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A VERY FAST (LINEAR TIME) DISTRIBUTED
ALGORITHM, ON GENERAL GRAPHS, FOR THE
MINIMUM-WEIGHT SPANNING TREE

LELIA BLIN AND FRANCK BUTELLE

Abstract. In their pioneering paper [4], Gallager et al. introducedistributed algorithm for
constructing the minimum-weight spanning tree (MST), manyhors have suggested ways to
enhance their basic algorithm. Most of these improved dlyos have been shown to be very
efficient in terms of reducing their worst-case communaatnd/or time complexity measures.
In this paper, we address the problem of MST construction emel graphs. We present a
new distributed algorithm for constructing the MST, whichlinear in time and is faster than
all previous linear algorithms. This algorithm is not to bempared with sublinear algorithms
constructed on special graphs (graph diameter in ordergot) [5, 6].

1. Introduction

In this paper we focus on the problem of finding a distributieddthm for a
minimum-weight spanning tree, it is a fundamental problerhe field of dis-
tributed network algorithms. Trees are an essential stradh various com-
munication protocols, e.g Network Synchronization, Bréadt-Search and
Deadlock Resolution. For the purpose of disseminatingimédgion in the net-
work, it is advantageous to broadcast it over a minimum-teiganning tree,
since information will be delivered to every node with sn@dimmunication
cost.

The problem of finding a leader is reducible to the problem mdifig a
spanning tree. Among other systems applications, leadetieh is used in
order to replace a malfunctioning central lock coordinatar distributed data-
base, for finding a primary site in a replicated distributézldiystem, etc.

To summarize, construction of a spanning tree or finding@deappears as
a building block essentially in every complex network prmth and is closely
related to many problems in distributed computing.

In this paper, we consider the problem of finding the Minimweight
Spanning Tree [9]: LeG = (V, E) be a weighted graph, where(e) de-
notes the weight of edgec E (n = |V|, m = |E|). The weight of a spanning

Studia Informatica Universalis



114 L. Blin - F. Butelle

treeT of G equals the sum of the weights of the- 1 edges contained iff,
andT is called aMinimal Spanning Tree, if no tree has a smaller weight than
T. Itis assumed here that each edge has unique weight, iferedit edges
have different weights, and it is a well-known fact that ifstbase there is an
unique Minimal Spanning Tree. But, having distinct weightsot an essential
requirement, since one can always “create” them by appgrttim identities
of the nodes connected by the edge, the smaller of the two first

In a distributed algorithm, each nodelihis associated with its own proces-
sor, and processors are able to communicate with each athttrevedges itk
each edge is associated with a bidirectional link. The gotd have the nodes
cooperate to construct a tree covering the nodés whose total edge-weight
is not greater than any other spanning treedor

In their pioneering paper [4], Gallager, Humblet and Spmaaduced the
distributed MST problem and presented an algorithm thafdrased the basis
of subsequent work in the area, for example [1, 2, 3, 5, 6].afgbrithms to
compute the MST are based on the notion dfagment, which is a subtree
of the MST. Initially each node is a one-node-fragment. Thdeas in the
fragment cooperate to find the minimum-weight outgoing exfdglee fragment.
When this edge is known, the fragment is combined with therdtagment by
adding the outgoing edge. The algorithm terminates whey @mé fragment
remains.

These steps define the general computing approach of the MBThe
improvements are due to the different constructions insateh step. For ex-
ample, [4] builds the fragments, and after, the nodes inrdognfient cooperate
to find the minimum-weight outgoing edge of the fragments tooperation
is expensive in time and messages. To improve the time coihp[8] (im-
proved by [6]) uses a "small” number of fragments, all of whiave a "small”
diameter. A broadcasting BFS is the best algorithm for tioragplexity but ex-
pensive for the number of messages exchanged.

Algorithms like [1, 2, 3, 4] search for an optimal time and sege com-
plexity, on the contrary, [5] concentrate on time complgxind ignore the
communication cost of their algorithms. When authors foeagime com-
plexity, the message economy come second. One reason is thaal life”
the two complexity measures are not independent. Howesectanputing is
not easy, the algorithm in [5] uses sub-linear (i.e, lesa thén)) time, but the
solution appears a bit artificial [10].

To improve again the time complexity, the distributed camgion of an
MST is based on synchronous, coordinated and centralizecgitpns in [5].
Moreover [5] suggest that the diameter of the network is aenaacurate pa-
rameter for describing the time complexity, however theyndbuse a general
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graph, but a graph with a network diameiein order oflog n. For the general
graph, a may be more accurate parameter for describingtiescomplexity is
the diameter of the resulting MST.

Our asynchronous algorithm belongs to the context of theche# the best
time complexity with a reasonable number of exchanged ngess@n order of
n? in the worst case, let us recall that a complete graph havesahi edges).
For a general graph, the distributed MST problem requirdsastO(m +
nlogn) messages, where the transmission of one message acrosdgme e
costs one unit of time. The time complexity of [4] asynchrosalgorithm is
O(n?) and its message complexity2s: + 5nlogn. [1, 2] improve the time
complexity (respectively 4n andn log* n), but not the message complexity.
Our algorithm propose a solution for computing the disti@uMST in time
n/2 with O(n?) messages.

2. The MST Problem

2.1. TheModd

Now, we consider the standard model of static asynchronetugank. Thisis a
point-to-point communication network, described by aniteeled communi- —
cation graph(V, E') where the set of nodds represents network of processors
and the set of edgéds represents bidirectional non-interfering communication
channels operating between neighboring nodes. No commoronyds shared
by the nodes’ processors.

All the processors have distinct identities. However eamthenis ignorant
of the global network topology except for its own edges, arehyenode does
know identity of its neighbors. This assumption is only usedgimplify al-
gorithm presentation, knowing neighbor’s identities i$ @ essential require-
ment, since every node can send its identity to its neighhdhe first message.

We confine ourselves only to event-driven algorithms, whdohnot use
time-outs, i.e. nodes cannot access a global clock in ocddetide what to
do. This is a common model for static communication netw@tks

The following complexity measures are used to evaluateopmidnce of
distributed algorithms. The Message Complexity, is thesivoase total num-
ber of messages exchanged. The time complexity is the maxipussible
number of time units from start to the completion of the aitdyon, assuming
that the inter-message delay and the propagation delay eflge is at most
one time unit of some global clock. This assumption is uséyg fon algorithm
analysis, but can not be used to prove its correctness, #iecalgorithm is
event-driven.
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2.2. TheProblem

In a distributed algorithm for the Minimum Spanning Treelgemn, each node
has a copy of a node algorithm determining its response ty d&ired of mes-
sage received. Namely, the algorithm specifies which coatjout should be
done and/or which message shoud be sent. The algorithnrisdstadepen-
dently by all nodes, perhaps at different times. At the diare, each node
is ignorant of the global network topology except for its oadjacent edges.
Upon the termination of the algorithm, every node knows é@ghbors in the
Minimum Spanning Tree.

Without loss of generality, we assume that all links aregrssil distinct
weights with a total ordering defined on the domain of the Wig This
condition guarantees uniqueness of the MST. It is easy teaelhis, as ob-
served in [4], by simply assigning the weight of each likj) as the tuple
[min(4, 7), max(, j)] and comparing these tuples lexicographically.

3. Our Algorithm

3.1. Description of the BBO1 Algorithm

The algorithm presented here has only three steps. We agbkainany non-
empty subset of nodes awake and start the algorithm spanialye The other
nodes awake upon message receipt.

Initial Step

In this first step, each one-node-fragment sends informataall its neigh-
bors. Namely, each node sends the messagéhild > to the node at the
other endpoint of the minimum-weight edge of its adjacemfesd and sends
the message NoChild > to all the other neighbors.

At the end of this step every node knows its children and itemtan its fu-
ture fragment (this “direction” in the MST can change durihg other steps).
Moreover, each node knows if it is a leaf in the tree fragmentd. Note that a
fragment can have two “roots”, each one is the parent-clfifdeother. These
“roots” will be called “Decision Centers” (or DC for short) ithe following,
see figure 1.

Data Step

In this second step, every leaf sends their outgoing edgkthair identities to
their parents. An internal node receives the informatioosifits children and
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Figure 1: Data Step

forward the informations merged to the DC via its parent.

At the end of this step, the DC compute, from the informatieceived, the
minimum-weight outgoing edge, this edge becomes the mgrgilye with
another fragment. If there are two Decision Centers, théyese the same
computation, so they both discover in which direction is tlutgoing edge,
and then decide automatically which one of the two DC willdn&w start the
Connect Step.

The direction in the fragment tree is arbitrary, thus we change it. If a
node receives information from its parent, and if it missely @ne child in-
formation, this child can become its parent. More cleatlg idea is to fetch
information without waiting. This improvement decreagdestime complexity
particularly when the MST is very deep (at worst when it is aight divide
by two the time complexity that we will obtain if we will waihstead for the
child’s message).

Connect step

N SNAN
o/\o <|> ll———_’——jg/\o <|)

In this last step, the different fragments merge togethdnefVa DC finds
the minimum-weight outgoing edge of the fragment, it sendsdawn > mes-
sage with the outgoing edges of the fragment toward the eéntpftthis edge
which is in the fragment (see figure 2). This information gibeeugh only the
branch conducting to the merging node, that bounds the megsanplexity.
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When a node receives this message from another fragmeefdsst to its
DC (message: up >, see figure 2), which then, computes the new minimum-
weight outgoing edge.
This step is finished when the fragment is unique, namely wheriragment
does not have any more outgoing edge.
3.2. Detailed Description of the BBO1 Algorithm
We will consider the variables and algorithm used by somesnod
Variables
> Wait: integer; (* count-down the answers *)
> Parent: Parent ofr or nil.
> OtherCenter : When there is two DC, and is a DC, this variable
indicates the other center identity.
> Children: Set of the children of. .
> nodes frag: Received set of the nodes fragment.
> OutEdges: Set of(a,b,w) uplet. (a,b,w) € E, w = w(a,b)
> Redges: Intermediated variable used to store the Received get.0f dges.
> Rnodes: Intermediated variable used to store the Received seidis frag.
Now let us consider what kind of messages can be received by
M essages exchanged
> < child >: The sender becomes a child.gfandx decreaséV ait.
> < noChild >: x just decreas@l ait.
> < data, Rnodes, Redges >: The sender givesg its outgoing edges
Redges. Redges is the setofa, b, w) wherea, b, w are defined as above.
> < down, Rnodes, Redges >: Upon receipt of this message, the sender
becomes a child of. If this message comes from a node not belonging
to the fragment, send an up > message to the parent.
> < up, Rnodes, Redges >: The sender is a child of. Upon receipt of
this message, if the receiver is a DC, it computes the mininngight
outgoing edge else it sends the new information to its parent
Studia Informatica Universalis
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Subroutines
The first subroutine,NIT, initializes all the variables, in particular th€ ait
variable which counts the neighbors’ answé#sqgit = |Neighbors|. More-
over, it computes the minimum-weight adjacent edge of ttdendhe corre-
sponding endpoint becomes its parent. The node sends théld > message
to its parent and the: noChild > message to all others neighbors.
The next subroutine ISEXSTEP. In this subroutine the node has received
< Child > or < noChild > messages from all its neighbors. From now the
W ait variable count the number of received children’s messayesde who
has no child or a node who has only one child which is also itergds a leaf
(it is a DC but without interest). A leaf sends data, Rnodes, Redges >
message to its parent.
EdgesM anagement subroutine merges the received set withitdes frag
set and itut Edges set. If needed, it deletes the cycles.
In CHANGEROQOT subroutineyg has received data messages from its par-
ent and from all of its children minus one. This missing nodedmes the new
parent ofz. The noder send its information to its new parent.
In CHOOSE subroutinex: computes the minimum-weight outgoing edge
of the fragment (itis a DC). It sends tkedown > message, either to the other
endpoint of this adjacent edge, or to a fragment node whisie ¢iv this edge. -
In this second case;, looses the DC property.
The keywordEND is not a subroutine, it means only the end of the algo-
rithm. If a process termination is needed, this must be chadingo a subrou-
tine broadcasting an end message via the MST.
Detailed Algorithm
1. Spontaneous awakening (or upon message receipt)
> INIT
2. Upon receipt ok child > fromy
> Wait — —
> if parent # y thenchildren := children U {y}
> elseOtherCenter .=y
> OutEdges = OutEdges — {(z,y)}
> if Wait = 0thenNEXTSTEP
3. Upon receipt ok noChild > fromy
> Wait — —
> if Wait = 0thenNEXTSTEP
4. Upon receipt ok data, Rnodes, Redges > fromy
> children := children U {y}
> Wait — —
Studia Informatica Universalis
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> EdgesM anagement
> if |OutEdges| = 0 thenEND
> if (Wait = 0) then
O if (parent = nil A\ parent # y) then
sen data, nodesfrag, OutEdges > 10 parent
O else
<& if (parent = y) then
OtherCenter :=y
parent := nil
<& CHOOSE
> else if parent = y) then
<& OtherCenter := nil
O parent = nil
> if (Wait = 1) then
<& CHANGEROOT
5. Upon receipt ok down, Rnodes, Redges > fromy
> if (Wait = 0) then
O children := children U {y}
O EdgesManagement
> else
O if (nodesfrag C Rnodes) then
< nodesfrag := Rnodes
<& OutEdges := Redges
& children := children U {y}
< parent = nil
O elseEdgesM anagement
> if |OutEdges| > 0 then
O if (parent # nil A parent # y) then
send< up, Rnodes, Redges > to parent
O else
& if (parent = y) then
Othercenter :=y
parent := nil
<& CHOOSE
> elseEND
6. Upon receipt ok up, Rnodes, Redges > fromy
> EdgesM anagement
> if |OutEdges| = 0 thenEND
> else
O if (parent = y) then
Othercenter :=y
parent := nil
CHOOSE
O elsesend< up, Rnodes, Redges > to parent
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3.3. Correctness
Basic propertiesof MST

The following properties are crucial for the correctnesgys. See for example
[4] for detailed proofs.

1. If all edge weights of a connected gra@hare distinct, therG has ex-
actly one MST.

2. Let us assume that all edge weigths are distinct.H_.be a fragment of
the MST and ife is the minimum-weight outgoing edge 61, then edge
e can be added t@’, to create a new fragment without creating a cycle.
This new fragment is still a fragment of the MST.

Corollary 1. When, (with the same assumptions) for a fragment F', thereisno
more outgoing edge, the construction is terminated and F' is the MST.

4. Complexity

4.1. A worst case example

When the graph is a complete graph, and its MST a chain, ie@rlyl a bad
case for every algorithm that uses the edges of the MST tepahinforma-
tion, updates and so on.

The figure 3 describes what appends for our algorithm on suelse, after
the INIT step. To be a very bad case, edges-weights are distributrda!
tively on the MST chain.

4.2. Communication complexity

Theorem 2. Thetotal number of messages in the worst case on a graph G =
(V,E)is2m + ™ + O(n) wheren = |V| andm = |E|.

Proof. Let us describe the exchanged number of messages duringstsgch
(we will assume that, for sake of simplicity, all nodes awagentaneously).
First the initial messages, when the nodes ser@hild > and< noChild >.

In this step every node sends a message to all its neighbassttie two end-
points of an edge send a message. For this step the comnionicast is
clearly 2m. Note that the number of fragments created by the first stap is
most| % |, each fragment is composed at least of 2 nodes (can bei8 ibdd).
Second the Data Step. The worst case appends when the MSThasnaand
the number of fragments is maximal (see the colufrof figure 3). In this
case, every node in each fragment sends its informatioretottier fragment
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Figure 3: A worst case example
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node and that is all for the step. Note that the number of da&tssages can
be greater with bigger fragments, but there is a tradeoffben the number of
fragments and their size. In this data step therensessages exchanged.
Finally, the connect step is represented by all the othemans in the figure 3.
We will consider levels. A level will be defined by the numbéfrmagments.
We go from leveli + 1 to leveli when the number of fragments is divided
by 2 (to simplify the analysis we will suppose without lossgeierality that
n = 2¥). To go from leveli + 1 to i, the< down > messages have to cross its
fragment and next go through its best outgoing edge. <he > messages
have to cross the fragment to “chase” the DC. From constmetnd since we
are interested in the worst case, one fragment will absbtbeabthers, leading
to a great number of. up > messages plus an oscillation of thedown >
messages as shown on the figure. We define level 1 when thentyisme
remaining fragment. So we start at level2 — 1 with at mostn/2 fragments
of size 2. It gives for these last steﬁgﬁ_l(i +1) = %2 + 4 — 1. Allinall
the sum defined in the theorem holds.

If the growth of the fragments is equilibrate, see figure 42 exchanged
messages are mostly down > messages and the sum is in orderof +
snlog(n) + O(n). O

0-0-0-0-0-0-0-®

om0 0—0 0m0 =0 wm
: om0 om0 e
sl oo 06 ||

4 f 1 0=0 i i | comneat
Figure 4: An example

4.3. Time complexity

Theorem 3. If all nodes awake spontaneously almost at the same time, the
worst case time complexity of thisalgorithmis & + O(1).
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Proof. The worst case is when the MST is a chain over a complete gesgh (
figures 3 and 4.2). So the time complexity follows from thevmas proof, the
messages have to cross the chain from both endpoints. Wegaittive at the
middle, all information have been collected and the algamiis finished (no
more outgoing edge). O
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