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NLC-2 graph reognition and isomorphismVinent Limouzy1 Fabien de Montgol�er1 Mihaël Rao1AbstratNLC-width is a variant of lique-width with many appliation in graph algorithmi. Thispaper is devoted to graphs of NLC-width two. After giving new strutural properties of thelass, we propose a O(n2m)-time algorithm, improving Johansson's algorithm [14℄. Moreover,our alogrithm is simple to understand. The above properties and algorithm allow us to proposea robust O(n2m)-time isomorphism algorithm for NLC-2 graphs. As far as we know, it is the�rst polynomial-time algorithm.1 IntrodutionNLC-width is a graph parameter introdued by Wanke [16℄. This notion is tightly related tolique-width introdued by Courelle et al. [2℄. Both parameters were introdued to generalisethe well known tree-width. The motivation on researh about suh width parameter is that,when the width (NLC-, lique- or tree-width) is bounded by a onstant, then many NP-ompleteproblems an be solved in polynomial (even linear) time, if the deomposition is provided.Suh parameters give insights on graph strutural properties. Unfortunately, �nding theminimum NLC-width of the graph was shown to be NP-hard by Gurski et al. [12℄. Some resultshowever are known. Let NLC-k be the lass of graph of NLC width bounded by k. NLC-1 isexatly the lass of ographs. Probe-ographs, bi-ographs and weak-bisplit graphs [9℄ belongto NLC-2. Johansson [14℄ proved that reognising NLC-2 graphs is polynomial and provided an
O(n4 log(n)) reognition algorithm. Complexity for reognition of NLC-k, k ≥ 3, is still unknown.In this paper we improve Johansson's result down to O(n2m). Our approah relies on graphdeompositions. We establish the tight links that exist between NLC-2 graphs and the so-alledmodular deomposition, split deomposition, and bi-join deomposition.NLC-2 an be de�ned as a graph olouring problem. Unlike NLC-k lasses, for k ≥ 3,reolouring is useless for prime NLC-2 graphs. That allow us to propose a anonial deompositionof bi-oloured NLC-2 graphs, de�ned as ertain bi-oloured split operations. This deompositionan be omputed in O(nm) time if the olouring is provided. If a graph is prime, there usingsplit and bi-join deompositions, we show that there is at most O(n) olourings to hek. Finally,modular deomposition properties allow to redue NLC-2 graph deomposition to prime NLC-2graph deomposition. Setion 3 explains this O(n2m)-time deomposition algorithm.In Setion 4 is proposed an isomorphism algorithm. Using modular, split and bi-join deom-positions and the anonial NLC-2 deomposition, isomorphism between two NLC-2 graphs anbe tested in O(n2m) time.2 PreliminariesA graph G = (V,E) is pair of a set of verties V and a set of edges E. For a graph G, V (G) denoteits set of verties, E(G) its set of edges, n(G) = |V (G)| and m(G) = |E(G)| (or V , E, n and m if1LIAFA, Université Paris 7. {limouzy,fm,rao}�liafa.jussieu.fr. Researh supported by the Frenh ANRprojet �Graph Deompositions and Algorithms (GRAAL)�1



the graph is lear in the ontext). N(x) = {y ∈ V : {x, y} ∈ E} denotes the neighbourhood of thevertex x, and N [x] = N(v)∪{v}. For W ⊆ V , G[W ] = (W,E ∩W 2) denote the graph indued by
W . Let A and B be two disjoint subsets of V . Then we note A 1© B if for all (a, b) ∈ A×B, then
{a, b} ∈ E, and we note A 0© B if for all (a, b) ∈ A×B, then {a, b} 6∈ E. Two graphs G = (V,E)and G′ = (V ′, E′) are isomorphi (noted G ≃ G′) if there is a bijetion ϕ : V → V ′ suh that
{x, y} ∈ E ⇔ {ϕ(x), ϕ(y)} ∈ E′, for all u, v ∈ V .A k-labelling (or labelling) is a funtion l : V → {1, . . . , k}. A k-labelled graph is a pairof a graph G = (V,E) and a k-labelling l on V . It is denoted by (G, l) or by (V,E, l). Twolabelled graphs (V,E, l) and (V ′, E′, l′) are isomorphi if there is a bijetion ϕ : V → V ′ suhthat {u, v} ∈ E ⇔ {ϕ(x), ϕ(y)} ∈ E′ and l(u) = l′(ϕ(u)) for all u, v ∈ V .NLC-k lasses. Let k be a positive integer. The lass of NLC-k graphs is de�ned reursivelyby the following operations.
• For all i ∈ {1, . . . , k}, ·(i) is in NLC-k, where ·(i) is the graph with one vertex labelled i.
• Let G1 = (V1, E1, l1) and G2 = (V2, E2, l2) be NLC-k and let S ⊆ {1, . . . , k}2. Then

G1 ×S G2 is in NLC-k, where G1 ×S G2 = (V,E, l) with V = V1 ∪ V2,
E = E1 ∪ E2 ∪ {{u, v} : u ∈ V1, v ∈ V2, (l1(u), l2(v)) ∈ S}and for all u ∈ V , l(u) =

{

l1(u) if u ∈ V1

l2(u) if u ∈ V2.
• Let R : {1, . . . , k} → {1, . . . , k} and G = (V,E, l) be NLC-k. Then ρR(G) is in NLC-k,where ρR(G) = (V,E, l′) suh that l′(u) = R(l(u)) for all u ∈ V .A graph is NLC-k if there is a k-labelling of G suh that (G, l) is in NLC-k. A k-labelled graphis NLC-k ρ-free if it an be onstruted without the ρR operation.Modules and modular deomposition. A module in a graph is a non-empty subset X ⊆ Vsuh that for all u ∈ V \ X, then either N(u) ∩ X = ∅ or X ⊆ N(u). A module is trivial if

|X| ∈ {1, |V |}. A graph is prime (w.r.t. modular deomposition) if all its modules are trivial.Two sets X and X ′ overlap if X ∩X ′,X \X ′ and X ′ \X are non-empty. A module X is strongif there is no module X ′ suh that X and X ′ overlap. Let M′(G) be the set of modules, let
M(G) be the set of strong modules of G, and let P(G) = {M1, . . . ,Mk} be the maximal (w.r.t.inlusion) members ofM(G) \ {V }.Theorem 1. [11℄ Let G = (V,E) be a graph suh that |V | ≥ 2. Then:
• if G is not onneted, then P(G) is the set of onneted omponents of G,
• if G is not onneted, then P(G) is the set of onneted omponents of G,
• if G and G are onneted, then P(G) is a partition of V and is formed with the maximalmembers ofM′ \ {V }.In all ases, P(G) is a partition of V , and G an be deomposed into G[M1], . . . , G[Mk]. Theharateristi graph G∗ of a graph G is the graph of vertex set P(G) and two P,P ′ ∈ P(G)are adjaent if there is an edge between P and P ′ in G (and so there is no non-edges sine

P and P ′ are two modules). The reursive deomposition of a graph by this operation givesthe modular deomposition of the graph, and an be represented by a rooted tree, alled the2



modular deomposition tree. It an be omputed in linear time [15℄. The nodes of the modulardeomposition tree are exatly the strong modules, so in the following we make no distintionbetween the modular deomposition of G and M(G). Note that |M(G)| ≤ 2 × n − 1. For
M ∈M(G), let GM = G[M ] and G∗

M its harateristi graph.Lemma 2. [14℄ Let G be a graph. G is NLC-k if and only if every harateristi graph in themodular deomposition of G is NLC-k.Moreover, a NLC-k expression for G an be easily onstruted from the modular deompositionand from NLC-k expressions of prime graphs. On prime graphs, NLC-2 reognition is easier:Lemma 3. [14℄ Let G be a prime graph. Then G is NLC-2 if and only if there is a 2-labelling lsuh that (G, l) is NLC-2 ρ-free.Bi-partitive family. A bipartition of V is a pair {X,Y } suh that X ∩ Y = ∅, X ∪ Y = Vand X and Y are both non empty. Two bipartitions {X,Y } and {X ′, Y ′} overlap if X ∩ Y ,
X ∩ Y ′, X ′ ∩ Y and X ′ ∩ Y ′ are non empty. A family F of bipartitions of V is bipartitive if (1)for all v ∈ V , {{v}, V \ {v}} ∈ F and (2) for all {X,Y } and {X ′, Y ′} in F suh that {X,Y } and
{X ′, Y ′} overlap, then {X ∩X ′, Y ∪ Y ′}, {X ∩ Y ′, Y ∪X ′}, {Y ∩X ′,X ∪ Y ′}, {Y ∩ Y ′,X ∪X ′}and {X∆X ′,X∆Y ′} are in F (where X∆Y = (X \ Y ) ∪ (Y \X)). Bipartitive families are verylose to partitive families [1℄, whih generalise properties of modules in a graph.A member {X,Y } of a bipartitive family F is strong if there is no {X ′, Y ′} suh that {X,Y }and {X ′, Y ′} overlap. Let T be a tree. For an edge e in the tree, {C1

e , C2
e } denote the bipartitionof leaves of T suh that two leaves are in the same set if and only if the path between them avoids

e. Similarly, for an internal node α, {C1
α, . . . , C

d(α)
α } denote the partition of leaves of T suh thattwo leaves are in the same set if and only if the path between them avoid α.Theorem 4. [3℄ Let F be a bipartitive family on V . Then there is an unique unrooted tree T ,alled the representative tree of F , suh that the set of leaves of T is V , the internal nodes of Tare labelled degenerate or prime, and- for every edge e of T , {C1

e , C2
e} is a strong member of F , and there is no other strongmember in F ,- for every node α labelled degenerate, and for every ∅ ( I ( {1, . . . , d(α)},

{∪i∈IC
i
α, V \ ∪i∈IC

i
α} is in F , and there is no other member in F .Split deomposition. A split in a graph G = (V,E) is a bipartition {X,Y } of V suh thatthe set of verties in X having a neighbour in Y have the same neighbourhood in Y (i.e., for all

u, v ∈ X suh that N(u)∩ Y 6= ∅ and N(v)∩Y 6= ∅, then N(u)∩ Y = N(v)∩Y ). A o-split in agraph G is a split in G. The family of split in a onneted graph is a bipartitive family [4℄. Thesplit deomposition tree is the representative tree of the family of splits, and an be omputed inlinear time [5℄. Let α be an internal node of the split deomposition tree of a onneted graph
G. For all i ∈ {1, . . . , d(α)} let vi ∈ Ci

α suh that N(vi) \ Ci
α 6= ∅. Sine G is onneted, suh a

vi always exists. G[{v1, . . . , vd(α)}] denote the harateristi graph of α. The harateristi graphof a degenerate node is a omplete graph or a star [4℄.Bi-join deomposition. A bi-join in a graph is a bipartition {X,Y } suh that for all u, v ∈ X,
{N(u)∩Y, Y \N(u)} = {N(v)∩Y, Y \N(v)}. The family of bi-joins in a graph is bipartitive. Thebi-join deomposition tree is the representative tree of the family of bi-joins, and an be omputedin linear time [7, 8℄. Let α be an internal node of the bi-join deomposition tree of a graph G.For all i ∈ {1, . . . , d(α)} let vi ∈ Ci

α. G[{v1, . . . , vd(α)}] denote the harateristi graph of α. Theharateristi graph of a degenerate node is a omplete bipartite graph or a disjoint union oftwo omplete graphs [7, 8℄. 3



Figure 1: A module, a bi-join, a split and a o-split3 Reognition of NLC-2 graphs3.1 NLC-2 ρ-free anonial deompositionIn this setion, G = (V,E, l) is a 2-labelled graph suh that every mono-oloured module (i.e. amodule M suh that ∀v, v′ ∈M , l(v) = l(v′)) has size 1. A ouple (X,Y ) is a ut if X ∪ Y = V ,
X ∩ Y = ∅, X 6= ∅ and Y 6= ∅. Let S ⊆ {1, 2} × {1, 2}. A ut (X,Y ) is a S-ut of G if for all
u ∈ X and v ∈ Y , then {u, v} ∈ E if and only if (l(u), l(v)) ∈ S. For S ⊆ {1, 2} × {1, 2} let
FS(G) be the set of S-ut of G.De�nition 5 (Symmetry). We say that S ∈ {1, 2} × {1, 2} is symmetri if (1, 2) ∈ S ⇐⇒
(2, 1) ∈ S, otherwise we say that S is non-symmetri.De�nition 6 (Degenerate property). A family F of uts has the degenerate property if thereis a partition P of V suh that for all ∅ ( X ( P, (

⋃

X∈X X,
⋃

Y ∈P\X Y ) is in F , and there is noothers ut in F .Lemma 7. For every symmetri S ⊆ {1, 2} × {1, 2}, FS(G) has the degenerate property.Proof. The family F{}(G) has the degenerate property sine (X,Y ) is a {}-ut if and only ifthere is no edges between X and Y (P is exatly the onneted omponents). For W ⊆ V , let
G|W = (V,E∆W 2, l). For i ∈ {1, 2} let Vi = {v ∈ V : l(v) = i}. Let G1 = G|V1, G2 = G|V2 and
G12 = (G|V1)|V2.
• F{(1,1)}(G) = F{}(G1), F{(2,2)}(G) = F{}(G2), F{(1,1),(2,2)}(G) = F{}(G12),
• F{(1,1),(1,2),(2,1),(2,2)}(G) = F{}(G), F{(1,2),(2,1),(2,2)}(G) = F{}(G1),
F{(1,1),(1,2),(2,1)}(G) = F{}(G2), F{(1,2),(2,1)}(G) = F{}(G12).Thus for every symmetri S ⊆ {1, 2} × {1, 2}, FS(G) has the degenerate property.De�nition 8 (Linear property). A family F of uts has the linear property if for all (X,Y )and (X ′, Y ′) in F , either X ⊆ X ′ or X ′ ⊆ X.Lemma 9. For every non-symmetri S ⊆ {1, 2} × {1, 2}, FS(G) has the linear property.Proof. Case S = {(1, 2)}: suppose that X \ X ′ and X ′ \ X are both non-empty. Then if u ∈

X \X ′ is labelled 1 and v ∈ X ′ \X is labelled 2, u and v has to be adjaent and non-adjaent,ontradition. Thus X \X ′ and X ′ \X are mono-oloured. Now suppose w.l.o.g. that all vertiesin X∆X ′ are labelled 1. Then X∆X ′ is adjaent to all verties labelled 2 in Y ∩ Y ′ and nonadjaent to all verties labelled 1 in Y ∩ Y ′. Moreover X∆X ′ is non adjaent to all verties in
X ∩ X ′. Thus X∆X ′ is a mono-oloured module, and |X∆X ′| ≥ 2. Contradition. For othersnon-symmetri S, we bring bak to ase {(1, 2)} like in the proof of lemma 7.4



Input: A 2-labelled graph G = (V,E, l)Output: A NLC-2 ρ-free deomposition tree, or fail if G is not NLC-2 ρ-freeif |V | = 1 then return the leaf ·(l(v)) (where V = {v})1 Let S be the set of subsets of {1, 2} × {1, 2} and σ be the lexiographi order of S2 foreah S ∈ S w.r.t. σ do3 Compute PS(G), and P ′
S(G) if S is non-symmetri (see algorithm 2)4 if |PS(G)| > 1 then5 Create a new ×S node β6 foreah P ∈ PS(G) (w.r.t. P ′

S(G) if S is non-symmetri) do7 make NLC-2 ρ-free deomposition tree of G[P ] be a hild of β.8 return the tree rooted at β9 fail with Not NLC-2 ρ-free10 Algorithm 1: Computation of the NLC-2 ρ-free anonial deomposition treeFor S ⊆ {1, 2} × {1, 2}, let PS(G) denote the unique partition of V suh that (1) for all
(X,Y ) ∈ FS(G) and P ∈ PS(G), P ⊆ X or P ⊆ Y , and (2) for all P,P ′ ∈ P, P 6= P ′, there isa (X,Y ) ∈ FS(G) suh that P ⊆ X and P ′ ⊆ Y , or P ⊆ Y and P ′ ⊆ X. For a non-symmetri
S ∈ {1, 2} × {1, 2}, let P ′

S(G) = (P1, . . . , Pk) denote the unique ordering of elements in PS(G)suh that for all (X,Y ) ∈ FS(G), there is a l suh that X = ∪i∈{1,...,l}Pi.Lemma 10. If G is in NLC-2 ρ-free, then there is a S ⊆ {1, 2} × {1, 2} suh that FS(G) isnon-empty.Proof. If G is NLC-2 ρ-free, then there is a S ⊆ {1, 2} × {1, 2}, and two graphs G1 and G2 suhthat G = G1 ×S G2. Thus (V (G1), V (G2)) ∈ FS(G) and FS(G) is non empty.Lemma 11. Let G = (V,E, l) 2-labelled graph and let S ⊆ {1, 2} × {1, 2}. If G is NLC-2 ρ-freeand has no mono-oloured non-trivial module, then for all P ∈ PS(G), G[P ] has no mono-olourednon-trivial module.Proof. If M is a mono-oloured module of G[P ], then M is a mono-oloured module of G. Con-tradition.Lemma 12. Let G = (V,E, l) 2-labelled graph and let S ⊆ {1, 2} × {1, 2}. Then G is NLC-2
ρ-free if and only if for all P ∈ PS(G), G[P ] is NLC-2 ρ-free.Proof. The �only if� is immediate. Now suppose that for all P ∈ PS(G), G[P ] is NLC-2 ρ-free. If
S is symmetri, let PS(G) = {P1, . . . , P|PS(G)|}. Then G = ((G[P1]×SG[P2])×S . . .×SG[P|PS(G)|],and G is NLC-2 ρ-free. Otherwise, if S is non-symmetri, let P ′

S(G) = (P1, . . . , P|PS(G)|). Then
G = ((G[P1]×S G[P2])×S . . . ×S G[P|PS (G)|], and G is NLC-2 ρ-free.The NLC-2 ρ-free deomposition tree of a 2-labelled graph G is a rooted tree suh that theleaves are the verties of G, and the internal nodes are labelled by ×S , with S ⊆ {1, 2} × {1, 2}.An internal node is degenerated if S is symmetri, and linear if S is non-symmetri. Bylemmas 10, 11 and 12, G is NLC-2 ρ-free if and only if it has a NLC-2 ρ-free deomposition tree.This deomposition tree is not unique. But we an de�ne a anonial deomposition tree if we �xa total order on the subsets of {1, 2}×{1, 2} (for example, the lexiographi order). If two graphsare isomorphi, then they have the same anonial deomposition tree. Algorithm 1 omputesthe anonial deomposition tree of a 2-labelled prime graph, or fails if G is not NLC-2 ρ-free.Algorithm 2 omputes PS and P ′

S for a 2-labelled prime graph G and S ⊆ {1, 2} × {1, 2} inlinear time. We need some additional de�nitions for this algorithm and its proof of orretness. A5



Input: A 2-labelled graph G, and S ⊆ {1, 2} × {1, 2}Output: PS if S is symmetri, P ′
S if S is non-symmetri

Vi ← {v : v ∈ V and l(v) = i} ;1 if (1, 1) ∈ S then C1 ← o-onneted omponents of G[V1];2 else C1 ← onneted omponents of G[V1];3 if (2, 2) ∈ S then C2 ← o-onneted omponents of G[V2];4 else C2 ← onneted omponents of G[V2];5
B = (C1, C2, Ej , Em) ← the bipartite trigraph between the elements of C1 and C2 ;6 if S ∩ {(1, 2), (2, 1)} = ∅ then7 return onneted omponents of (C1, C2, Ej ∪ Em)8 else if S ∩ {(1, 2), (2, 1)} = {(1, 2), (2, 1)} then9 return onneted omponents of the bi-omplement of (C1, C2, Ej)10 else Searh all semi-joins of B (see appendix) ;11 Algorithm 2: Computation of PS and P ′

Sbipartite graph is a triplet (X,Y,E) suh that E ⊆ X×Y . The bi-omplement of a bipartite graph
(X,Y,E) is the bipartite graph (X,Y, (X×Y )\E). A bipartite trigraph (BT) is a bipartite graphwith two types of edges: the join edges and the mixed edges. It is denoted by B = (X,Y,Ej , Em)where Ej are the set of join edges, and Em the set of mixed edges. A BT-module in a BTis a M ⊆ X or M ⊆ Y suh that M is a module in (X,Y,Ej) and there is no mixed edgesbetween M and (X ∪ Y ) \M . For v ∈ X ∪ Y , let Nj(v) = {u ∈ X ∪ Y : {u, v} ∈ Ej} and
Nm(v) = {u ∈ X ∪ Y : {u, v} ∈ Em}. Let dj(v) = |Nj(v)| and dm(v) = |Nm(v)|. A semi-joinin a BT (X,Y,Ej , Em) is a ut (A,B) of X ∪ Y , suh that there is no edges between A ∩ Y and
B ∩X, and there is only join edges between A ∩X and B ∩ Y .In algorithm 2, B is obtained from the graph G. Verties of X orrespond to subsets of vertieslabelled 1 in G, and verties of Y orrespond to subsets of verties labelled 2. There is a joinedge between M and M ′ in B if M 1© M ′ in G, and there is a mixed edge between M ∈ X and
M ′ ∈ Y in B if there is at least an edge and a non-edge between M and M ′ in G. Suh a graph
B an easily be built in linear time from a given graph G. It su�es to onsider a list and anarray bounded by the number of omponent in G with the same olour. The following lemmasare lose to observations in [9℄, but deal with BT instead of bipartite graphs (proofs are given inappendix).Lemma 13. Let G = (X,Y,Ej , Em) be a BT suh that every BT-module has size 1. Let
(x1, . . . , x|X|) be X sorted by (dj(x), dm(x)) in lexiographi dereasing order. If (A,B) is asemi-join of G, then there is a k ∈ {0, . . . , |X|} suh that A ∩X = {x1, . . . , xk}.Lemma 14. Let k ∈ {0, . . . , |X|} and k′ ∈ {0, . . . , |Y |}. Then (A, (X ∪ Y ) \ A), where A =

{x1, . . . , xk, y1, . . . , yk′}, is a semi-join of G if and only if∑k
i=1 dj(xi)−

∑k′

i=1 dj(yi) = k×(|Y |−k′)and ∑k
i=1 dm(xi)−

∑k′

i=1 dm(yi) = 0.Theorem 15. Algorithm 2 is orret and runs in linear time.Proof. Corretness: Suppose that (A,B) is a S-ut. If (1, 1) 6∈ S, then there is no edge between
A∩V1 and B∩V1, thus (A,B) annot ut a omponent C1 (and similarly for (1, 1) ∈ S, and for C2).Now we work on the BT B = (C1, C2, Ej , Em). If S ∩ {(1, 2), (2, 1)} = ∅, then S-uts orrespondexatly to onneted omponents of B, and if S ∩ {(1, 2), (2, 1)} = {(1, 2), (2, 1)} then S-utsorrespond exatly to onneted omponents of the BT of G, whih is (C1, C2, (C1 × C2) \ (Ej ∪
Em), Em). Finally, if S is non-symmetri, S-uts orrespond to semi-joins of B (see appendix).6



Complexity: It is well admitted that we an perform a BFS on a graph or its omplementin linear time [13, 6℄. The instrutions on lines [2-5,8℄ an be done with a BFS on a graph or itsomplement. It is easy to see that we an do a BFS on the bi-omplement in linear time (like aBFS on a omplement graph, with two vertex lists for X and Y ), so instrution line 10 an bedone in linear time. Finally, the operations at line 11 are done in linear time (see appendix).These results an be summarized as:Theorem 16. Algorithm 1 omputes the anonial NLC-2 ρ-free deomposition tree of a 2-labelledgraph in O(nm) time.3.2 NLC-2 deomposition of a prime graphIn this setion, G is an unlabelled prime (w.r.t. modular deomposition) graph, with |V | ≥ 3.De�nition 17 (2-bimodule). A bipartition {X,Y } of V is a 2-bimodule if X an be partitionedinto X1 and X2, and Y into Y1 and Y2 suh that for all (i, j) ∈ {1, 2}×{1, 2}, then either Xi 0© Yjor Xi 1© Yj. It is easy to see that if {X,Y } is a 2-bimodule if and only if {X,Y } is a split, ao-split or a bi-join. Moreover, if min(|X|, |Y |) > 1 then {X,Y } annot be both of them in thesame time (sine G is prime).Let l : V → {1, 2} be a 2-labelling. Then s(l) denote the 2-labelling on V suh that for all
v ∈ V , s(l)(v) = 1 if and only if l(v) = 2.De�nition 18 (Labelling indued by a 2-bimodule). Let {X,Y } be a 2-bimodule. Wede�ne the labelling l : V → {1, 2} of G indued by {X,Y }. If |X| = |Y | = 1, then l(x) = 1 and
l(y) = 2, where X = {x} and Y = {y}. If |X| = 1, then l(v) = 1 i� v ∈ N [x]. Similarly if
|Y | = 1, then l(v) = 1 i� v ∈ N [y]. Now we suppose min(|X|, |Y |) > 1. If {X,Y } is a split, thenthe set of verties in X with a neighbour Y and the set of verties in Y with a neighbour in Xis labelled 1, others verties are labelled 2. If {X,Y } is a o-split, then a labelling of G induedby {X,Y } is a labelling of G indued by the split {X,Y }. Finally if {X,Y } is a bi-join, l is suhthat {v ∈ X : l(v) = 1} is a join with {v ∈ Y : l(v) = 1} and {v ∈ X : l(v) = 2} is a join with
{v ∈ Y : l(v) = 2}. Note that if {X,Y } is a bi-join, then there is two possibles labelling l1 and l2,with l1 = s(l2). If {X,Y } is a 2-bimodule of G and l a labelling indued by {X,Y }, then everymono-oloured module has size 1 (sine G is prime and |V | ≥ 3).De�nition 19 (Good 2-bimodule). A 2-bimodule {X,Y } is good if the graph G with thelabelling indued by {X,Y } is NLC-2 ρ-free. The following proposition omes immediately fromlemma 3.Proposition 20. G is NLC-2 if and only if G has a good 2-bimodule.Lemma 21. If G has a good 2-bimodule {X,Y } whih is a split, then G has a good 2-bimodulewhih is a strong split.Proof. There is a node α in the split deomposition tree and ∅ ( I ( {1, . . . , d(α)} suh that
{X,Y } = {∪i∈IC

i
α,∪i6∈IC

i
α}. Let l : V → {1, 2} be the labelling of G indued by {X,Y }. For all

i ∈ {1, . . . , d(α)}, (G[Ci
α], l|Ci

α
) is NLC-2 ρ-free (where l|W is the funtion l restrited at W ).Let l′ be the 2-labelling of V suh that for all i, and v ∈ Ci

α, l(v) = 1 if and only if v hasa neighbour outside of Ci
α. For all i, either l|Ci

α
= l′|Ci

α
, or ∀v ∈ Ci

α, l(v) = 2. Then for all i,
(G[Ci

α], l′|Ci
α
) is NLC-2 ρ-free, and thus (G, l′) is NLC-2 ρ-free. Sine there is a dominating vertexin the harateristi graph of α, there is a j suh that the labelling indued by the strong split

{Cj
α, V \ C

j
α} is l′. Thus the strong split {Cj

α, V \ C
j
α} is good.7



Input: A graph GResult: Yes i� G is NLC-2
S ← the set of strong splits, o-splits and bi-joins of G ;foreah {X,Y } ∈ S do

l ← the labelling of G indued by {X,Y } ;if (G[X], G[Y ], l) is NLC-2 ρ-free then return Yes ;return No ; Algorithm 3: Reognition of prime NLC-2 graphsPrevious lemma on G say that if G has a good 2-bimodule {X,Y } whih is a o-split, then Ghas a good 2-bimodule whih is a strong o-split. The following lemma is similar to Lemma 21.Lemma 22. If G has a good 2-bimodule {X,Y } whih is a bi-join, then G has a good 2-bimodulewhih is a strong bi-join.Theorem 23. Algorithm 3 reognises prime NLC-2 graphs, and its time omplexity is O(n2m).Proof. Trivially if the algorithm return Yes, then G is NLC-2. On the other hand, by proposi-tion 20, and lemmas 21 and 22, if G is NLC-2, then it has a good strong 2-bimodule and thealgorithm returns Yes.The set S an be omputed using algorithms for omputing split deomposition on G and G,and bi-join deomposition on G. Note that it is not required to use a linear time algorithm forsplit deomposition [5℄: some simpler algorithms run in O(n2m) [4, 10℄. [7, 8℄ show that bi-joindeomposition an be omputed in linear time, using a redution to modular deomposition. Butthere also, modular deomposition algorithms simpler than [15℄ may be used. The set S has O(n)elements. Testing if a 2-bimodule is good takes O(nm) using algorithm 1. So total running timeis O(n2m).3.3 NLC-2 deompositionUsing lemma 2, modular deomposition and algorithm 3, we get:Theorem 24. NLC-2 graphs an be reognised in O(n2m), and a NLC-2 expression an be gen-erated in the same time.4 Graph isomorphism on NLC-2 graphs4.1 Graph Isomorphism on NLC-2 ρ-free prime graphsThe following propositions are diret onsequenes of properties (linear and degenerate) of S-uts.Proposition 25. Consider a symmetri S ∈ {1, 2}×{1, 2}. Two graphs G and H are isomorphiif and only if there is a bijetion π between PS(G) and PS(H) suh that for all P ∈ PS(G), G[P ]is isomorphi to H[π(P )].Proposition 26. Let a non-symmetri S ∈ {1, 2} × {1, 2} and let G and H be two graphs. Let
P ′

S(G) = (P1, . . . , Pk) and P ′
S(H) = (P ′

1, . . . , P
′
k′) then G and H are isomorphi if and only if

k = k′ and for all i ∈ {1, . . . , k}, G[Pi] is isomorphi to H[P ′
i ].By the previous 2 propositions, two NLC-2 ρ-free 2-labelled graphs G and H are isomorphiif and only if there is an isomorphism between their anonial NLC-2 ρ-free deomposition treewhih respets the order of hildren of linear nodes. This isomorphism an be tested in lineartime, thus isomorphism of NLC-2 ρ-free graphs an be done in O(nm) time.8



Input: Two prime NLC-2 graphs G and HResult: Yes if G ≃ H, No otherwise
S ← the set of strong splits, o-splits and bi-joins of G ;
S ′ ← the set of strong splits, o-splits and bi-joins of H ;if there is no good 2-bimodule in S then fail with �G is not NLC-2�;
{X,Y } ← a good 2-bimodule in S ;
l ← the labelling of G indued by {X,Y } ;foreah {X ′, Y ′} ∈ S ′ suh that {X ′, Y ′} is good do

l′ ← the labelling of H indued by {X ′, Y ′} ;if |X| > 1 and |Y | > 1 and {X,Y } is a bi-join thenif (G, l) ≃ (H, l′) or (G, l) ≃ (H, s(l′)) then return Yes ;else if (G, l) ≃ (H, l′) then return Yes ;return No ; Algorithm 4: Isomorphism for prime NLC-2 graphs4.2 Graph isomorphism on prime NLC-2 graphsTheorem 27. Algorithm 4 test isomorphism between two prime NLC-2 graphs in time O(n2m).Proof. If the algorithm returns �yes�, then trivially G ≃ H. On the other hand suppose that
G ≃ H and let π : V (G)→ V (H) be a bijetion suh that {u, v} ∈ E(G) i� (π(u), π(v)) ∈ E(H).Then {X ′, Y ′} with X ′ = π(X) and Y ′ = π(Y ) is a good 2-bimodule if H. If min(|X|, |Y |) > 1and {X ′, Y ′} is a bi-join, then by de�nition there is two labelling indued by {X,Y }, and (G, l) ≃
(H, l′) or (G, l) ≃ (H, s(l′)). Otherwise the labelling is unique and (G, l) ≃ (H, l′).The sets S and S ′ an be omputed in O(n2) time using linear time algorithms for omputingsplit deomposition on G and G, and bi-join deomposition on G. The sets S and S ′ have O(n)elements. Test if a 2-bimodule is good take O(nm) using algorithm 1, and test if two 2-labelledprime graphs are isomorphi take also O(nm). Thus the total running time is O(n2m).4.3 Graph isomorphism on NLC-2 graphsIt is easy to show that graph isomorphism on prime NLC-2 graphs with an additional labels into
{1, . . . , q} an be done in O(n2m) time. For that, we add the additional label of v at the leaforresponding to v in the NLC-2 ρ-free deomposition tree.We show that we an do graph isomorphism on NLC-2 graphs in time O(n2m), using themodular deomposition and algorithm 4. Let M(G) and M(H) be the modular deompositionof G and H. For M ∈ M(G), let GM be G[M ], and for M ∈ M(H), let HM be H[M ].Let G∗

M be the harateristi graph of GM (note that |V (G∗
M )| is the number of hildren of

M in the modular deomposition tree). Let M(i,∗) = {M ∈ M(G) ∪ M(H) : |M | = i}, let
M(∗,j) = {M ∈ M(G) ∪ M(H) : |V (G∗

M )| = j} and let M(i,j) = M(i,∗) ∩ M(∗,j). Notethat ∑n
j=1(M(∗,j) × j) is the number of verties in G plus the number of edges in the modulardeomposition tree, and thus is at most 3n − 2.Theorem 28. Algorithm 5 tests isomorphism between two NLC-2 graphs in time O(n2m).Proof. The orretness omes from the fat that at eah step, for all M,M ′ ∈ M(G) ∪M(H)suh that l(M) and l(M ′) are set, GM and GM ′ are isomorphi if and only if l(M) = l(M ′). The
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Input: Two NLC-2 graphs G and HResult: Yes if G ≃ H, No otherwisefor every M ∈M(G) ∪M(H) suh that |M | = 1 do l(M)← 1 ;for i from 2 to n dofor j from 2 to i doCompute the partition P ofM(i,j) suh that M and M ′ are in the same lass of Pif and only if (G∗
M , l) ≃ (G∗

M ′ , l). ;foreah P ∈ P do
a ← a new label (an integer not in Img(l)) ;For all M ∈ P , l(M)← a ;Algorithm 5: Isomorphism on NLC-2 graphstotal time f(n,m) of this algorithm is O(n2m) sine (�big Oh� is omitted):

f(n,m) ≤
∑

i

∑

j

(

j2m|M(i,j)|
2
)

≤ m
∑

j

(

j2
∑

i

(

|M(i,j)|
2
)

)

≤ m
∑

j

(

j2|M(∗,j)|
2
)

≤ m
∑

j

(

(

j|M(∗,j)|
)2
)

≤ n2m.Referenes[1℄ M. Chein, M. Habib, and M.C. Maurer. Partitive hypergraphs. Disrete Math., 37(1):35�50, 1981.[2℄ B. Courelle, J. Engelfriet, and G. Rozenberg. Handle-rewriting hypergraph grammars. J. Comput.Syst. Si., 46(2):218�270, 1993.[3℄ W. H. Cunnigham and J. Edmonds. A ombinatorial deomposition theory. Canad. J. Math., 32:734�765, 1980.[4℄ William H. Cunningham. Deomposition of direted graphs. SIAM J. Algebrai Disrete Methods,3(2):214�228, 1982.[5℄ E. Dahlhaus. Parallel algorithms for hierarhial lustering and appliations to split deompositionand parity graph reognition. J. Algorithms, 36(2):205�240, 2000.[6℄ E. Dahlhaus, J. Gustedt, and R. M. MConnell. Partially omplemented representations of digraphs.Disrete Math. Theor. Comput. Si., 5(1):147�168, 2002.[7℄ F. de Montgol�er and M. Rao. The bi-join deomposition. In ICGT, volume 22 of ENDM, pages173�177, 2005.[8℄ F. de Montgol�er and M. Rao. Bipartitives families and the bi-join deomposition. Tehnial report,https://hal.arhives-ouvertes.fr/hal-00132862, 2005.[9℄ J.-L. Fouquet, V. Giakoumakis, and J.-M. Vanherpe. Bipartite graphs totally deomposable byanonial deomposition. Internat. J. Found. Comput. Si., 10(4):513�533, 1999.[10℄ C. P. Gabor, K. J. Supowit, and W.-L. Hsu. Reognizing irle graphs in polynomial time. J. ACM,36(3):435�473, 1989.[11℄ T. Gallai. Transitiv orientierbare Graphen. Ata Math. Aad. Si. Hungar., 18:25�66, 1967.[12℄ F. Gurski and E. Wanke. Minimizing NLC-width is NP-Complete. In WG, volume 3787 of LNCS,pages 69�80, 2005.[13℄ M. Habib, C. Paul, and L. Viennot. Partition re�nement tehniques: An interesting algorithmi toolkit. Internat. J. Found. Comput. Si., 10(2):147�170, 1999.[14℄ Ö. Johansson. NLC2-deomposition in polynomial time. Internat. J. Found. Comput. Si., 11(3):373�395, 2000.[15℄ R. M. MConnell and J. P. Spinrad. Modular deomposition and transitive orientation. DisreteMath., 201(1-3):189�241, 1999.[16℄ E. Wanke. k-NLC Graphs and Polynomial Algorithms. Disrete Appl. Math., 54(2-3):251�266, 1994.10



AppendixA.1 Proof of lemma 13Let G = (X,Y,Ej , Em) be a BT suh that every BT-module has size 1. Let (x1, . . . , x|X|)be X sorted by (dj(x), dm(x)) in lexiographi dereasing order. If (A,B) is a semi-join of G, then there is a k ∈ {0, . . . , |X|} suh that A ∩X = {x1, . . . , xk}.Proof. For all v ∈ A ∩X, dj(v) ≥ |B ∩ Y |, and for all v ∈ B ∩X, dj(v) ≤ |B ∩ Y |. Moreover,if there is a v ∈ B ∩ X with dj(v) = |B ∩ Y |, then dm(v) = 0. Let C = {v ∈ X : dj(v) =
|B ∩ Y | and dm(v) = 0}. Then C is a BT-module of G, and thus |C| ≤ 1. Every vertex in
A∩X \C are before every vertex in B∩X \C in the ordering. Moreover, if |C| > 0, then vertiesin A ∩X \ C are before the vertex in C, and verties in B ∩X \ C are after the vertex in C inthe ordering.A.2 Proof of lemma 14Let k ∈ {0, . . . , |X|} and k′ ∈ {0, . . . , |Y |}. Then (A, (X ∪ Y ) \ A), where A =

{x1, . . . , xk, y1, . . . , yk′}, is a semi-join of G if and only if∑k
i=1 dj(xi)−

∑k′

i=1 dj(yi) =

k × (|Y | − k′) and ∑k
i=1 dm(xi)−

∑k′

i=1 dm(yi) = 0.Proof. The �If� part is by de�nition. Now let us onsider the �Only if� part. Let us assume thatthe degree ondition holds. We will denote a the number of join edges between A∩X and B∩Y ,
b the number of join edges between A∩X and A∩ Y , and c the number of mixed edges between
A ∩ X and A ∩ Y . Note that a ≤ k(|Y | − k′), a + b =

∑k
i=1 dj(xi) and b ≤

∑k′

i=1 dj(yi), thus
a ≥ k(|Y | − k′). So we have a = k(|Y | − k′), and ∑k′

i=1 dj(yi) − b = 0. In other words, there isonly join edges between A∩X and B ∩ Y , and there is no join edges between A∩ Y and B ∩X.Now sine there is only join edges between A ∩X and B ∩ Y , c =
∑k

i=1 dm(xi) =
∑k′

i=1 dm(yi),thus there is no mixed edges between A ∩ Y and B ∩X.A.3 Algorithm to ompute P ′
S when S is non-symmetriProof. Corretness: Algorithm 6 generates all the semi-joins of B. At any time, sj =

∑k
i=1 dj(xi),

sm =
∑k

i=1 dm(xi), s′j =
∑k′

i=1 dj(yi) and s′m =
∑k′

i=1 dm(yi). In B, every BT-module has size 1,otherwise there is a mono-oloured module in G of size at least 2. If (A,B) is a semi-join, then bylemma 13 on (C1, C2, Ej , Em) and (C2, C1, Ej , Em), there is a a and b suh that A∩C1 = {x1, . . . , xa}and A ∩ C2 = {y1, . . . , yb}. At any time, (A′, (C1 ∪ C2) \ A′) with A′ = {x1, . . . , xl, y1, . . . , yl′} isthe last semi-join found. At k = a, the while line 12 will stop when sj − s′j = k × (|C2| − k′)sine for every v ∈ A ∩ C2, dj(v) ≤ k, and s′j + k × (|C2| − k′) derease with k′. Moreover, whenthe while loop stops, sm = s′m sine s′m inrease with k′. Thus if b 6= k′, then {yk′+1, . . . yb} is aBT-module and b = k′ + 1 (sine every BT-module has size 1). In all ases the algorithm �nds
(A,B), and adds the partition in P ′.Complexity: As we see in proof of theorem 15, every instrution lines [2-5℄ an be done inlinear time, and learly every instrution lines [6-22℄ an be done in linear time, thus the totalrunning time is O(n + m).
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Input: A 2-labelled graph G, and a non-symmetri S ⊆ {1, 2} × {1, 2}Output: P ′
S

Vi ← {v : v ∈ V and l(v) = i} ;1 if (1, 1) ∈ S then C1 ← o-onneted omponents of G[V1];2 else C1 ← onneted omponents of G[V1];3 if (2, 2) ∈ S then C2 ← o-onneted omponents of G[V2];4 else C2 ← onneted omponents of G[V2];5
B = (C1, C2, Ej , Em) ← the bipartite trigraph between the elements of C1 and C2 ;6
(x1, . . . , x|C1|) ← C1 sorted by lexiographi order on (−dj(v),−dm(v)) ;7
(y1, . . . , y|C2|) ← C2 sorted by lexiographi order on (dj(v), dm(v)) ;8
P ′ ← () ; l← 0; l′ ← 0; k′ ← 0 ; k ← 0 ;9
sj ← 0 ; sm ← 0 ; s′j ← 0 ; s′m ← 0 ;10 while k ≤ |C1| do11 while sj − s′j < k × (|C2| − k′) or ( sj − s′j = k × (|C2| − k′) and sm > s′m) do12

k′ ← k′ + 1 ; s′j ← s′j + dj(yk′) ; s′m ← s′m + dm(yk′) ;13 if sj − s′j = k × (|C2| − k′) and sm = s′m then14 add {xl+1, . . . , xk} ∪ {yl′+1 . . . , yk′} at the end of P ′ ; l← k ; l′ ← k′ ;15 if sj − s′j − dj(yk+1) = k × (|C2| − k′ − 1) and sm = s′m + dm(yk+1) then16
k′ ← k′ + 1 ; s′j ← s′j + dj(yk′) ; s′m ← s′m + dm(yk′) ;17 add {yk′} at the end of P ′ ; l′ ← k′ ;18

k ← k + 1 ; sj ← sj + dj(xk) ; sm ← sm + dm(xk) ;19 remove ∅ form P ′, if any ;20 if (2, 1) ∈ S then reverse P ′;21 return P ′22 Algorithm 6: Computation of P ′
S when S is non-symmetri
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