
HAL Id: hal-00134605
https://hal.science/hal-00134605

Submitted on 2 Mar 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

NLC-2 graph recognition and isomorphism
Vincent Limouzy, Fabien de Montgolfier, Michaël Rao

To cite this version:
Vincent Limouzy, Fabien de Montgolfier, Michaël Rao. NLC-2 graph recognition and isomorphism.
Graph-Theoretic Concepts in Computer Science 33rd International Workshop, WG 2007, Dornburg,
Germany, June 21-23, 2007., Jun 2007, Dornburg, Germany. pp.86-98, �10.1007/978-3-540-74839-7_9�.
�hal-00134605�

https://hal.science/hal-00134605
https://hal.archives-ouvertes.fr

ha
l-

00
13

46
05

, v
er

si
on

 1
 -

 2
 M

ar
 2

00
7

NLC-2 graph reognition and isomorphismVinent Limouzy1 Fabien de Montgol�er1 Mihaël Rao1AbstratNLC-width is a variant of lique-width with many appliation in graph algorithmi. Thispaper is devoted to graphs of NLC-width two. After giving new strutural properties of thelass, we propose a O(n2m)-time algorithm, improving Johansson's algorithm [14℄. Moreover,our alogrithm is simple to understand. The above properties and algorithm allow us to proposea robust O(n2m)-time isomorphism algorithm for NLC-2 graphs. As far as we know, it is the�rst polynomial-time algorithm.1 IntrodutionNLC-width is a graph parameter introdued by Wanke [16℄. This notion is tightly related tolique-width introdued by Courelle et al. [2℄. Both parameters were introdued to generalisethe well known tree-width. The motivation on researh about suh width parameter is that,when the width (NLC-, lique- or tree-width) is bounded by a onstant, then many NP-ompleteproblems an be solved in polynomial (even linear) time, if the deomposition is provided.Suh parameters give insights on graph strutural properties. Unfortunately, �nding theminimum NLC-width of the graph was shown to be NP-hard by Gurski et al. [12℄. Some resultshowever are known. Let NLC-k be the lass of graph of NLC width bounded by k. NLC-1 isexatly the lass of ographs. Probe-ographs, bi-ographs and weak-bisplit graphs [9℄ belongto NLC-2. Johansson [14℄ proved that reognising NLC-2 graphs is polynomial and provided an
O(n4 log(n)) reognition algorithm. Complexity for reognition of NLC-k, k ≥ 3, is still unknown.In this paper we improve Johansson's result down to O(n2m). Our approah relies on graphdeompositions. We establish the tight links that exist between NLC-2 graphs and the so-alledmodular deomposition, split deomposition, and bi-join deomposition.NLC-2 an be de�ned as a graph olouring problem. Unlike NLC-k lasses, for k ≥ 3,reolouring is useless for prime NLC-2 graphs. That allow us to propose a anonial deompositionof bi-oloured NLC-2 graphs, de�ned as ertain bi-oloured split operations. This deompositionan be omputed in O(nm) time if the olouring is provided. If a graph is prime, there usingsplit and bi-join deompositions, we show that there is at most O(n) olourings to hek. Finally,modular deomposition properties allow to redue NLC-2 graph deomposition to prime NLC-2graph deomposition. Setion 3 explains this O(n2m)-time deomposition algorithm.In Setion 4 is proposed an isomorphism algorithm. Using modular, split and bi-join deom-positions and the anonial NLC-2 deomposition, isomorphism between two NLC-2 graphs anbe tested in O(n2m) time.2 PreliminariesA graph G = (V,E) is pair of a set of verties V and a set of edges E. For a graph G, V (G) denoteits set of verties, E(G) its set of edges, n(G) = |V (G)| and m(G) = |E(G)| (or V , E, n and m if1LIAFA, Université Paris 7. {limouzy,fm,rao}�liafa.jussieu.fr. Researh supported by the Frenh ANRprojet �Graph Deompositions and Algorithms (GRAAL)�1

the graph is lear in the ontext). N(x) = {y ∈ V : {x, y} ∈ E} denotes the neighbourhood of thevertex x, and N [x] = N(v)∪{v}. For W ⊆ V , G[W] = (W,E ∩W 2) denote the graph indued by
W . Let A and B be two disjoint subsets of V . Then we note A 1© B if for all (a, b) ∈ A×B, then
{a, b} ∈ E, and we note A 0© B if for all (a, b) ∈ A×B, then {a, b} 6∈ E. Two graphs G = (V,E)and G′ = (V ′, E′) are isomorphi (noted G ≃ G′) if there is a bijetion ϕ : V → V ′ suh that
{x, y} ∈ E ⇔ {ϕ(x), ϕ(y)} ∈ E′, for all u, v ∈ V .A k-labelling (or labelling) is a funtion l : V → {1, . . . , k}. A k-labelled graph is a pairof a graph G = (V,E) and a k-labelling l on V . It is denoted by (G, l) or by (V,E, l). Twolabelled graphs (V,E, l) and (V ′, E′, l′) are isomorphi if there is a bijetion ϕ : V → V ′ suhthat {u, v} ∈ E ⇔ {ϕ(x), ϕ(y)} ∈ E′ and l(u) = l′(ϕ(u)) for all u, v ∈ V .NLC-k lasses. Let k be a positive integer. The lass of NLC-k graphs is de�ned reursivelyby the following operations.
• For all i ∈ {1, . . . , k}, ·(i) is in NLC-k, where ·(i) is the graph with one vertex labelled i.
• Let G1 = (V1, E1, l1) and G2 = (V2, E2, l2) be NLC-k and let S ⊆ {1, . . . , k}2. Then

G1 ×S G2 is in NLC-k, where G1 ×S G2 = (V,E, l) with V = V1 ∪ V2,
E = E1 ∪ E2 ∪ {{u, v} : u ∈ V1, v ∈ V2, (l1(u), l2(v)) ∈ S}and for all u ∈ V , l(u) =

{

l1(u) if u ∈ V1

l2(u) if u ∈ V2.
• Let R : {1, . . . , k} → {1, . . . , k} and G = (V,E, l) be NLC-k. Then ρR(G) is in NLC-k,where ρR(G) = (V,E, l′) suh that l′(u) = R(l(u)) for all u ∈ V .A graph is NLC-k if there is a k-labelling of G suh that (G, l) is in NLC-k. A k-labelled graphis NLC-k ρ-free if it an be onstruted without the ρR operation.Modules and modular deomposition. A module in a graph is a non-empty subset X ⊆ Vsuh that for all u ∈ V \ X, then either N(u) ∩ X = ∅ or X ⊆ N(u). A module is trivial if

|X| ∈ {1, |V |}. A graph is prime (w.r.t. modular deomposition) if all its modules are trivial.Two sets X and X ′ overlap if X ∩X ′,X \X ′ and X ′ \X are non-empty. A module X is strongif there is no module X ′ suh that X and X ′ overlap. Let M′(G) be the set of modules, let
M(G) be the set of strong modules of G, and let P(G) = {M1, . . . ,Mk} be the maximal (w.r.t.inlusion) members ofM(G) \ {V }.Theorem 1. [11℄ Let G = (V,E) be a graph suh that |V | ≥ 2. Then:
• if G is not onneted, then P(G) is the set of onneted omponents of G,
• if G is not onneted, then P(G) is the set of onneted omponents of G,
• if G and G are onneted, then P(G) is a partition of V and is formed with the maximalmembers ofM′ \ {V }.In all ases, P(G) is a partition of V , and G an be deomposed into G[M1], . . . , G[Mk]. Theharateristi graph G∗ of a graph G is the graph of vertex set P(G) and two P,P ′ ∈ P(G)are adjaent if there is an edge between P and P ′ in G (and so there is no non-edges sine

P and P ′ are two modules). The reursive deomposition of a graph by this operation givesthe modular deomposition of the graph, and an be represented by a rooted tree, alled the2

modular deomposition tree. It an be omputed in linear time [15℄. The nodes of the modulardeomposition tree are exatly the strong modules, so in the following we make no distintionbetween the modular deomposition of G and M(G). Note that |M(G)| ≤ 2 × n − 1. For
M ∈M(G), let GM = G[M] and G∗

M its harateristi graph.Lemma 2. [14℄ Let G be a graph. G is NLC-k if and only if every harateristi graph in themodular deomposition of G is NLC-k.Moreover, a NLC-k expression for G an be easily onstruted from the modular deompositionand from NLC-k expressions of prime graphs. On prime graphs, NLC-2 reognition is easier:Lemma 3. [14℄ Let G be a prime graph. Then G is NLC-2 if and only if there is a 2-labelling lsuh that (G, l) is NLC-2 ρ-free.Bi-partitive family. A bipartition of V is a pair {X,Y } suh that X ∩ Y = ∅, X ∪ Y = Vand X and Y are both non empty. Two bipartitions {X,Y } and {X ′, Y ′} overlap if X ∩ Y ,
X ∩ Y ′, X ′ ∩ Y and X ′ ∩ Y ′ are non empty. A family F of bipartitions of V is bipartitive if (1)for all v ∈ V , {{v}, V \ {v}} ∈ F and (2) for all {X,Y } and {X ′, Y ′} in F suh that {X,Y } and
{X ′, Y ′} overlap, then {X ∩X ′, Y ∪ Y ′}, {X ∩ Y ′, Y ∪X ′}, {Y ∩X ′,X ∪ Y ′}, {Y ∩ Y ′,X ∪X ′}and {X∆X ′,X∆Y ′} are in F (where X∆Y = (X \ Y) ∪ (Y \X)). Bipartitive families are verylose to partitive families [1℄, whih generalise properties of modules in a graph.A member {X,Y } of a bipartitive family F is strong if there is no {X ′, Y ′} suh that {X,Y }and {X ′, Y ′} overlap. Let T be a tree. For an edge e in the tree, {C1

e , C2
e } denote the bipartitionof leaves of T suh that two leaves are in the same set if and only if the path between them avoids

e. Similarly, for an internal node α, {C1
α, . . . , C

d(α)
α } denote the partition of leaves of T suh thattwo leaves are in the same set if and only if the path between them avoid α.Theorem 4. [3℄ Let F be a bipartitive family on V . Then there is an unique unrooted tree T ,alled the representative tree of F , suh that the set of leaves of T is V , the internal nodes of Tare labelled degenerate or prime, and- for every edge e of T , {C1

e , C2
e} is a strong member of F , and there is no other strongmember in F ,- for every node α labelled degenerate, and for every ∅ (I ({1, . . . , d(α)},

{∪i∈IC
i
α, V \ ∪i∈IC

i
α} is in F , and there is no other member in F .Split deomposition. A split in a graph G = (V,E) is a bipartition {X,Y } of V suh thatthe set of verties in X having a neighbour in Y have the same neighbourhood in Y (i.e., for all

u, v ∈ X suh that N(u)∩ Y 6= ∅ and N(v)∩Y 6= ∅, then N(u)∩ Y = N(v)∩Y). A o-split in agraph G is a split in G. The family of split in a onneted graph is a bipartitive family [4℄. Thesplit deomposition tree is the representative tree of the family of splits, and an be omputed inlinear time [5℄. Let α be an internal node of the split deomposition tree of a onneted graph
G. For all i ∈ {1, . . . , d(α)} let vi ∈ Ci

α suh that N(vi) \ Ci
α 6= ∅. Sine G is onneted, suh a

vi always exists. G[{v1, . . . , vd(α)}] denote the harateristi graph of α. The harateristi graphof a degenerate node is a omplete graph or a star [4℄.Bi-join deomposition. A bi-join in a graph is a bipartition {X,Y } suh that for all u, v ∈ X,
{N(u)∩Y, Y \N(u)} = {N(v)∩Y, Y \N(v)}. The family of bi-joins in a graph is bipartitive. Thebi-join deomposition tree is the representative tree of the family of bi-joins, and an be omputedin linear time [7, 8℄. Let α be an internal node of the bi-join deomposition tree of a graph G.For all i ∈ {1, . . . , d(α)} let vi ∈ Ci

α. G[{v1, . . . , vd(α)}] denote the harateristi graph of α. Theharateristi graph of a degenerate node is a omplete bipartite graph or a disjoint union oftwo omplete graphs [7, 8℄. 3

Figure 1: A module, a bi-join, a split and a o-split3 Reognition of NLC-2 graphs3.1 NLC-2 ρ-free anonial deompositionIn this setion, G = (V,E, l) is a 2-labelled graph suh that every mono-oloured module (i.e. amodule M suh that ∀v, v′ ∈M , l(v) = l(v′)) has size 1. A ouple (X,Y) is a ut if X ∪ Y = V ,
X ∩ Y = ∅, X 6= ∅ and Y 6= ∅. Let S ⊆ {1, 2} × {1, 2}. A ut (X,Y) is a S-ut of G if for all
u ∈ X and v ∈ Y , then {u, v} ∈ E if and only if (l(u), l(v)) ∈ S. For S ⊆ {1, 2} × {1, 2} let
FS(G) be the set of S-ut of G.De�nition 5 (Symmetry). We say that S ∈ {1, 2} × {1, 2} is symmetri if (1, 2) ∈ S ⇐⇒
(2, 1) ∈ S, otherwise we say that S is non-symmetri.De�nition 6 (Degenerate property). A family F of uts has the degenerate property if thereis a partition P of V suh that for all ∅ (X (P, (

⋃

X∈X X,
⋃

Y ∈P\X Y) is in F , and there is noothers ut in F .Lemma 7. For every symmetri S ⊆ {1, 2} × {1, 2}, FS(G) has the degenerate property.Proof. The family F{}(G) has the degenerate property sine (X,Y) is a {}-ut if and only ifthere is no edges between X and Y (P is exatly the onneted omponents). For W ⊆ V , let
G|W = (V,E∆W 2, l). For i ∈ {1, 2} let Vi = {v ∈ V : l(v) = i}. Let G1 = G|V1, G2 = G|V2 and
G12 = (G|V1)|V2.
• F{(1,1)}(G) = F{}(G1), F{(2,2)}(G) = F{}(G2), F{(1,1),(2,2)}(G) = F{}(G12),
• F{(1,1),(1,2),(2,1),(2,2)}(G) = F{}(G), F{(1,2),(2,1),(2,2)}(G) = F{}(G1),
F{(1,1),(1,2),(2,1)}(G) = F{}(G2), F{(1,2),(2,1)}(G) = F{}(G12).Thus for every symmetri S ⊆ {1, 2} × {1, 2}, FS(G) has the degenerate property.De�nition 8 (Linear property). A family F of uts has the linear property if for all (X,Y)and (X ′, Y ′) in F , either X ⊆ X ′ or X ′ ⊆ X.Lemma 9. For every non-symmetri S ⊆ {1, 2} × {1, 2}, FS(G) has the linear property.Proof. Case S = {(1, 2)}: suppose that X \ X ′ and X ′ \ X are both non-empty. Then if u ∈

X \X ′ is labelled 1 and v ∈ X ′ \X is labelled 2, u and v has to be adjaent and non-adjaent,ontradition. Thus X \X ′ and X ′ \X are mono-oloured. Now suppose w.l.o.g. that all vertiesin X∆X ′ are labelled 1. Then X∆X ′ is adjaent to all verties labelled 2 in Y ∩ Y ′ and nonadjaent to all verties labelled 1 in Y ∩ Y ′. Moreover X∆X ′ is non adjaent to all verties in
X ∩ X ′. Thus X∆X ′ is a mono-oloured module, and |X∆X ′| ≥ 2. Contradition. For othersnon-symmetri S, we bring bak to ase {(1, 2)} like in the proof of lemma 7.4

Input: A 2-labelled graph G = (V,E, l)Output: A NLC-2 ρ-free deomposition tree, or fail if G is not NLC-2 ρ-freeif |V | = 1 then return the leaf ·(l(v)) (where V = {v})1 Let S be the set of subsets of {1, 2} × {1, 2} and σ be the lexiographi order of S2 foreah S ∈ S w.r.t. σ do3 Compute PS(G), and P ′
S(G) if S is non-symmetri (see algorithm 2)4 if |PS(G)| > 1 then5 Create a new ×S node β6 foreah P ∈ PS(G) (w.r.t. P ′

S(G) if S is non-symmetri) do7 make NLC-2 ρ-free deomposition tree of G[P] be a hild of β.8 return the tree rooted at β9 fail with Not NLC-2 ρ-free10 Algorithm 1: Computation of the NLC-2 ρ-free anonial deomposition treeFor S ⊆ {1, 2} × {1, 2}, let PS(G) denote the unique partition of V suh that (1) for all
(X,Y) ∈ FS(G) and P ∈ PS(G), P ⊆ X or P ⊆ Y , and (2) for all P,P ′ ∈ P, P 6= P ′, there isa (X,Y) ∈ FS(G) suh that P ⊆ X and P ′ ⊆ Y , or P ⊆ Y and P ′ ⊆ X. For a non-symmetri
S ∈ {1, 2} × {1, 2}, let P ′

S(G) = (P1, . . . , Pk) denote the unique ordering of elements in PS(G)suh that for all (X,Y) ∈ FS(G), there is a l suh that X = ∪i∈{1,...,l}Pi.Lemma 10. If G is in NLC-2 ρ-free, then there is a S ⊆ {1, 2} × {1, 2} suh that FS(G) isnon-empty.Proof. If G is NLC-2 ρ-free, then there is a S ⊆ {1, 2} × {1, 2}, and two graphs G1 and G2 suhthat G = G1 ×S G2. Thus (V (G1), V (G2)) ∈ FS(G) and FS(G) is non empty.Lemma 11. Let G = (V,E, l) 2-labelled graph and let S ⊆ {1, 2} × {1, 2}. If G is NLC-2 ρ-freeand has no mono-oloured non-trivial module, then for all P ∈ PS(G), G[P] has no mono-olourednon-trivial module.Proof. If M is a mono-oloured module of G[P], then M is a mono-oloured module of G. Con-tradition.Lemma 12. Let G = (V,E, l) 2-labelled graph and let S ⊆ {1, 2} × {1, 2}. Then G is NLC-2
ρ-free if and only if for all P ∈ PS(G), G[P] is NLC-2 ρ-free.Proof. The �only if� is immediate. Now suppose that for all P ∈ PS(G), G[P] is NLC-2 ρ-free. If
S is symmetri, let PS(G) = {P1, . . . , P|PS(G)|}. Then G = ((G[P1]×SG[P2])×S . . .×SG[P|PS(G)|],and G is NLC-2 ρ-free. Otherwise, if S is non-symmetri, let P ′

S(G) = (P1, . . . , P|PS(G)|). Then
G = ((G[P1]×S G[P2])×S . . . ×S G[P|PS (G)|], and G is NLC-2 ρ-free.The NLC-2 ρ-free deomposition tree of a 2-labelled graph G is a rooted tree suh that theleaves are the verties of G, and the internal nodes are labelled by ×S , with S ⊆ {1, 2} × {1, 2}.An internal node is degenerated if S is symmetri, and linear if S is non-symmetri. Bylemmas 10, 11 and 12, G is NLC-2 ρ-free if and only if it has a NLC-2 ρ-free deomposition tree.This deomposition tree is not unique. But we an de�ne a anonial deomposition tree if we �xa total order on the subsets of {1, 2}×{1, 2} (for example, the lexiographi order). If two graphsare isomorphi, then they have the same anonial deomposition tree. Algorithm 1 omputesthe anonial deomposition tree of a 2-labelled prime graph, or fails if G is not NLC-2 ρ-free.Algorithm 2 omputes PS and P ′

S for a 2-labelled prime graph G and S ⊆ {1, 2} × {1, 2} inlinear time. We need some additional de�nitions for this algorithm and its proof of orretness. A5

Input: A 2-labelled graph G, and S ⊆ {1, 2} × {1, 2}Output: PS if S is symmetri, P ′
S if S is non-symmetri

Vi ← {v : v ∈ V and l(v) = i} ;1 if (1, 1) ∈ S then C1 ← o-onneted omponents of G[V1];2 else C1 ← onneted omponents of G[V1];3 if (2, 2) ∈ S then C2 ← o-onneted omponents of G[V2];4 else C2 ← onneted omponents of G[V2];5
B = (C1, C2, Ej , Em) ← the bipartite trigraph between the elements of C1 and C2 ;6 if S ∩ {(1, 2), (2, 1)} = ∅ then7 return onneted omponents of (C1, C2, Ej ∪ Em)8 else if S ∩ {(1, 2), (2, 1)} = {(1, 2), (2, 1)} then9 return onneted omponents of the bi-omplement of (C1, C2, Ej)10 else Searh all semi-joins of B (see appendix) ;11 Algorithm 2: Computation of PS and P ′

Sbipartite graph is a triplet (X,Y,E) suh that E ⊆ X×Y . The bi-omplement of a bipartite graph
(X,Y,E) is the bipartite graph (X,Y, (X×Y)\E). A bipartite trigraph (BT) is a bipartite graphwith two types of edges: the join edges and the mixed edges. It is denoted by B = (X,Y,Ej , Em)where Ej are the set of join edges, and Em the set of mixed edges. A BT-module in a BTis a M ⊆ X or M ⊆ Y suh that M is a module in (X,Y,Ej) and there is no mixed edgesbetween M and (X ∪ Y) \M . For v ∈ X ∪ Y , let Nj(v) = {u ∈ X ∪ Y : {u, v} ∈ Ej} and
Nm(v) = {u ∈ X ∪ Y : {u, v} ∈ Em}. Let dj(v) = |Nj(v)| and dm(v) = |Nm(v)|. A semi-joinin a BT (X,Y,Ej , Em) is a ut (A,B) of X ∪ Y , suh that there is no edges between A ∩ Y and
B ∩X, and there is only join edges between A ∩X and B ∩ Y .In algorithm 2, B is obtained from the graph G. Verties of X orrespond to subsets of vertieslabelled 1 in G, and verties of Y orrespond to subsets of verties labelled 2. There is a joinedge between M and M ′ in B if M 1© M ′ in G, and there is a mixed edge between M ∈ X and
M ′ ∈ Y in B if there is at least an edge and a non-edge between M and M ′ in G. Suh a graph
B an easily be built in linear time from a given graph G. It su�es to onsider a list and anarray bounded by the number of omponent in G with the same olour. The following lemmasare lose to observations in [9℄, but deal with BT instead of bipartite graphs (proofs are given inappendix).Lemma 13. Let G = (X,Y,Ej , Em) be a BT suh that every BT-module has size 1. Let
(x1, . . . , x|X|) be X sorted by (dj(x), dm(x)) in lexiographi dereasing order. If (A,B) is asemi-join of G, then there is a k ∈ {0, . . . , |X|} suh that A ∩X = {x1, . . . , xk}.Lemma 14. Let k ∈ {0, . . . , |X|} and k′ ∈ {0, . . . , |Y |}. Then (A, (X ∪ Y) \ A), where A =

{x1, . . . , xk, y1, . . . , yk′}, is a semi-join of G if and only if∑k
i=1 dj(xi)−

∑k′

i=1 dj(yi) = k×(|Y |−k′)and ∑k
i=1 dm(xi)−

∑k′

i=1 dm(yi) = 0.Theorem 15. Algorithm 2 is orret and runs in linear time.Proof. Corretness: Suppose that (A,B) is a S-ut. If (1, 1) 6∈ S, then there is no edge between
A∩V1 and B∩V1, thus (A,B) annot ut a omponent C1 (and similarly for (1, 1) ∈ S, and for C2).Now we work on the BT B = (C1, C2, Ej , Em). If S ∩ {(1, 2), (2, 1)} = ∅, then S-uts orrespondexatly to onneted omponents of B, and if S ∩ {(1, 2), (2, 1)} = {(1, 2), (2, 1)} then S-utsorrespond exatly to onneted omponents of the BT of G, whih is (C1, C2, (C1 × C2) \ (Ej ∪
Em), Em). Finally, if S is non-symmetri, S-uts orrespond to semi-joins of B (see appendix).6

Complexity: It is well admitted that we an perform a BFS on a graph or its omplementin linear time [13, 6℄. The instrutions on lines [2-5,8℄ an be done with a BFS on a graph or itsomplement. It is easy to see that we an do a BFS on the bi-omplement in linear time (like aBFS on a omplement graph, with two vertex lists for X and Y), so instrution line 10 an bedone in linear time. Finally, the operations at line 11 are done in linear time (see appendix).These results an be summarized as:Theorem 16. Algorithm 1 omputes the anonial NLC-2 ρ-free deomposition tree of a 2-labelledgraph in O(nm) time.3.2 NLC-2 deomposition of a prime graphIn this setion, G is an unlabelled prime (w.r.t. modular deomposition) graph, with |V | ≥ 3.De�nition 17 (2-bimodule). A bipartition {X,Y } of V is a 2-bimodule if X an be partitionedinto X1 and X2, and Y into Y1 and Y2 suh that for all (i, j) ∈ {1, 2}×{1, 2}, then either Xi 0© Yjor Xi 1© Yj. It is easy to see that if {X,Y } is a 2-bimodule if and only if {X,Y } is a split, ao-split or a bi-join. Moreover, if min(|X|, |Y |) > 1 then {X,Y } annot be both of them in thesame time (sine G is prime).Let l : V → {1, 2} be a 2-labelling. Then s(l) denote the 2-labelling on V suh that for all
v ∈ V , s(l)(v) = 1 if and only if l(v) = 2.De�nition 18 (Labelling indued by a 2-bimodule). Let {X,Y } be a 2-bimodule. Wede�ne the labelling l : V → {1, 2} of G indued by {X,Y }. If |X| = |Y | = 1, then l(x) = 1 and
l(y) = 2, where X = {x} and Y = {y}. If |X| = 1, then l(v) = 1 i� v ∈ N [x]. Similarly if
|Y | = 1, then l(v) = 1 i� v ∈ N [y]. Now we suppose min(|X|, |Y |) > 1. If {X,Y } is a split, thenthe set of verties in X with a neighbour Y and the set of verties in Y with a neighbour in Xis labelled 1, others verties are labelled 2. If {X,Y } is a o-split, then a labelling of G induedby {X,Y } is a labelling of G indued by the split {X,Y }. Finally if {X,Y } is a bi-join, l is suhthat {v ∈ X : l(v) = 1} is a join with {v ∈ Y : l(v) = 1} and {v ∈ X : l(v) = 2} is a join with
{v ∈ Y : l(v) = 2}. Note that if {X,Y } is a bi-join, then there is two possibles labelling l1 and l2,with l1 = s(l2). If {X,Y } is a 2-bimodule of G and l a labelling indued by {X,Y }, then everymono-oloured module has size 1 (sine G is prime and |V | ≥ 3).De�nition 19 (Good 2-bimodule). A 2-bimodule {X,Y } is good if the graph G with thelabelling indued by {X,Y } is NLC-2 ρ-free. The following proposition omes immediately fromlemma 3.Proposition 20. G is NLC-2 if and only if G has a good 2-bimodule.Lemma 21. If G has a good 2-bimodule {X,Y } whih is a split, then G has a good 2-bimodulewhih is a strong split.Proof. There is a node α in the split deomposition tree and ∅ (I ({1, . . . , d(α)} suh that
{X,Y } = {∪i∈IC

i
α,∪i6∈IC

i
α}. Let l : V → {1, 2} be the labelling of G indued by {X,Y }. For all

i ∈ {1, . . . , d(α)}, (G[Ci
α], l|Ci

α
) is NLC-2 ρ-free (where l|W is the funtion l restrited at W).Let l′ be the 2-labelling of V suh that for all i, and v ∈ Ci

α, l(v) = 1 if and only if v hasa neighbour outside of Ci
α. For all i, either l|Ci

α
= l′|Ci

α
, or ∀v ∈ Ci

α, l(v) = 2. Then for all i,
(G[Ci

α], l′|Ci
α
) is NLC-2 ρ-free, and thus (G, l′) is NLC-2 ρ-free. Sine there is a dominating vertexin the harateristi graph of α, there is a j suh that the labelling indued by the strong split

{Cj
α, V \ C

j
α} is l′. Thus the strong split {Cj

α, V \ C
j
α} is good.7

Input: A graph GResult: Yes i� G is NLC-2
S ← the set of strong splits, o-splits and bi-joins of G ;foreah {X,Y } ∈ S do

l ← the labelling of G indued by {X,Y } ;if (G[X], G[Y], l) is NLC-2 ρ-free then return Yes ;return No ; Algorithm 3: Reognition of prime NLC-2 graphsPrevious lemma on G say that if G has a good 2-bimodule {X,Y } whih is a o-split, then Ghas a good 2-bimodule whih is a strong o-split. The following lemma is similar to Lemma 21.Lemma 22. If G has a good 2-bimodule {X,Y } whih is a bi-join, then G has a good 2-bimodulewhih is a strong bi-join.Theorem 23. Algorithm 3 reognises prime NLC-2 graphs, and its time omplexity is O(n2m).Proof. Trivially if the algorithm return Yes, then G is NLC-2. On the other hand, by proposi-tion 20, and lemmas 21 and 22, if G is NLC-2, then it has a good strong 2-bimodule and thealgorithm returns Yes.The set S an be omputed using algorithms for omputing split deomposition on G and G,and bi-join deomposition on G. Note that it is not required to use a linear time algorithm forsplit deomposition [5℄: some simpler algorithms run in O(n2m) [4, 10℄. [7, 8℄ show that bi-joindeomposition an be omputed in linear time, using a redution to modular deomposition. Butthere also, modular deomposition algorithms simpler than [15℄ may be used. The set S has O(n)elements. Testing if a 2-bimodule is good takes O(nm) using algorithm 1. So total running timeis O(n2m).3.3 NLC-2 deompositionUsing lemma 2, modular deomposition and algorithm 3, we get:Theorem 24. NLC-2 graphs an be reognised in O(n2m), and a NLC-2 expression an be gen-erated in the same time.4 Graph isomorphism on NLC-2 graphs4.1 Graph Isomorphism on NLC-2 ρ-free prime graphsThe following propositions are diret onsequenes of properties (linear and degenerate) of S-uts.Proposition 25. Consider a symmetri S ∈ {1, 2}×{1, 2}. Two graphs G and H are isomorphiif and only if there is a bijetion π between PS(G) and PS(H) suh that for all P ∈ PS(G), G[P]is isomorphi to H[π(P)].Proposition 26. Let a non-symmetri S ∈ {1, 2} × {1, 2} and let G and H be two graphs. Let
P ′

S(G) = (P1, . . . , Pk) and P ′
S(H) = (P ′

1, . . . , P
′
k′) then G and H are isomorphi if and only if

k = k′ and for all i ∈ {1, . . . , k}, G[Pi] is isomorphi to H[P ′
i].By the previous 2 propositions, two NLC-2 ρ-free 2-labelled graphs G and H are isomorphiif and only if there is an isomorphism between their anonial NLC-2 ρ-free deomposition treewhih respets the order of hildren of linear nodes. This isomorphism an be tested in lineartime, thus isomorphism of NLC-2 ρ-free graphs an be done in O(nm) time.8

Input: Two prime NLC-2 graphs G and HResult: Yes if G ≃ H, No otherwise
S ← the set of strong splits, o-splits and bi-joins of G ;
S ′ ← the set of strong splits, o-splits and bi-joins of H ;if there is no good 2-bimodule in S then fail with �G is not NLC-2�;
{X,Y } ← a good 2-bimodule in S ;
l ← the labelling of G indued by {X,Y } ;foreah {X ′, Y ′} ∈ S ′ suh that {X ′, Y ′} is good do

l′ ← the labelling of H indued by {X ′, Y ′} ;if |X| > 1 and |Y | > 1 and {X,Y } is a bi-join thenif (G, l) ≃ (H, l′) or (G, l) ≃ (H, s(l′)) then return Yes ;else if (G, l) ≃ (H, l′) then return Yes ;return No ; Algorithm 4: Isomorphism for prime NLC-2 graphs4.2 Graph isomorphism on prime NLC-2 graphsTheorem 27. Algorithm 4 test isomorphism between two prime NLC-2 graphs in time O(n2m).Proof. If the algorithm returns �yes�, then trivially G ≃ H. On the other hand suppose that
G ≃ H and let π : V (G)→ V (H) be a bijetion suh that {u, v} ∈ E(G) i� (π(u), π(v)) ∈ E(H).Then {X ′, Y ′} with X ′ = π(X) and Y ′ = π(Y) is a good 2-bimodule if H. If min(|X|, |Y |) > 1and {X ′, Y ′} is a bi-join, then by de�nition there is two labelling indued by {X,Y }, and (G, l) ≃
(H, l′) or (G, l) ≃ (H, s(l′)). Otherwise the labelling is unique and (G, l) ≃ (H, l′).The sets S and S ′ an be omputed in O(n2) time using linear time algorithms for omputingsplit deomposition on G and G, and bi-join deomposition on G. The sets S and S ′ have O(n)elements. Test if a 2-bimodule is good take O(nm) using algorithm 1, and test if two 2-labelledprime graphs are isomorphi take also O(nm). Thus the total running time is O(n2m).4.3 Graph isomorphism on NLC-2 graphsIt is easy to show that graph isomorphism on prime NLC-2 graphs with an additional labels into
{1, . . . , q} an be done in O(n2m) time. For that, we add the additional label of v at the leaforresponding to v in the NLC-2 ρ-free deomposition tree.We show that we an do graph isomorphism on NLC-2 graphs in time O(n2m), using themodular deomposition and algorithm 4. Let M(G) and M(H) be the modular deompositionof G and H. For M ∈ M(G), let GM be G[M], and for M ∈ M(H), let HM be H[M].Let G∗

M be the harateristi graph of GM (note that |V (G∗
M)| is the number of hildren of

M in the modular deomposition tree). Let M(i,∗) = {M ∈ M(G) ∪ M(H) : |M | = i}, let
M(∗,j) = {M ∈ M(G) ∪ M(H) : |V (G∗

M)| = j} and let M(i,j) = M(i,∗) ∩ M(∗,j). Notethat ∑n
j=1(M(∗,j) × j) is the number of verties in G plus the number of edges in the modulardeomposition tree, and thus is at most 3n − 2.Theorem 28. Algorithm 5 tests isomorphism between two NLC-2 graphs in time O(n2m).Proof. The orretness omes from the fat that at eah step, for all M,M ′ ∈ M(G) ∪M(H)suh that l(M) and l(M ′) are set, GM and GM ′ are isomorphi if and only if l(M) = l(M ′). The

9

Input: Two NLC-2 graphs G and HResult: Yes if G ≃ H, No otherwisefor every M ∈M(G) ∪M(H) suh that |M | = 1 do l(M)← 1 ;for i from 2 to n dofor j from 2 to i doCompute the partition P ofM(i,j) suh that M and M ′ are in the same lass of Pif and only if (G∗
M , l) ≃ (G∗

M ′ , l). ;foreah P ∈ P do
a ← a new label (an integer not in Img(l)) ;For all M ∈ P , l(M)← a ;Algorithm 5: Isomorphism on NLC-2 graphstotal time f(n,m) of this algorithm is O(n2m) sine (�big Oh� is omitted):

f(n,m) ≤
∑

i

∑

j

(

j2m|M(i,j)|
2
)

≤ m
∑

j

(

j2
∑

i

(

|M(i,j)|
2
)

)

≤ m
∑

j

(

j2|M(∗,j)|
2
)

≤ m
∑

j

(

(

j|M(∗,j)|
)2
)

≤ n2m.Referenes[1℄ M. Chein, M. Habib, and M.C. Maurer. Partitive hypergraphs. Disrete Math., 37(1):35�50, 1981.[2℄ B. Courelle, J. Engelfriet, and G. Rozenberg. Handle-rewriting hypergraph grammars. J. Comput.Syst. Si., 46(2):218�270, 1993.[3℄ W. H. Cunnigham and J. Edmonds. A ombinatorial deomposition theory. Canad. J. Math., 32:734�765, 1980.[4℄ William H. Cunningham. Deomposition of direted graphs. SIAM J. Algebrai Disrete Methods,3(2):214�228, 1982.[5℄ E. Dahlhaus. Parallel algorithms for hierarhial lustering and appliations to split deompositionand parity graph reognition. J. Algorithms, 36(2):205�240, 2000.[6℄ E. Dahlhaus, J. Gustedt, and R. M. MConnell. Partially omplemented representations of digraphs.Disrete Math. Theor. Comput. Si., 5(1):147�168, 2002.[7℄ F. de Montgol�er and M. Rao. The bi-join deomposition. In ICGT, volume 22 of ENDM, pages173�177, 2005.[8℄ F. de Montgol�er and M. Rao. Bipartitives families and the bi-join deomposition. Tehnial report,https://hal.arhives-ouvertes.fr/hal-00132862, 2005.[9℄ J.-L. Fouquet, V. Giakoumakis, and J.-M. Vanherpe. Bipartite graphs totally deomposable byanonial deomposition. Internat. J. Found. Comput. Si., 10(4):513�533, 1999.[10℄ C. P. Gabor, K. J. Supowit, and W.-L. Hsu. Reognizing irle graphs in polynomial time. J. ACM,36(3):435�473, 1989.[11℄ T. Gallai. Transitiv orientierbare Graphen. Ata Math. Aad. Si. Hungar., 18:25�66, 1967.[12℄ F. Gurski and E. Wanke. Minimizing NLC-width is NP-Complete. In WG, volume 3787 of LNCS,pages 69�80, 2005.[13℄ M. Habib, C. Paul, and L. Viennot. Partition re�nement tehniques: An interesting algorithmi toolkit. Internat. J. Found. Comput. Si., 10(2):147�170, 1999.[14℄ Ö. Johansson. NLC2-deomposition in polynomial time. Internat. J. Found. Comput. Si., 11(3):373�395, 2000.[15℄ R. M. MConnell and J. P. Spinrad. Modular deomposition and transitive orientation. DisreteMath., 201(1-3):189�241, 1999.[16℄ E. Wanke. k-NLC Graphs and Polynomial Algorithms. Disrete Appl. Math., 54(2-3):251�266, 1994.10

AppendixA.1 Proof of lemma 13Let G = (X,Y,Ej , Em) be a BT suh that every BT-module has size 1. Let (x1, . . . , x|X|)be X sorted by (dj(x), dm(x)) in lexiographi dereasing order. If (A,B) is a semi-join of G, then there is a k ∈ {0, . . . , |X|} suh that A ∩X = {x1, . . . , xk}.Proof. For all v ∈ A ∩X, dj(v) ≥ |B ∩ Y |, and for all v ∈ B ∩X, dj(v) ≤ |B ∩ Y |. Moreover,if there is a v ∈ B ∩ X with dj(v) = |B ∩ Y |, then dm(v) = 0. Let C = {v ∈ X : dj(v) =
|B ∩ Y | and dm(v) = 0}. Then C is a BT-module of G, and thus |C| ≤ 1. Every vertex in
A∩X \C are before every vertex in B∩X \C in the ordering. Moreover, if |C| > 0, then vertiesin A ∩X \ C are before the vertex in C, and verties in B ∩X \ C are after the vertex in C inthe ordering.A.2 Proof of lemma 14Let k ∈ {0, . . . , |X|} and k′ ∈ {0, . . . , |Y |}. Then (A, (X ∪ Y) \ A), where A =

{x1, . . . , xk, y1, . . . , yk′}, is a semi-join of G if and only if∑k
i=1 dj(xi)−

∑k′

i=1 dj(yi) =

k × (|Y | − k′) and ∑k
i=1 dm(xi)−

∑k′

i=1 dm(yi) = 0.Proof. The �If� part is by de�nition. Now let us onsider the �Only if� part. Let us assume thatthe degree ondition holds. We will denote a the number of join edges between A∩X and B∩Y ,
b the number of join edges between A∩X and A∩ Y , and c the number of mixed edges between
A ∩ X and A ∩ Y . Note that a ≤ k(|Y | − k′), a + b =

∑k
i=1 dj(xi) and b ≤

∑k′

i=1 dj(yi), thus
a ≥ k(|Y | − k′). So we have a = k(|Y | − k′), and ∑k′

i=1 dj(yi) − b = 0. In other words, there isonly join edges between A∩X and B ∩ Y , and there is no join edges between A∩ Y and B ∩X.Now sine there is only join edges between A ∩X and B ∩ Y , c =
∑k

i=1 dm(xi) =
∑k′

i=1 dm(yi),thus there is no mixed edges between A ∩ Y and B ∩X.A.3 Algorithm to ompute P ′
S when S is non-symmetriProof. Corretness: Algorithm 6 generates all the semi-joins of B. At any time, sj =

∑k
i=1 dj(xi),

sm =
∑k

i=1 dm(xi), s′j =
∑k′

i=1 dj(yi) and s′m =
∑k′

i=1 dm(yi). In B, every BT-module has size 1,otherwise there is a mono-oloured module in G of size at least 2. If (A,B) is a semi-join, then bylemma 13 on (C1, C2, Ej , Em) and (C2, C1, Ej , Em), there is a a and b suh that A∩C1 = {x1, . . . , xa}and A ∩ C2 = {y1, . . . , yb}. At any time, (A′, (C1 ∪ C2) \ A′) with A′ = {x1, . . . , xl, y1, . . . , yl′} isthe last semi-join found. At k = a, the while line 12 will stop when sj − s′j = k × (|C2| − k′)sine for every v ∈ A ∩ C2, dj(v) ≤ k, and s′j + k × (|C2| − k′) derease with k′. Moreover, whenthe while loop stops, sm = s′m sine s′m inrease with k′. Thus if b 6= k′, then {yk′+1, . . . yb} is aBT-module and b = k′ + 1 (sine every BT-module has size 1). In all ases the algorithm �nds
(A,B), and adds the partition in P ′.Complexity: As we see in proof of theorem 15, every instrution lines [2-5℄ an be done inlinear time, and learly every instrution lines [6-22℄ an be done in linear time, thus the totalrunning time is O(n + m).

11

Input: A 2-labelled graph G, and a non-symmetri S ⊆ {1, 2} × {1, 2}Output: P ′
S

Vi ← {v : v ∈ V and l(v) = i} ;1 if (1, 1) ∈ S then C1 ← o-onneted omponents of G[V1];2 else C1 ← onneted omponents of G[V1];3 if (2, 2) ∈ S then C2 ← o-onneted omponents of G[V2];4 else C2 ← onneted omponents of G[V2];5
B = (C1, C2, Ej , Em) ← the bipartite trigraph between the elements of C1 and C2 ;6
(x1, . . . , x|C1|) ← C1 sorted by lexiographi order on (−dj(v),−dm(v)) ;7
(y1, . . . , y|C2|) ← C2 sorted by lexiographi order on (dj(v), dm(v)) ;8
P ′ ← () ; l← 0; l′ ← 0; k′ ← 0 ; k ← 0 ;9
sj ← 0 ; sm ← 0 ; s′j ← 0 ; s′m ← 0 ;10 while k ≤ |C1| do11 while sj − s′j < k × (|C2| − k′) or (sj − s′j = k × (|C2| − k′) and sm > s′m) do12

k′ ← k′ + 1 ; s′j ← s′j + dj(yk′) ; s′m ← s′m + dm(yk′) ;13 if sj − s′j = k × (|C2| − k′) and sm = s′m then14 add {xl+1, . . . , xk} ∪ {yl′+1 . . . , yk′} at the end of P ′ ; l← k ; l′ ← k′ ;15 if sj − s′j − dj(yk+1) = k × (|C2| − k′ − 1) and sm = s′m + dm(yk+1) then16
k′ ← k′ + 1 ; s′j ← s′j + dj(yk′) ; s′m ← s′m + dm(yk′) ;17 add {yk′} at the end of P ′ ; l′ ← k′ ;18

k ← k + 1 ; sj ← sj + dj(xk) ; sm ← sm + dm(xk) ;19 remove ∅ form P ′, if any ;20 if (2, 1) ∈ S then reverse P ′;21 return P ′22 Algorithm 6: Computation of P ′
S when S is non-symmetri

12

