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A VERY FAST (LINEAR TIME) DISTRIBUTED
ALGORITHM, ON GENERAL GRAPHS, FOR THE

MINIMUM-WEIGHT SPANNING TREE

LELIA BLIN AND FRANCK BUTELLE

Abstract. In their pioneering paper [4], Gallager et al. introduced a distributed algorithm for
constructing the minimum-weight spanning tree (MST), manyauthors have suggested ways to
enhance their basic algorithm. Most of these improved algorithms have been shown to be very
efficient in terms of reducing their worst-case communication and/or time complexity measures.
In this paper, we address the problem of MST construction on general graphs. We present a
new distributed algorithm for constructing the MST, which is linear in time and is faster than
all previous linear algorithms. This algorithm is not to be compared with sublinear algorithms
constructed on special graphs (graph diameter in order oflog n) [5, 6].

1. Introduction

In this paper we focus on the problem of finding a distributed algorithm for a
minimum-weight spanning tree, it is a fundamental problem in the field of dis-
tributed network algorithms. Trees are an essential structure in various com-
munication protocols, e.g Network Synchronization, Bread-First-Search and
Deadlock Resolution. For the purpose of disseminating information in the net-
work, it is advantageous to broadcast it over a minimum-weight spanning tree,
since information will be delivered to every node with smallcommunication
cost.

The problem of finding a leader is reducible to the problem of finding a
spanning tree. Among other systems applications, leader election is used in
order to replace a malfunctioning central lock coordinatorin a distributed data-
base, for finding a primary site in a replicated distributed file system, etc.

To summarize, construction of a spanning tree or finding a leader appears as
a building block essentially in every complex network protocol, and is closely
related to many problems in distributed computing.

In this paper, we consider the problem of finding the Minimum-weight
Spanning Tree [9]: LetG = (V, E) be a weighted graph, wherew(e) de-
notes the weight of edgee ∈ E (n = |V |, m = |E|). The weight of a spanning
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treeT of G equals the sum of the weights of then − 1 edges contained inT ,
andT is called aMinimal Spanning Tree, if no tree has a smaller weight than
T . It is assumed here that each edge has unique weight, i.e., different edges
have different weights, and it is a well-known fact that in this case there is an
unique Minimal Spanning Tree. But, having distinct weightsis not an essential
requirement, since one can always ”create” them by appending the identities
of the nodes connected by the edge, the smaller of the two first.

In a distributed algorithm, each node inV is associated with its own proces-
sor, and processors are able to communicate with each other via the edges inE,
each edge is associated with a bidirectional link. The goal is to have the nodes
cooperate to construct a tree covering the nodes inV whose total edge-weight
is not greater than any other spanning tree forG.

In their pioneering paper [4], Gallager, Humblet and Spira introduced the
distributed MST problem and presented an algorithm that hasformed the basis
of subsequent work in the area, for example [1, 2, 3, 5, 6]. Allalgorithms to
compute the MST are based on the notion of afragment, which is a subtree
of the MST. Initially each node is a one-node-fragment. The nodes in the
fragment cooperate to find the minimum-weight outgoing edgeof the fragment.
When this edge is known, the fragment is combined with the other fragment by
adding the outgoing edge. The algorithm terminates when only one fragment
remains.

These steps define the general computing approach of the MST,but the
improvements are due to the different constructions insideeach step. For ex-
ample, [4] builds the fragments, and after, the nodes in the fragment cooperate
to find the minimum-weight outgoing edge of the fragment, this cooperation
is expensive in time and messages. To improve the time complexity [5] (im-
proved by [6]) uses a ”small” number of fragments, all of which have a ”small”
diameter. A broadcasting BFS is the best algorithm for time complexity but ex-
pensive for the number of messages exchanged.

Algorithms like [1, 2, 3, 4] search for an optimal time and message com-
plexity, on the contrary, [5] concentrate on time complexity, and ignore the
communication cost of their algorithms. When authors focuson time com-
plexity, the message economy come second. One reason is thatin ”real life”
the two complexity measures are not independent. However fast computing is
not easy, the algorithm in [5] uses sub-linear (i.e, less than O(n)) time, but the
solution appears a bit artificial [10].

To improve again the time complexity, the distributed construction of an
MST is based on synchronous, coordinated and centralized operations in [5].
Moreover [5] suggest that the diameter of the network is a more accurate pa-
rameter for describing the time complexity, however they donot use a general

Studia Informatica Universalis



“Main2”
2003/5/7
page 115

A Very Fast (Linear Time) Distributed Algorithm, on GeneralGraphs, for the Minimum-Weight
Spanning Tree 115

graph, but a graph with a network diameterD in order oflog n. For the general
graph, a may be more accurate parameter for describing the time complexity is
the diameter of the resulting MST.

Our asynchronous algorithm belongs to the context of the search of the best
time complexity with a reasonable number of exchanged messages (in order of
n2 in the worst case, let us recall that a complete graph have almostn2 edges).
For a general graph, the distributed MST problem requires atleastO(m +
n log n) messages, where the transmission of one message across one edge
costs one unit of time. The time complexity of [4] asynchronous algorithm is
O(n2) and its message complexity is2m + 5n logn. [1, 2] improve the time
complexity (respectively' 4n andn log∗ n), but not the message complexity.
Our algorithm propose a solution for computing the distributed MST in time
n/2 with O(n2) messages.

2. The MST Problem

2.1. The Model

Now, we consider the standard model of static asynchronous network. This is a
point-to-point communication network, described by an undirected communi-
cation graph(V, E) where the set of nodesV represents network of processors
and the set of edgesE represents bidirectional non-interfering communication
channels operating between neighboring nodes. No common memory is shared
by the nodes’ processors.

All the processors have distinct identities. However each node is ignorant
of the global network topology except for its own edges, and every node does
know identity of its neighbors. This assumption is only usedto simplify al-
gorithm presentation, knowing neighbor’s identities is not an essential require-
ment, since every node can send its identity to its neighborsin the first message.

We confine ourselves only to event-driven algorithms, whichdo not use
time-outs, i.e. nodes cannot access a global clock in order to decide what to
do. This is a common model for static communication networks[4].

The following complexity measures are used to evaluate performance of
distributed algorithms. The Message Complexity, is the worst case total num-
ber of messages exchanged. The time complexity is the maximum possible
number of time units from start to the completion of the algorithm, assuming
that the inter-message delay and the propagation delay of anedge is at most
one time unit of some global clock. This assumption is used only for algorithm
analysis, but can not be used to prove its correctness, sincethe algorithm is
event-driven.
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2.2. The Problem

In a distributed algorithm for the Minimum Spanning Tree problem, each node
has a copy of a node algorithm determining its response to every kind of mes-
sage received. Namely, the algorithm specifies which computation should be
done and/or which message shoud be sent. The algorithm is started indepen-
dently by all nodes, perhaps at different times. At the starttime, each node
is ignorant of the global network topology except for its ownadjacent edges.
Upon the termination of the algorithm, every node knows its neighbors in the
Minimum Spanning Tree.

Without loss of generality, we assume that all links are assigned distinct
weights with a total ordering defined on the domain of the weights. This
condition guarantees uniqueness of the MST. It is easy to achieve this, as ob-
served in [4], by simply assigning the weight of each link(i, j) as the tuple
[min(i, j), max(i, j)] and comparing these tuples lexicographically.

3. Our Algorithm

3.1. Description of the BB01 Algorithm

The algorithm presented here has only three steps. We assumethat any non-
empty subset of nodes awake and start the algorithm spontaneously. The other
nodes awake upon message receipt.

Initial Step

In this first step, each one-node-fragment sends information to all its neigh-
bors. Namely, each node sends the message< Child > to the node at the
other endpoint of the minimum-weight edge of its adjacent edges, and sends
the message< NoChild > to all the other neighbors.
At the end of this step every node knows its children and its parent in its fu-
ture fragment (this “direction” in the MST can change duringthe other steps).
Moreover, each node knows if it is a leaf in the tree fragment or not. Note that a
fragment can have two “roots”, each one is the parent-child of the other. These
“roots” will be called “Decision Centers” (or DC for short) in the following,
see figure 1.

Data Step

In this second step, every leaf sends their outgoing edges and their identities to
their parents. An internal node receives the informations from its children and
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Figure 1: Data Step

forward the informations merged to the DC via its parent.
At the end of this step, the DC compute, from the information received, the
minimum-weight outgoing edge, this edge becomes the merging edge with
another fragment. If there are two Decision Centers, they achieve the same
computation, so they both discover in which direction is theoutgoing edge,
and then decide automatically which one of the two DC will have to start the
Connect Step.
The direction in the fragment tree is arbitrary, thus we can change it. If a
node receives information from its parent, and if it misses only one child in-
formation, this child can become its parent. More clearly, the idea is to fetch
information without waiting. This improvement decreases the time complexity
particularly when the MST is very deep (at worst when it is a chain it divide
by two the time complexity that we will obtain if we will wait instead for the
child’s message).

Connect step

down

up

Figure 2: Connect Step

In this last step, the different fragments merge together. When a DC finds
the minimum-weight outgoing edge of the fragment, it sends a< down > mes-
sage with the outgoing edges of the fragment toward the endpoint of this edge
which is in the fragment (see figure 2). This information goesthrough only the
branch conducting to the merging node, that bounds the message complexity.
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When a node receives this message from another fragment, it sends it to its
DC (message< up >, see figure 2), which then, computes the new minimum-
weight outgoing edge.
This step is finished when the fragment is unique, namely whenthe fragment
does not have any more outgoing edge.

3.2. Detailed Description of the BB01 Algorithm

We will consider the variables and algorithm used by some nodex.

Variables

. Wait: integer; (* count-down the answers *)

. Parent: Parent ofx or nil.

. OtherCenter : When there is two DC, andx is a DC, this variable
indicates the other center identity.

. Children: Set of the children ofx.

. nodesfrag: Received set of the nodes fragment.

. OutEdges: Set of(a, b, ω) uplet.(a, b, ω) ∈ E, ω = w(a, b)

. Redges: Intermediated variable used to store the Received set ofOutEdges.

. Rnodes: Intermediated variable used to store the Received set ofnodesfrag.

Now let us consider what kind of messages can be received byx :

Messages exchanged

. < child >: The sender becomes a child ofx, andx decreaseWait.

. < noChild >: x just decreaseWait.

. < data, Rnodes, Redges >: The sender givesx its outgoing edges
Redges. Redges is the set of(a, b, ω) wherea, b, ω are defined as above.

. < down, Rnodes, Redges >: Upon receipt of this message, the sender
becomes a child ofx. If this message comes from a node not belonging
to the fragment, send an< up > message to the parent.

. < up, Rnodes, Redges >: The sender is a child ofx. Upon receipt of
this message, if the receiver is a DC, it computes the minimum-weight
outgoing edge else it sends the new information to its parent...
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Subroutines

The first subroutine,INIT, initializes all the variables, in particular theWait
variable which counts the neighbors’ answers,Wait = |Neighbors|. More-
over, it computes the minimum-weight adjacent edge of the node. The corre-
sponding endpoint becomes its parent. The node sends the< child > message
to its parent and the< noChild > message to all others neighbors.

The next subroutine isNEXSTEP. In this subroutine the node has received
< Child > or < noChild > messages from all its neighbors. From now the
Wait variable count the number of received children’s messages.A node who
has no child or a node who has only one child which is also its parent is a leaf
(it is a DC but without interest). A leaf sends< data, Rnodes, Redges >
message to its parent.

EdgesManagement subroutine merges the received set with itsnodesfrag
set and itsOutEdges set. If needed, it deletes the cycles.

In CHANGEROOT subroutine,x has received data messages from its par-
ent and from all of its children minus one. This missing node becomes the new
parent ofx. The nodex send its information to its new parent.

In CHOOSE subroutine,x computes the minimum-weight outgoing edge
of the fragment (it is a DC). It sends the< down > message, either to the other
endpoint of this adjacent edge, or to a fragment node which drive to this edge.
In this second case,x looses the DC property.

The keywordEND is not a subroutine, it means only the end of the algo-
rithm. If a process termination is needed, this must be changed into a subrou-
tine broadcasting an end message via the MST.

Detailed Algorithm

1. Spontaneous awakening (or upon message receipt)
. INIT

2. Upon receipt of< child > from y

. Wait −−

. if parent 6= y thenchildren := children ∪ {y}

. elseOtherCenter := y

. OutEdges = OutEdges − {(x, y)}

. if Wait = 0 thenNEXTSTEP
3. Upon receipt of< noChild > from y

. Wait −−

. if Wait = 0 thenNEXTSTEP
4. Upon receipt of< data,Rnodes, Redges > from y

. children := children ∪ {y}

. Wait −−
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. EdgesManagement

. if |OutEdges| = 0 thenEND

. if (Wait = 0) then
2 if (parent = nil ∧ parent 6= y) then

send< data, nodesfrag, OutEdges > to parent

2 else
3 if (parent = y) then

OtherCenter := y

parent := nil

3 CHOOSE
. else if (parent = y) then

3 OtherCenter := nil

3 parent := nil

. if (Wait = 1) then
3 CHANGEROOT

5. Upon receipt of< down, Rnodes, Redges > from y

. if (Wait = 0) then
2 children := children ∪ {y}
2 EdgesManagement

. else
2 if (nodesfrag ⊂ Rnodes) then

3 nodesfrag := Rnodes

3 OutEdges := Redges

3 children := children ∪ {y}
3 parent = nil

2 elseEdgesManagement
. if |OutEdges| > 0 then

2 if (parent 6= nil ∧ parent 6= y) then
send< up, Rnodes, Redges > to parent

2 else
3 if (parent = y) then

Othercenter := y

parent := nil

3 CHOOSE
. elseEND

6. Upon receipt of< up, Rnodes,Redges > from y

. EdgesManagement

. if |OutEdges| = 0 thenEND

. else
2 if (parent = y) then

Othercenter := y

parent := nil

CHOOSE
2 elsesend< up, Rnodes, Redges > to parent
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3.3. Correctness

Basic properties of MST

The following properties are crucial for the correctness proofs. See for example
[4] for detailed proofs.

1. If all edge weights of a connected graphG are distinct, thenG has ex-
actly one MST.

2. Let us assume that all edge weigths are distinct. LetF be a fragment of
the MST and ife is the minimum-weight outgoing edge ofF , then edge
e can be added toF , to create a new fragment without creating a cycle.
This new fragment is still a fragment of the MST.

Corollary 1. When, (with the same assumptions) for a fragment F , there is no
more outgoing edge, the construction is terminated and F is the MST.

4. Complexity

4.1. A worst case example

When the graph is a complete graph, and its MST a chain, it is clearly a bad
case for every algorithm that uses the edges of the MST to transport informa-
tion, updates and so on.

The figure 3 describes what appends for our algorithm on such acase, after
the INIT step. To be a very bad case, edges-weights are distributed alterna-
tively on the MST chain.

4.2. Communication complexity

Theorem 2. The total number of messages in the worst case on a graph G =

(V, E) is 2m + n2

8
+ O(n) where n = |V | and m = |E|.

Proof. Let us describe the exchanged number of messages during eachstep
(we will assume that, for sake of simplicity, all nodes awakespontaneously).
First the initial messages, when the nodes send< Child > and< noChild >.
In this step every node sends a message to all its neighbors, thus the two end-
points of an edge send a message. For this step the communication cost is
clearly 2m. Note that the number of fragments created by the first step isat
mostbn

2
c, each fragment is composed at least of 2 nodes (can be 3 ifn is odd).

Second the Data Step. The worst case appends when the MST is a chain and
the number of fragments is maximal (see the columnd of figure 3). In this
case, every node in each fragment sends its information to the other fragment
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Figure 3: A worst case example
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node and that is all for the step. Note that the number of data messages can
be greater with bigger fragments, but there is a tradeoff between the number of
fragments and their size. In this data step there isn messages exchanged.
Finally, the connect step is represented by all the other columns in the figure 3.
We will consider levels. A level will be defined by the number of fragments.
We go from leveli + 1 to level i when the number of fragments is divided
by 2 (to simplify the analysis we will suppose without loss ofgenerality that
n = 2k). To go from leveli + 1 to i, the< down > messages have to cross its
fragment and next go through its best outgoing edge. The< up > messages
have to cross the fragment to “chase” the DC. From construction and since we
are interested in the worst case, one fragment will absorb all the others, leading
to a great number of< up > messages plus an oscillation of the< down >
messages as shown on the figure. We define level 1 when there is only one
remaining fragment. So we start at leveln/2 − 1 with at mostn/2 fragments
of size 2. It gives for these last stepsΣ

n/2−1

i=1
(i + 1) = n2

8
+ n

4
− 1. All in all

the sum defined in the theorem holds.
If the growth of the fragments is equilibrate, see figure 4.2,the exchanged
messages are mostly< down > messages and the sum is in order of2m +
1

2
n log(n) + O(n).

1 2 3 4 5 6 7 8

1 data

2 connect

3 connect

4 connect

Figure 4: An example

4.3. Time complexity

Theorem 3. If all nodes awake spontaneously almost at the same time, the
worst case time complexity of this algorithm is n

2
+ O(1).
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Proof. The worst case is when the MST is a chain over a complete graph (see
figures 3 and 4.2). So the time complexity follows from the previous proof, the
messages have to cross the chain from both endpoints. When they arrive at the
middle, all information have been collected and the algorithm is finished (no
more outgoing edge).
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