborhood ofB50
~except at the valueB50 itself!, say in the open domainBe
defined by 0,uBu,e ~where e,1). There is no problem
with the near-zone integralI ,

B (x,t) which is clearly conver-
gent all overBe and even at the valueB50. Concerning the
far-zone integralI .

B (x,t) we replace the functiont̄ inside the
integrand by its far-zone expansion~B2!:

I .
B ~x,t !52

1

4pEuyu.R

d3yuỹuB

ux2yu

3 H( n̂L~y!uyua~ lnuyu!pGL,a,p~ t !1SN~y,t !J .

~B5!

WhenN is large enough, the contribution due to the rema
derSN is convergent all overBe and atB50, with evidently
the value atB50 given by

E
uyu.R

d3yuỹuB

ux2yu
SN~y,t !5E

uyu.R

d3y

ux2yu
SN~y,t !1O~B!. ~B6!

Thus we need only to deal with the other contribution
which consist of a finite sum of terms, say
12402
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( E
uyu.R

d3yuỹuB

ux2yu
n̂L~y!uyua~ lnuyu!p. ~B7!

Let us suppose that the field pointx lies inside the far-zone
domain, i.e.,R,uxu. We distinguish between the two case
whereuyu,uxu and uxu,uyu. For each of these two cases w
substitute into the integrals the appropriate multipolar exp
sion of the factor 1/ux2yu, for instance 1/ux2yu
5( l 50

1` (2) l / l ! yL]̂L(1/uxu) when uyu,uxu. This leads, after
performing the integration over the angles, to some serie
radial integrals having the structure~ignoring some unimpor-
tant factors!

(
x̂L

uxu2l 11ER

uxu
duyuuyuB1a1 l 12~ lnuyu!p

1( x̂LE
uxu

1`

duyuuyuB1a2 l 11~ lnuyu!p. ~B8!

When uxu,R the reasoning is the same but one simply
nores the first term in Eq.~B8! and takesR as a lower bound
in the second term. Computing each of these integrals,
find

(
x̂L

uxu2l 11 S d

dBD pF uxuB1a1 l 132R B1a1 l 13

B1a1 l 13 G
1( x̂LS d

dBD pF2uxuB1a2 l 12

B1a2 l 12 G . ~B9!

Each of these terms clearly admits an analytic continua
for any BPBe and in fact for anyBPC except at integer
values. Furthermore, we see from that expression that
function will admit a Laurent expansion whenB→0, with in
general some multiple poles@coming from the differentiation
(d/dB)p of simple poles;1/B#. Hence our statement.

It is clear that the Laplacians of the two integralsI ,
B and

I .
B satisfy, in the domains of the complex plane where th

functions were initially valid,

Re~B!.23⇒DI ,
B ~x,t !5Y~R2uxu!ux̃uBt̄~x,t !,

~B10!

Re~B!,2amax22⇒DI .
B ~x,t !5Y~ uxu2R!ux̃uBt̄~x,t !,

~B11!

whereY denotes the Heaviside step function. Therefore
we definefor any BPBe the object

I B~x,t !5I ,
B ~x,t !1analytic continuation

BPBe

$I .
B ~x,t !%,

~B12!

we find that it necessarily satisfies, for anyBPBe , the
B-dependent Poisson equation

DI B~x,t !5ux̃uBt̄~x,t !. ~B13!
0-20
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On the other hand, we have learned from Eq.~B9! that I B

admits whenB→0 a Laurent expansion involving~in gen-
eral! simple and multiple poles. Now the key idea, as
shall prove, is that thefinite part, or coefficient of the zeroth
power ofB in the latter Laurent expansion, represents a p
ticular solution of the Poisson equation that we want
solve. Let the Laurent expansion ofI B be

I B~x,t !5 (
k5kmin

1`

i k~x,t !Bk, ~B14!

wherekminPZ, and where the coefficientsi k depend on the
field point (x,t). By applying the Laplacian operator ont
both sides of Eq.~B14!, and using the result~B13! together
with the Taylor expansion of the regularization factorux̃uB,
we arrive at

kmin<k<21⇒D i k50, ~B15!

k>0⇒D i k5
~ lnux̃u!k

k!
t̄. ~B16!

Thus, the casek50 shows that the finite-part coefficient i
the expansion~B14!, namelyi 0, is a particular solution of the
required equation:D i 05 t̄. We shall now forget about the
intermediate namei 0, and denote, from now on, the latte

solution byD21̃t̄[ i 0, or, in more explicit terms,

D21̃t̄~x,t !5 FP
B50

D21@ ux̃uBt̄~x,t !#, ~B17!

whereD21 refers to the standard Poisson integral, and
finite-part symbol FPB50 means the previous operations
considering the Laurent expansion whenB→0, and picking
up the finite-part coefficient. Thus, we have proved t

D@D21̃t̄ #5 t̄, so the generalized inverse Poisson opera

D21̃ defines a particular solution of the Poisson equati
which has, by construction, none of the problems of div
gencies of Poisson integrals which have so much plagued
standard post-Newtonian approximation@8–19#.

Finally, let us prove that our generalized solutionD21̃t̄
owns the same properties~B1! and~B2! as the corresponding
sourcet̄. This verification is important because it will allow

us to iterate any number of times the operatorD21̃, and to
obtain the post-Newtonian expansion up to any po
Newtonian order. The main problem amounts to proving t

D21̃t̄ admits the same type of expansion at infinityuxu
→1` as in Eq.~B2!. To do this, we consider again the sam

split into near-zone and far-zone contributions:D21̃t̄5I ,

1I . , where

I ,~x,t !52
1

4p
FP

B50
E

uyu,R

d3y

ux2yu
uỹuBt̄~y,t !, ~B18!
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I .~x,t !52
1

4p
FP

B50
E

uyu.R

d3y

ux2yu
uỹuBt̄~y,t !. ~B19!

The near-zone integral admits an expansion at infinity wh
is of the required type. Indeed, because the integrand i
compact support,uyu,R, we can replace in it the facto
1/ux2yu by its expansion((2) l / l ! yL]̂L(1/uxu) and integrate
term by term. So we have,;NPN,

I ,~x,t !52
1

4p (
l 50

N21
~2 ! l

l !
]̂LS 1

r D
3 FP

B50
E

uyu,R
d3yuỹuByLt̄~y,t !1OS 1

r ND .

~B20!

The right-hand side has indeed the same structure as in
~B2!. The treatment of the far-zone integral is more delica
We proceed in a way similar to what was done in Eqs.~B5!–
~B9!. Namely, we replace into it the sourcet̄ by its expan-
sion given by Eq.~B2!. This yields~the finite part of! Eq.
~B5!, which for convenience we reproduce here:

I .~x,t !52
1

4p
FP

B50
E

uyu.R

d3yuỹuB

ux2yu

3 H( n̂L~y!uyua~ lnuyu!pGL,a,p~ t !1SN~y,t !J .

~B21!

There is a contribution of the remainder and a finite sum
terms with known structure. The remainder contribution
simply given by the value atB50 which has been written on
the right-hand side of Eq.~B6!. Let us write this term in the
form

E
uyu.R

d3y

ux2yu
SN~y,t !5 (

l 50

N24
~2 ! l

l !
]̂LS 1

r D E
uyu.R

d3yyLSN~y,t !

1TN22~x,t !, ~B22!

where we introduced theN24 first terms of the multipolar
expansion of 1/ux2yu when r 5uxu→1`, and where

TN22~x,t !5E
uyu.R

d3yF 1

ux2yu

2 (
l 50

N24
~2 ! l

l !
yL]̂LS 1

r D GSN~y,t !. ~B23!

The maximal orderN24 of the expansion is chosen in suc
a way that all the terms in Eq.~B23! are given by convergen
integrals at infinity, owing to the fact that the remainder s
isfies SN5O(1/r N). Now we prove thatTN22, defined by
Eq. ~B23!, is also a remainder in the sense thatTN22
5O(ln r/rN22). We splitTN22 into two integrals, a near-zon
0-21
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integral TN22
near corresponding to the integration rangeuyu

P]R,uxu@ , and a far-zone oneTN22
far corresponding touyu

P] uxu,1`@ . In the near-zone integral, we can use the bou

U 1

ux2yu
2 (

l 50

N24
~2 ! l

l !
yL]̂LS 1

r DU<CN

uyuN23

uxuN22
, ~B24!

where CN is a constant. On the other hand, becauseSN
5O(1/r N), there is also a constantAN , depending on the
value ofR, such that the following majoration holds:

uSN~y,t !u<
AN

uyuN
. ~B25!

Replacing these results into the near-zone integral, we g

uTN22
near ~x,t !u<4p

ANCN

uxuN22
lnS uxu

R D . ~B26!

In the far-zone integral, we can no longer apply the bou
~B24! but still we can employ the majoration~B25!. Then we
can easily show the inequality~in which uyu5uxul)

uTN22
far ~x,t !u<4p

AN

uxuN22E1

1` dl

lN22 F 1

l
1 (

l 50

N24
~2l 21!!!

l !
l l G .

~B27!

The integral is convergent. At last, from Eqs.~B26! and
~B27! we have proved thatTN225O(ln r/rN22). Still it re-
mains to show that the finite sum of terms in Eq.~B21!, i.e.,
besides the remainder, admits some expansions of the
quired structure. But this follows from applying the fini
part operation FPB50 onto the result~B9!, which tells us
immediately that we have an expansion of the correct t
;n̂L(x)uxua(lnuxu)q.

APPENDIX C: FAR-ZONE EXPANSION OF THE POISSON
INTEGRAL

Thanks to the investigation in Appendix B, the far-zo

~or multipolar! expansion of the objectD21̃@ t̄ # happens to
be workable. Recall that controlling the far-zone expans
of the post-Newtonian field is fundamental since it is at
basis of the matching. The operation of taking the far-zo
expansion is denotedM when applied on post-Newtonia
objects~see Sec. III B!. We therefore want to determine th

expression ofM(D21̃@ t̄ #). That is, we want to relate it to
the expansion of the corresponding source, which has
same structure as in Eq.~3.22!:

M~ t̄ !~x,t !5( n̂Lr a~ ln r !pGL,a,p~ t !. ~C1!

By the matching equation we know that this far-zone exp
sion is identical with the near-zone expansion of the exte
12402
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field @see, e.g., Eq.~A3!#. Let us first applyM ontoD21̃@ t̄ #
as expressed as a sum of near-zone and far-zone cont
tions,

M~D21̃@ t̄ # !5M~ I ,!1M~ I .!, ~C2!

whereI , and I . are defined by Eqs.~B18! and ~B19!. The
near-zone integral is quite easy to work with. Indeed, fro
Eq. ~B20! we see that its expansion whenr 5uxu→1` is
obtained by expanding the factor 1/ux2yu inside the inte-
grand. Therefore, the infinite far-zone expansion~without re-
mainder! reads

M~ I ,!52
1

4p
FP

B50
E

uyu,R
d3yuỹuBMS 1

ux2yu D t̄~y,t !,

~C3!

in which we denote

MS 1

ux2yu D5(
l 50

1`
~2 ! l

l !
yL]̂LS 1

uxu D . ~C4!

On the other hand, the far-zone expansion of the far-z
integralI . has been obtained in Eqs.~B21!,~B22!, where we
found that it comes from replacing the source term by
far-zone expansion~indeed, whenR is large enough, the
integration ranges over the domain of validity of the far-zo
expansion!. So the infinite far-zone expansion of that term
given by

M~ I .!52
1

4p
FP

B50
E

uyu.R

d3yuỹuB

ux2yu
M„t̄~y,t !…, ~C5!

where the integrand contains the expansion of the sou
given by Eq.~C1!. Now let us use a technical lemma whic
is quite important in the present formalism, and has alre
played a crucial role in Refs.@39,40#. This lemma is based on
the remark that any radial integral of the typ
*0

1`duyuuyuB1a(lnuyu)p, whereBPC anda andp are arbitrary
real numbers, is identicallyzeroby analytic continuation in
B. See Ref.@51# for the proof. Our useful lemma, which i
trivial to relate to the previous remark~after performing the
integration over angles!, is

FP
B50

E d3yuỹuBMS 1

ux2yu DM„t̄~y,t !…50. ~C6!

The point here is that the integral ranges over the comp
three-dimensional spaceR3. Now we have the ‘‘numerical’’
equalitiesM(1/ux2yu)51/ux2yu when uyu,uxu and M( t̄)
5 t̄ when uyu.a, where a is the radius of the compact
support source. From this we deduce that as soon asR.a,
which we can always assume right from the beginning, a
0-22
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uxu.R, which is not a problem because we are consider
the limit uxu→1`, we have the identity

FP
B50

E
uyu,R

d3yuỹuB

ux2yu
M„t̄~y,t !…

1 FP
B50

E
uyu.R

d3yuỹuBMS 1

ux2yu D t̄~y,t !50. ~C7!

By means of that identity, we can obtain the requested fo
of the far-zone expansion as

M~D21̃@ t̄ # !52
1

4p
FP

B50
E d3yuỹuBF 1

ux2yu
M„t̄~y,t !…

1MS 1

ux2yu D t̄~y,t !G . ~C8!

In this particular form we see that theM operator is distrib-
uted on the two terms like a derivative operator would be
the first term we recognize the action of the generalized P
son integral. Actually this Poisson operator has been defi
in Appendix A when acting on a near-zone expansion of
type ~A3!, but by matching that expansion is the same as
present far-zone expansion, so the definition is rigorously
same. Finally, we can rewrite Eq.~C8! into the alternative
form

M~D21̃@ t̄ # !5D21̃@M~ t̄ !#2
1

4p (
l 50

1`
~2 ! l

l !
]̂L~r 21!

3 FP
B50

E d3yuỹuBŷLt̄~y,t !, ~C9!

which constitutes the main result of this appendix. Not
that Eq.~C9! is in agreement with the multipole expansion
the retarded integral as given by Eqs.~3.11! and ~3.12! in
Ref. @40#, when specialized to the static case where ther
no dependence on time.

Next we derive the analogous result concerning the op
tor of the ‘‘instantaneous’’ potentials

I 21̃5 (
k50

1`
1

c2k
] t

2kD2k21̃. ~C10!

We iteratek11 times the result~C9!. There is no problem in
doing this; the only point is that we use in a repeated way
easily checked formula telling that we are allowed to ‘‘ope

ate by parts’’ the Poisson integralD21̃ as

FP
B50

E d3zuz̃uBẑLD21̃t̄5 FP
B50

E d3yuỹuBD21̃@ ŷL#t̄.

~C11!
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This formula is a consequence of the fact that FPB50*d3z

3uz̃uB( ẑL/uz2yu)524pD21̃@ ŷL# 5 @22p/(2l 13)#uyu2y&L;
see Eq.~4.10! in Ref. @43#. Therefore, we arrive at

M~D2k21̃@ t̄ # !5D2k21̃@M~ t̄ !#

2
1

4p (
l 50

1`
~2 ! l

l ! (
i 50

k

D2 ĩ@ ]̂L~r 21!#

3 FP
B50

E d3yuỹuBD i 2 k̃@ ŷL#t̄~y,t !,

~C12!

and from this it is very simple to derive the requested e

pression concerningI 21̃. We obtain

M~I 21̃@ t̄ # !5I 21̃@M~ t̄ !#

2
1

4p (
l 50

1`
~2 ! l

l ! (
i 50

1`

D2 ĩ@ ]̂L~r 21!#

3(
k5 i

1`
1

c2k
FP

B50
E d3yuỹuBD i 2 k̃@ ŷL#] t

2kt̄~y,t !.

~C13!

This expression, though completely explicit, does not con
tute our final form. Because the ‘‘instantaneous’’ solution i
particular solution of the d’Alembertian equation, it must
possible to reexpress the second term in Eq.~C13! as a com-
bination of some source-free retarded and advanced mult
lar waves. To see this we notice that

D2 ĩ@ ]̂L~r 21!#5 ]̂LS r 2i 21

~2i !! D , ~C14!

which shows that the latter homogeneous solution is actu
one of the symmetric type, i.e., retardedplus advanced.
Namely we can rewrite Eq.~C13! into the form

M~I 21̃@ t̄ # !5I 21̃@M~ t̄ !#

2
1

4p (
l 50

1`
~2 ! l

l !
]̂LHFL~ t2r /c!1FL~ t1r /c!

2r J , ~C15!

where the overline notation means taking the Taylor exp
sion of the symmetric wave when the retardationr /c→0 @the
result is displayed in Eq.~3.24!#. Actually, this overline no-
tation is somewhat misleading, because, in keeping with
real meaning of the result~C15!, one shoulda posteriori
interpret the latter Taylor expansion as afar-zone~singular!
expansion whenr→1`. However, in view of the matching
it is more fruitful to employ the same overline notation as f
the expansion of the antisymmetric waves occurring in
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near-zone metric—indeed when doing the matching on
simply interested in identifying some asymptotic expansio
which are of the same form. The ‘‘multipole-moment’’ func
tion FL(t) in Eq. ~C15! is given by

FL~ t !5(
j 50

1`
1

c2 j
FP

B50
E d3yuỹuBD2 j̃@ ŷL#] t

2 j t̄~y,t !.

~C16!

Finally, let us find an alternative, more compact, form f
this result. We introduce thel-dependent function

d l~z!5
~2l 11!!!

2l 11l !
~12z2! l , ~C17!

whose integral is normalized to 1:*21
1 dzd l(z)51. One can

readily show that
te

d.

a-

12402
is
s

r

D2 j̃@ ŷL#5uyu2 j ŷLE
21

1

dz
z2 j

~2 j !!
d l~z!, ~C18!

which permits us to express the functionFL in a form where
the post-Newtonian series is formally resummed as

FL~ t !5 FP
B50

E d3yuỹuBŷLE
21

1

dzd l~z!t̄~y,t6zuyu/c!.

~C19!

Under this form, we recognize the multipole-moment fun
tion introduced in Eq.~3.14! in Ref. @40# ~the function re-
mains unchanged by taking either sign6 in the time argu-
ment of t̄). This result permits us to fully determine th
exterior multipolar field by matching, and to recover the e
pression already obtained in Ref.@40# by means of a some
what different method.
tum
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@49# Our notation for STF tensors is the following.L5 i 1i 2••• i l

denotes a multi-index, made ofl ~spatial! indices. When sum-
ming over multi-indices we never write thel summations over
the l indicesi 1 ,•••,i l ranging from 1 to 3. The STF product o

unit vectorsni5ni[xi /r is denotedn̂L5STF(nL), wherenL is

shorthand forni 1
•••ni l

. For instance,n̂i j 5ninj2
1
3 d i j . Simi-

larly, we denotexL5xi 1
•••xi l

5r lnL and x̂L5 STF(xL). The
derivative operator]L is shorthand for] i 1

•••] i l
, and we have

]̂L5STF(]L). For instance,]̂ i j 5] i j 2
1
3 d i j D. More generally, a

function FL is said to be STF with respect to thel indices
composingL if and only if, for any pair of indicesi p ,i qPL,
we haveF

••• i p••• i q•••
5F

••• i q••• i p•••
and d i pi q

F
••• i p••• i q•••

50
~see Appendixes A and B in Ref.@36# for reviews about the
STF formalism!.

@50# It is clear that for stationary sources~independent of time!, the
antisymmetric waves given by Eqs.~2.22! are zero. Therefore
the only contribution to the functionR L

mn(t) comes from the
nonstationary~or radiative! part of the field, which according
to our assumption of stationarity in the past is zero whent<
12402
2T, and for whichR L
mn(t) is perfectly well-defined. For sim-

plicity, in the notation we do not indicate thatR L
mn(t) should

be computed only from the ‘‘radiative’’ part of the source ter
M(tmn).

@51# We want to prove that the radial integra
*0

1`duyuuyuB1a(ln uyu)p is zero by analytic continuation (;B
PC). First we can get rid of the logarithms by considerin
some repeated differentiations with respect toB; thus we need
only consider the simpler integral*0

1`duyuuyuB1a. We split the
integral into a near-zone integral*0

RduyuuyuB1a and a far-zone
one *R

1`duyuuyuB1a, whereR is some constant radius. Whe
Re(B) is a large enough positive number, the value of t
near-zone integral isR B1a11/(B1a11), while when Re(B)
is a large negative number, the far-zone integral reads the
posite,2R B1a11/(B1a11). Both obtained values represe
the unique analytic continuations of the near-zone and far-z
integrals for anyBPC except2a21. The complete integra
*0

1`duyuuyuB1b is equal to the sum of these analytic continu
tions, and is therefore identically zero (;BPC, including the
value2a21).
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