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In this paper, we prove a Donsker type approximation theorem for the Rosenblatt process, which is a selfsimilar stochastic process exhibiting long range dependence. By using numerical results and simulated data, we show that this approximation performs very well. We use this result to construct a binary market model driven by this process and we show that the model admits arbitrage opportunities.

Introduction

Long range dependence stochastic processes have been intensively used as models for different physical phenomena. First, these properties appeared in empirical studies in areas like hydrology and geophysics; more recently, they appeared to play an important role in network traffic analysis and telecommunications. As a consequence, efficient mathematical models based on long range dependence (or long memory) processes have been proposed in these directions.

The notions of long range dependence and selfsimilarity have also been considered in mathematical finance. An excellent survey on the different aspects of the appearance of the long range dependence in practice is the paper [START_REF] Cont | Long range dependence in financial markets[END_REF]. The debate on the presence of long memory in stock prices is actually not new. The idea that asset returns could exhibit long range dependence comes from Mandelbrot ([11]) and then observed in several empirical studies. We refer, among others, to [START_REF] Willinger | Long range dependence and stock returns[END_REF] for concrete examples and for interesting comments on this question. We also mention that some other authors rejected the idea of the presence of long memory in asset returns (see e.g. [START_REF] Lo | Long memory in stock market prices[END_REF]).

A rather general opinion is that long range dependence in financial models is strongly related to the presence of arbitrage. For example, in the case of market models driven by the fractional Brownian motion, this has been explicitly shown by Rogers ([17]) or Sottinen ([22]). In special situations, for example under transaction costs, arbitrage could be eliminated (see [START_REF] Guasoni | No arbitrage under transaction costs, with fractional Brownian motion and beyond[END_REF] or [START_REF] Salopek | Tolerance to Arbitrage[END_REF]). Different approaches, based on Wick-Itô calculus, have been developed in e.g. [START_REF] Biagini | Minimal variance hedging for fractional Brownian motion[END_REF], [START_REF] Hu | Optimal consumption and portfolio in a Black-Scholes market driven by fractional Brownian motion[END_REF]. Models driven by long range dependence processes others than the fractional Brownian motion have been, from the stochastic calculus point of view, less considered. This is actually one of the motivations of our work: we propose a binary market model driven by a non-Gaussian selfsimilar process (called the Rosenblatt process) which exhibits long range dependence and we show that this type of model admits arbitrage opportunities. It is actually known that in general arbitrage-free models imply the fact that the price process is a semimartingale ( [START_REF] Delbaen | A general version of the fundamental theorem of asset pricing[END_REF]) but it has been recently proved in [START_REF] Coviello | Modeling financial assets without semimartingales[END_REF] that by modifying the class of admissible strategies, one can also consider arbitrage-free models driven by non-martingales.

To construct our binary market model based on the Rosenblatt process we need a Donsker type theorem to approximate in law this process by some disturbed two-dimensional random walks; this results could be useful by itself. In fact, this theorem extends a result by Sottinen [START_REF] Sottinen | Fractional Brownian m!otion, random walks and binary market models[END_REF] and represents a variant of the so-called Non Central Limit Theorem proved in [START_REF] Dobrushin | Non-central limit theorems for non-linear functionals of Gaussian fields[END_REF] and [START_REF] Taqqu | Convergence of integrated processes of arbitrary Hermite rank[END_REF]. We mention that, since we are now in a non-Gaussian context, the proof of this result demands different techniques.

Our paper is organized as follows. In Section 2 we describe the basic properties of the Rosenblatt process. Section 3 contains the proof of the Donsker theorem to approximate weakly, in the Skorohod topology, the Rosenblatt process by walks. In Section 4, we introduce our binary market model which is showed to converge to the Black and Scholes model with Rosenblatt noise. We show that the model admits arbitrage opportunities and we construct a such opportunity.

Finally, in Appendix we present numerical results based on simulated data which show that the approximation method performs very well. Related numerical results can be found in [START_REF] Abry | Wavelet-based synthesis of the Rosenblatt process[END_REF] or [START_REF] Pipiras | Wavelet type expansion of the Rosenblatt process[END_REF].

Preliminaries

The Rosenblatt process appears as a limit in the so called Non Central Limit Theorem (see [START_REF] Dobrushin | Non-central limit theorems for non-linear functionals of Gaussian fields[END_REF] or [START_REF] Taqqu | Convergence of integrated processes of arbitrary Hermite rank[END_REF]). We recall the general context. Consider (ξ n ) n∈Z a stationary Gaussian sequence with mean zero and covariance 1 such that its correlation function satisfies

r(n) := E (ξ 0 ξ n ) = n 2H-2 k L(n), (1) 
with k ≥ 1 integer, H ∈ ( 1 2 , 1) and L is a slowly varying function at infinity . Denote by H m (x) the Hermite polynomial of degree m given by H

m (x) = (-1) m e x 2 2 d m dx m e -x 2
2 . Let g be a function such that E(g(ξ 0 )) = 0 and E(g(ξ 0 ) 2 ) < ∞. Suppose that g has Hermite rank equal to k; that is, if g admits the following expansion in Hermite polynomials

g(x) = j≥0 c j H j (x), c j = 1 j! E (g(ξ 0 H j (ξ 0 ))) , then k = min{j; c j = 0}.
Since E [g(ξ 0 )] = 0, we have k ≥ 1. The Non Central Limit Theorem ([6], [START_REF] Taqqu | Convergence of integrated processes of arbitrary Hermite rank[END_REF]) says that the sequence of stochastic processes

1 n H [nt] j=1 g(ξ j )
converges as n → ∞, in the sense of finite dimensional distributions, to the process (called the Hermite process)

Z k H (t) = c(H, k) R k t 0   k j=1 (s -y i ) -( 1 2 + 1-H k ) +   dsdB(y 1 ) . . . dB(y k ), (2) 
where x + = max(x, 0) and the above integral is a multiple Wiener-Itô stochastic integral with respect to a Brownian motion B(y)) y∈R (see [START_REF] Nualart | Malliavin Calculus and Related Topics[END_REF]) .

Let us list some basic properties of the Hermite processes.

• it exhibits long-range dependence (the covariance function decay at a power function at zero -"Joseph effect")

• it is H-selfsimilar in the sense that for any c > 0, (Z k H (ct)) = (d) (c H Z k H (t))
, where " = (d) " means equivalence of all finite dimensional distributions

• it has stationary increments, that is, the joint distribution of (Z k

H (t + h) -Z k H (h), t ∈ [0, T ]) is independent of h > 0.
• the covariance function is

E(Z k H (t)Z k H (s)) = 1 2 t 2H + s 2H -|t -s| 2H , s, t ∈ [0, T ]
and consequently, for every s, t

∈ [0, T ] E Z k H (t) -Z k H (s) 2 = |t -s| 2H (3) 
• the Hermite process is Holdër continuous of order δ < H

• if k ≥ 2, then Z k H is non-Gaussian. When k = 1 the
process given by ( 2) is nothing else that the fractional Brownian motion (fBm) with Hurst parameter H ∈ (0, 1 2 ). For k ≥ 2 the process is not Gaussian. If k = 2 then the process ( 2) is known as the Rosenblatt process (it has been actually named by M. Taqqu).

We focus here our attention on the case k = 2. We will work with the representation of this processes as integral with respect to a Wiener process on a finite interval. Recall that the fBm B H with Hurst parameter H > 1 2 can be written as

B H t = t 0 K H (t, s)dW s , t ∈ [0, T ] (4) 
with (W t , t ∈ [0, T ]) a standard Wiener process and

K H (t, s) = c H s 1 2 -H t s (u -s) H-3 2 u H-1 2 du ( 5 
)
where t > s and c H =

H(2H-1) β(2-2H,H-1 2 ) 1 2
. From ( 5) we obtain that for t > s,

∂K ∂t (t, s) = c H s t 1 2 -H (t -s) H-3 2 . (6) 
Aa analogous representation for the Rosenblatt process has been given in [START_REF] Tudor | Analysis of the Rosenblatt process[END_REF]. We have

Z 2 H (t) := Z t = (d) d(H) t 0 t 0 t y 1 ∨y 2 ∂K H ′ ∂u (u, y 1 ) ∂K H ′ ∂u (u, y 2 )du dW y 1 dW y 2 (7) 
where (W t , t ∈ [0, T ]) is a Brownian motion,

H ′ = H + 1 2 (8) 
and

d(H) = 1 H+1 H 2(2H-1) -1 2 . Note that H > 1 2 implies H ′ > 3 4 .

Convergence in law to the Rosenblatt process

This part in consecrated to a Donsker invariance principle for the Rosenblatt process. From now on, we will consider the Rosenblatt process to be given by the formula [START_REF] Guasoni | No arbitrage under transaction costs, with fractional Brownian motion and beyond[END_REF]. We will denote, for every t ∈ [0, T ]

F (t, y 1 , y 2 ) = d(H)1 [0,t] (y 1 )1 [0,t] (y 2 ) t y 1 ∨y 2 ∂K H ′ ∂u (u, y 1 ) ∂K H ′ ∂u (u, y 2 )du
and then

Z t = T 0 T 0 F (t, y 1 , y 2 )dW (y 1 )dW (y 2 ), t ∈ [0, T ]. (9) 
The kernel K H ′ (denoted simply by K in the sequel) is the standard kernel of the fractional Brownian motion [START_REF] Delbaen | A general version of the fundamental theorem of asset pricing[END_REF].

Let us first recall some known facts. Consider (ξ i ) i≥1 a sequence of i.i.d random variables with E(ξ i ) = 0 and E(ξ 2 i ) = 1. The Donsker Invariance Principle says that the sequence of processes

W n t = 1 √ n [nt] i=1 ξ i (10) 
converges weakly, in the Skorohod topology, to a standard Brownian motion. Here [x] denotes the biggest integer smaller than x. This result has been extended in [START_REF] Sottinen | Fractional Brownian m!otion, random walks and binary market models[END_REF] to the fractional Brownian motion (see also [START_REF] Nieminem | Fractional Brownian motion and Martingale differences[END_REF]). Define

K n (t, s) := n s s-1 n K( [nt] n , u)du, n ≥ 1
and put

B n t = t 0 K n (t, s)dW n s = [nt] i=1 n i n i-1 n K( [nt] n , s)ds ξ i √ n , n ≥ 1.
Then it has been proved in [START_REF] Sottinen | Fractional Brownian m!otion, random walks and binary market models[END_REF] that the disturbed random walk B n converges weakly to the fractional Brownian motion.

From the above results and the representation [START_REF] Hu | Optimal consumption and portfolio in a Black-Scholes market driven by fractional Brownian motion[END_REF] it is quite natural to define the following approximation for the Rosenblatt process

Z n t = [nt] i,j=1;i =j n 2 i n i-1 n j n j-1 n F [nt] n , u, v dvdu ξ i √ n ξ j √ n , t ∈ [0, T ]. ( 11 
)
Remark 1 We eliminate the diagonal "i=j" because the Rosenblatt process is defined as a double Wiener-Itô integral and as a consequence it has zero mean. When the diagonal i = j is included in the sum (11) then the limit is in general a double Stratonovich integral (see [START_REF] Hu | Sur les intégrales multiples de Stratonovich[END_REF] or [START_REF] Sole | Stratonovich integral and trace[END_REF]).

Proposition 1 The family of stochastic processes (Z n t ) t∈[0,T ] converges in the sense of finite dimensional distributions to the process (Z t ) t∈[0,T ] (9).

Proof: We will proof this result in several steps.

Step 1: Let us consider an arbitrary sequence of partitions of the interval [0, T ] of the form

π m : 0 = t m 0 < t m 1 < . . . < t m m = T with |π m | → 0 as m → ∞. Define Z π m t = m i,j=1;i =j 1 |∆ m i ||∆ m j | ∆ m i ∆ m j F (t, u, v)dvdu W (∆ m i )W (∆ m j ) (12) 
where we denoted by ∆ m i = [t m i-1 , t m i ) and by

W (∆ m i ) = W t m i -W t m i-1 .
Then it follows from [START_REF] Sole | Stratonovich integral and trace[END_REF], Theorem 3.4, or [START_REF] Hu | Sur les intégrales multiples de Stratonovich[END_REF] that for fixed t the sequence Z π m t converges in L 2 (Ω) as |π m | → 0 to the multiple Wiener-Itô integral of F (t, •) with respect to the Brownian motion

W T 0 T 0 F (t, u, v)dW u dW v = Z t .
Step 2: Secondly, define the process

Z π m ,n t = m i,j=1;i =j 1 |∆ m i ||∆ m j | ∆ m i ∆ m j F (t, u, v)dvdu W n (∆ m i )W n (∆ m j ) (13) 
where W n is the random walk given by [START_REF] Lo | Long memory in stock market prices[END_REF]. Then clearly, for fixed m, as n goes to ∞, the finite dimensional distributions of Z π m ,n converges to the finite dimensional distributions of Z π m (this comes from the weak convergence of W n to the Wiener process W ).

Step 3: We prove now that for every t ∈ [0, T ], the sequence Z π m ,n t converges in L 2 (Ω) to Z ′ ,n t as m → ∞, where

Z ′ ,n t = [nt] i,j=1;i =j n 2 i n i-1 n j n j-1 n F (t, u, v) dvdu ξ i √ n ξ j √ n , t ∈ [0, T ]. (14) 
Consider the sequence

F π m (t, u, v) = m i,j=1;i =j 1 |∆ m i ||∆ m j | ∆ m i ∆ m j F (t, u, v)dvdu 1 ∆ m i (u)1 ∆ m j (v). Then F π m (t, •) converges to F (t, •) in L 2 ([0, T ] 2 ) as m → ∞ (see [21], [8]). First note that Z ′ ,n t can be approximated in L 2 (Ω) as m → ∞ by Z ′ ,π m ,n t = [nt] k,l=1;k =l n 2 k n k-1 n l n l-1 n F π m (t, u, v)dvdu ξ k √ n ξ l √ n .
Indeed,

E Z ′ ,π m ,n t -Z ′ ,n t 2 = [nt] k,l=1;k =l n 2 k n k-1 n l n l-1 n F π m (t, u, v) -F (t, u, v) dvdu 2 E(ξ 2 k )E(ξ 2 l ) ≤ [nt] k,l=1;k =l k n k-1 n l n l-1 n (F π m (t, u, v) -F (t, u, v)) 2 dvdu ≤ T 0 T 0 (F π m (t, u, v) -F (t, u, v)) 2 dvdu
and this clearly goes to zero as m → ∞.

It remains to observe that Z ′ ,π m ,n t is equal to Z π m t for every t, m, n. We can write, if λ denotes the Lebesque measure,

Z ′ ,π m ,n t = [nt] k,l=1;k =l n 2 k n k-1 n l n l-1 n dvdu ×   m i,j=1;i =j 1 |∆ m i ||∆ m j | ∆ m i ∆ m j F (t, x, y)dydx 1 ∆ m i (u)1 ∆ m j (v)   ξ k √ n ξ l √ n = m i,j=1;i =j 1 |∆ m i ||∆ m j | ∆ m i ∆ m j F (t, x, y)dydx × [nt] k,l=1;k =l n 2 ξ k √ n ξ l √ n k n k-1 n l n l-1 n 1 ∆ m i (u)1 ∆ m j (v)dvdu = m i,j=1;i =j 1 |∆ m i ||∆ m j | ∆ m i ∆ m j F (t, x, y)dydx × [nt] k,l=1;k =l n 2 ξ k √ n ξ l √ n λ [ k -1 n , k n ) ∆ m i λ [ l -1 n , l n ) ∆ m j = m i,j=1;i =j 1 |∆ m i ||∆ m j | ∆ m i ∆ m j F (t, x, y)dydx × k;[ k-1 n , k n )⊂∆ m i l =k;[ l-1 n , l n )⊂∆ m j ξ k √ n ξ l √ n
and on the other hand by using ( 12) and ( 10), one has

Z π m ,n t = m i,j=1;i =j 1 |∆ m i ||∆ m j | ∆ m i ∆ m j F (t, x, y)dydx [nt m i ] k=[nt m i-1 ]+1 [nt m j ] l=[nt m j-1 ]+1 ξ k √ n ξ l √ n
and it is not difficult to see that Z π m ,n t and Z

′ ,π m ,n t coincide.

Step 4: At this point we conclude that the family of processes Z ′ ,n converges in the sense of finite dimensional distributions to the Rosenblatt process Z t . Let h be a function defined on R p and consider s 1 , . . . , s p ∈ [0, T ]. We will show that

E h(Z ′ ,n s 1 , . . . , Z ′ ,n sp ) -E h(Z s 1 , . . . , Z sp )
converges to zero as n → ∞. This can be bounded by A + B + C where

A = E h(Z s 1 , . . . , Z sp ) -E h(Z π m s 1 , . . . , Z π m sp ) B = E h(Z π m ,n s 1 , . . . , Z π m ,n sp ) -E h(Z π m s 1 , . . . , Z π m sp ) and C = E h(Z π m ,n s 1 , . . . , Z π m ,n sp ) -E h(Z ′ ,n s 1 , . . . , Z ′ ,n sp ) .
By Step 1 and Step 3 we have that for fixed c > 0 the terms A and C are bounded (uniformly in n) by c when m is large enough. the term B tends to zero as n → ∞ from Step 2.

Step 5: Clearly the family Z ′ ,n can be replaced by the family Z n (11) because their difference goes to zero in L 2 (Ω) as n → ∞.

Next, we show the tightness.

Proposition 2

The family Z n given by ( 11) is tight.

Proof: Let s < t, s, t ∈ [0, T ]. It holds, since the kernel F (s, u, v) vanishes when u or v are bigger that s, E |Z n t -Z n s | 2 = E   [nt] i,j=1;i =j n 2 i n i-1 n j n j-1 n F [nt] n , u, v -F [ns] n , u, v dvdu ξ i √ n ξ j √ n   2 = [nt] i,j=1;i =j n 2 i n i-1 n j n j-1 n F [nt] n , u, v -F [ns] n , u, v dvdu 2 ≤ [nt] i,j=1;i =j i n i-1 n j n j-1 n F [nt] n , u, v -F [ns] n , u, v 2 dvdu ≤ T 0 T 0 F [nt] n , u, v -F [ns] n , u, v 2 dvdu = [nt] n - [ns] n 2 .
Now the conclusion follows by using exactly the same arguments as in [START_REF] Sottinen | Fractional Brownian m!otion, random walks and binary market models[END_REF], end of the proof of Theorem 1.

The main result of this section is a consequence of Proposition 1 and Proposition 2.

Theorem 1 The family of stochastic processes [START_REF] Mandelbrot | The variation of certain speculative prices[END_REF] converges weakly, in the Skorohod topology, to the Rosenblatt process.

Binary market model based on the Rosenblatt process

The binary market constitutes a financial model where the asset are traded at discrete times.

In classical cases (for example when the driven process is the Wiener process) the binary model approximates the Black and Scholes model. Let us start by introducing the Black and Scholes model driven by the Rosenblatt process. As usually, we will consider two assets: a safe investment satisfying

B t = t 0 r s B s ds, (15) 
where r is a differentiable deterministic function and a risky asset with price dynamic following the stochastic equation

S t = S 0 + t 0 a s S s ds + σ t 0 S s dZ s , ( 16 
)
where Z is a Rosenblatt process, σ > 0 and a is a differentiable deterministic function. The integral with respect to Z is understood here in a pathwise sense. Since the trajectories of the Rosenblatt process are enough regular (in fact, they are Hölder continuous of order δ < H and H > 1 2 ) it is possible to consider pathwise integrals with respect to it and to solve some stochastic equations in the pathwise sense. We refer, among others, to [START_REF] Nourdin | Schémas d'approximation associés à une équation différentielle dirigée par une fonction höldérienne; cas du mouvement brownien fractionnaire[END_REF], [START_REF] Zaehle | Integration with respect to fractal functions and stochastic calculus[END_REF] or [START_REF] Russo | Forward backward and symmetric stochastic integration[END_REF]. In particular, the solution of ( 16) is given by (see [START_REF] Nourdin | Some linear fractional stochastic equations[END_REF], [START_REF] Zaehle | Integration with respect to fractal functions and stochastic calculus[END_REF], [START_REF] Nourdin | Schémas d'approximation associés à une équation différentielle dirigée par une fonction höldérienne; cas du mouvement brownien fractionnaire[END_REF] 

S t = S 0 e t 0 asds+σZt , t ∈ [0, T ]. ( 17 
)
Clearly the solution of ( 15) is

B t = B 0 e t 0 rsds , t ∈ [0, T ]. (18) 
Moreover, we will assume in the sequel that the interest rates a and r are deterministic bounded functions.

Let us describe now the binary market model with Rosenblatt influence. The two assets are traded now at successive times periods t 1 < t 2 < . . . < ... and their dynamics are given by

B n = (1 + r n )B n-1 and S n = (a n + (1 + X n ))S n-1 ;
That means that B n and S n represent the prices of the bond and of the stock in the period between t n and t n+1 and r n and a n are the interest rates valuable in this period. The stochastic process X is binary, that is, given X n-1 it can takes at time n two possible values denoted by d n ("down") and u n ("up"). The binary market excludes arbitrage opportunities if for every n it holds that (see [START_REF] Sottinen | Fractional Brownian m!otion, random walks and binary market models[END_REF])

d n < r n -a n < u n . (19) 
In the following we will choose our binary model to be determined by

X n = ∆Z N n N (20) 
where Z N is defined by [START_REF] Mandelbrot | The variation of certain speculative prices[END_REF] and

r n = 1 N r n N and a n = 1 N a n N ( 21 
)
where a and r are the interest rates appearing in ( 15) and ( 16).

We have

Proposition 3

The binary market model with X a and r given by ( 20) and ( 21) converges as N → ∞ to the Black and Scholes model given by ( 15) and ( 16).

and

g n-1 (x 1 , . . . , x n-1 ) = 2σN n-1 i=1 i N i-1 N n N n-1 N F n N , u, v dvdu x i .
Then obviously

u n = f n-1 (ξ 1 , . . . , ξ n-1 ) + g n-1 (ξ 1 , . . . , ξ n-1 ) (22) 
and

d n = f n-1 (ξ 1 , . . . , ξ n-1 ) -g n-1 (ξ 1 , . . . , ξ n-1 ). ( 23 
)
The last result of our paper is the following.

Proposition 4

The binary market model with ( 21) and ( 20) admits arbitrage.

Proof: Throughout this proof, we will denote by c(H) a generic constant depending only on H. Let us show now that the condition ( 19) fails for some n ≥ 2. We will actually prove that the sequence

f n-1 (1, 1, . . . , 1) -g n-1 (1, 1, . . . 1) → n→∞ ∞ (24) 
and then clearly [START_REF] Russo | Stochastic calculus with respect to a finite quadratic variation process[END_REF] does not hold because r n and a n are assumed to be bounded. We have

f n-1 (1, 1, . . . , 1) = σN n-1 i,j=1;i =j i N i-1 N j N j-1 N F n N , u, v -F n -1 N , u, v dvdu = σN n-1 i,j=1;i i N i-1 N j N j-1 N F n N , u, v -F n -1 N , u, v dvdu - n-1 i=1 i N i-1 N i N i-1 N F n N , u, v -F n -1 N , u, v dvdu := σN (A -B).

Appendix: Monte Carlo Simulation

This simulation study is intended to show our proposed model using simulated data. We simulate data using different values for H. Below, we describe the procedure used in generating the data to be used in the simulation study.

We have implemented this simulation on a standard personal computing platform (PC), and have observed that it performs very well using simulated data as can be seen from the simulated data in the figures 1 and 2 below. Despite the apparent algebraic complexity of the equations [START_REF] Mandelbrot | The variation of certain speculative prices[END_REF], the problem poses no difficulty for standard symbolic algebra packages. Using Matlab's simulations and algebra capabilities yielded the best computing times. In our implementation, which performs an iteration of the algorithm from i = 0 to i = n. Figure 1 shows the histogram for a fixed time t for the marginal density of the Rosenblatt process. We can see the skew structure of the distribution. Figure 2 shows the some paths of the discretization for the Rosenblatt process. We use the values for the parameter H (H = 0.8 and H = 0.9). 

Figure 1 :

 1 Figure 1: Marginal distributions for H = 0.5; H = 0.8 and H = 0.9.

Figure 2 :

 2 Figure 2: Simulations of the Trajectory for the Rosenblatt process with H = 0.8 and H = 0.9. Acknowledgments: This work was partially supported by the research project Nucleus Millenium P04-069-F "Information and Randomness: Fundamentals and Applications;

Proof: Let us consider the jump

and the quadratic variation

We will show that the process [Z N ] converges in L 1 ([0, T ] × Ω) to zero. Then the conclusion will follow exactly as in [START_REF] Sottinen | Fractional Brownian m!otion, random walks and binary market models[END_REF], proof of Lemma 1.

We have, since the jumps are at times k N , k integer,

and then

which goes to 0 as N goes to ∞. The next step is to show that the market admits arbitrage opportunities. Clearly, we have

and we will take the random variables ξ to be binary, that is

for every i ≥ 1. We can write, by isolating the part involving ξ n ,

where for every n ≥ 2

Using the expression of the kernel F and ( 6), the term A can be minorized as follows

We majorize now the term B. We can write

From the above computations we obtain that

because the integral

). We then obtain [START_REF] Taqqu | Convergence of integrated processes of arbitrary Hermite rank[END_REF].

Comments: i) A concrete arbitrage opportunity can be easily described. For example, suppose that a > r. Ar a certain time n 0 we have d n 0 > 0 because of [START_REF] Taqqu | Convergence of integrated processes of arbitrary Hermite rank[END_REF]; suppose that the stock price was increasing up to this time n 0 . Then, buy M stocks and your wealth at time n 0 + 1 will be positive since M S n 0 +1 > M S n 0 .

ii) We cannot expect to have no-arbitrage when H ∈ 1 2 as in the fractional Brownian motion case because now the limit process at H = 1 2 is not necessarily a martingale.
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