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We establish integral tests and laws of the iterated logarithm at 0 and at +∞, for the upper envelope of positive self-similar Markov processes. Our arguments are based on the Lamperti representation, time reversal arguments and on the study of the upper envelope of their future infimum due to Pardo [19]. These results extend integral test and laws of the iterated logarithm for Bessel processes due to Dvoretsky and Erdös [10] and stable Lévy processes conditioned to stay positive with no positive jumps due to Bertoin [1].

1 Introduction.

A real Markov process X = (X t , t ≥ 0) with càdlàg paths is a self-similar process if for every k > 0 and every initial state x ≥ 0 it satisfies the scaling property, i.e., for some α > 0 the law of (kX k -α t , t ≥ 0) under P x is P kx , where P x denotes the law of the process X starting from x ≥ 0.

In this article, we focus on positive self-similar Markov processes and we will refer to them as pssMp. We denote by X (x) or (X, P x ) for the pssMp starting from x ≥ 0. Well-known examples of pssMp are: Bessel processes and stable subordinators or more generally, stable processes conditioned to stay positive.

Self-similar processes were the object of a systematic study first done by Lamperti [START_REF] Lamperti | Semi-stable stochastic processes[END_REF]. In a later work, Lamperti [START_REF] Lamperti | Semi-stable Markov processes[END_REF] studied the markovian case in detail. According to Lamperti [START_REF] Lamperti | Semi-stable Markov processes[END_REF] any pssMp starting from a strictly positive state satisfies one of the following conditions: i) it never reaches the state 0, ii) it hits the state 0 continuously or iii) it hits the state 0 by a negative jump.

The main result in [START_REF] Lamperti | Semi-stable Markov processes[END_REF] prove that any pssMp starting from a strictly positive state is a time-change of the exponential of a Lévy process. More precisely, let X (x) be a self-similar Markov process started from x > 0 that fulfills the scaling property for some α > 0, then

X (x) t = x exp ξ τ (tx -α ) , 0 ≤ t ≤ x α I(ξ), (1.1) 
where

τ t = inf s ≥ 0 : I s (ξ) > t , I s (ξ) = s 0 exp αξ u du, I(ξ) = lim t→+∞ I t (ξ),
and ξ is either a real Lévy process which drifts towards -∞, if X (x) satisfies condition (ii) or ξ is a Lévy process killed at an independent exponential time if X (x) satisfies condition (iii) or ξ is a Lévy process which does not drift towards -∞, if X (x) satisfies condition (i). This is the well-known Lamperti representation. Several authors have studied the problem of when an entrance law at 0 for (X, P x ) can be defined, see for instance Bertoin and Caballero [START_REF] Bertoin | Entrance from 0+ for increasing semi-stable Markov processes[END_REF], Bertoin and Yor [START_REF] Bertoin | The entrance laws of self-similar Markov processes and exponential functionals of Lévy processes[END_REF], and Caballero and Chaumont [START_REF] Caballero | Weak convergence of positive self-similar Markov processes and overshoots of Lévy processes[END_REF]. Bertoin and Caballero [START_REF] Bertoin | Entrance from 0+ for increasing semi-stable Markov processes[END_REF] studied for the first time this problem for the increasing case. Later Bertoin and Yor [START_REF] Bertoin | The entrance laws of self-similar Markov processes and exponential functionals of Lévy processes[END_REF] generalized the results obtained in [START_REF] Bertoin | Entrance from 0+ for increasing semi-stable Markov processes[END_REF]. The main result of [START_REF] Bertoin | The entrance laws of self-similar Markov processes and exponential functionals of Lévy processes[END_REF] proves that this limiting process is also a pssMp, and that it has the same semigroup as (X, P x ) for x > 0. Bertoin and Yor [START_REF] Bertoin | The entrance laws of self-similar Markov processes and exponential functionals of Lévy processes[END_REF] also gave sufficient conditions for the weak convergence of P x to hold when x tends to 0, in the sense of finite dimensional distributions. The entrance law was also computed in the mentioned works, such law will be written below in (2.10). Caballero and Chaumont [START_REF] Caballero | Weak convergence of positive self-similar Markov processes and overshoots of Lévy processes[END_REF] gave necessary and sufficient conditions for the weak convergence of X (x) on the Skorokhod's space. Caballero and Chaumont also gave a path construction of this weak limit, that we will denote by X (0) .

The aim of this work is to describe the upper envelope at 0 and at +∞ for a large class of pssMp satisfying condition (i) through integral test and laws of the iterated logarithm. We will give special attention to the case with no positive jumps since we may obtain general integral tests and compare the rate of growth of X (x) with that of its future infimum process and the pssMp X (x) reflected at its future infimum. Several partial results on the upper envelope of X (0) have already been established before, the most important of which being due to Dvoretsky and Erdös [START_REF] Dvoretzky | Some problems on random walk in space[END_REF] who studied the case of Bessel process. More precisely, we have the well known Kolmogorov and the Dvoretsky-Erdös integral test, see for instance Itô and McKean [13].

Theorem 1 (Kolmogorov-Dvoretsky-Erdös) Let h be a nondecreasing, positive and unbounded function as t goes to +∞. Then the upper envelope of X (0) , a Bessel process with index δ ≥ 2, at 0 is as follows, P X (0) t > √ th(t), i.o., as t → 0 = 0 or 1, according as, 0 h δ (t) exp{-h 2 (t)/2} dt t is finite or infinite.

Thanks to the time inversion property of Bessel processes, we also have the integral test for large times. To get it, it is enough to replace

0 h δ (t) exp{-h 2 (t)/2} dt t by +∞ h δ (t) exp{-h 2 (t)/2} dt t .
It is important to note that this integral test is also valid for d ≥ 1. The integral test for transient Bessel process will be extended in section 4 (Theorems 2 and 3). Additionally in section 7, we establish a variant of the Kolmogorov-Dvoretsky-Erdös integral test, (Theorems 11 and 12).

From the Kolmogorov-Dvoretsky-Erdös integral test, we deduce the following laws of the iterated logarithm, lim sup Recall that the future infimum of a pssMp starting at x ≥ 0 is defined by

J (x) s = inf t≥s X (x) t .
Khohsnevisan, Lewis and Wembo [START_REF] Khoshnevisan | On the future infima of some transient processes[END_REF] studied the asymptotic behaviour of the future imfimum of transient Bessel processes. Khoshnevisan et al. [START_REF] Khoshnevisan | On the future infima of some transient processes[END_REF] established the following law of the iterated logarithm for J (0) and for the Bessel process reflected at its future infimum, X (0) -J (0) ; lim sup In section 6, we extend these results and we also study the small time behaviour.

When X (0) is a stable Lévy process conditioned to stay positive with no positive jumps and with index 1 < α ≤ 2, we have the following law of the iterated logarithm due to Bertoin [START_REF] Bertoin | On the local rate of growth of Lévy processes with no positive jumps[END_REF], lim sup t→0 X (0) t t 1/α log | log t| 1-1/α = c(α) almost surely, (1.5) where c(α) is a positive constant.

Recently in [START_REF] Pardo | On the future infimum of positive self-similar Markov processes[END_REF] we studied the asymptotic behaviour of the upper envelope of the future infimum of pssMp under general hyphotesis. In particular, the author proved that when X (0) is a stable Lévy process conditioned to stay positive with no positive jumps and with index 1 < α ≤ 2, we have

lim sup t→0 J (0) t t 1/α log | log t| 1-1/α = c(α), almost surely, (1.6) 
and that lim sup

t→+∞ J (0) t t 1/α log log t 1-1/α = c(α), almost surely. (1.7)
In section 6, we will see that under the assumption that P(J

(0) 1 > t) is log-regular,i.e.
-log P J (0) 1 > t ∼ λt β L(t) as t → +∞, where λ, β > 0 and L is a function which varies slowly at +∞, the upper envelope of X (x) will be described by an explicit law of the iterated logarithm and that it agrees with the upper envelope of its future infimum as we have seen above. All the asymptotic results presented in section 5 and 6 are consequences of general integral tests which are stated in sections 3 and 4. The rest of this paper is organized in six sections. Section 2 is devoted to some preliminaries of Lévy processes and pssMp. In section 3, we study the asymptotic properties of the first and last passage time processes of X (0) . In section 4, we give the general integral tests for the upper envelope of X (x) . Sections 5 and 6 are devoted to applications of the results of sections 3 and 4. In section 7, we will apply our results to Bessel processes and finally in section 8, we will give some examples.

2 Preliminaries.

Weak convergence and entrance law of pssMp.

Let D denote the space of Skorokhod of càdlàg paths. We consider a probability measure on D denoted by P under which ξ will always be a real Lévy process such that ξ 0 = 0. Let Π be the Lévy measure of ξ, that is the measure satisfying

(-∞,∞) (1 ∧ x 2 )Π(dx) < ∞,
and such that the characteristic exponent Ψ, defined by E e iuξt = e -tΨ(u) , t ≥ 0, u ∈ IR is given, for some b ≥ 0 and a ∈ IR, by

Ψ(u) = iau + 1 2 b 2 u 2 + (-∞,∞) 1 -e iux + iux1I {|x|≤1} Π(dx), u ∈ IR. 4 Define for x ≥ 0, Π + (x) = Π (x, ∞) , Π -(x) = Π (-∞, -x) , M (x) = x 0 dy ∞ y Π -(z)dz,
and

J = [1,∞) xΠ + (x) 1 + M (x) dx.
Then according to Caballero and Chaumont [START_REF] Caballero | Weak convergence of positive self-similar Markov processes and overshoots of Lévy processes[END_REF], necessary and sufficient conditions for the weak convergence of X (x) on the Skorokhod's space are (H) ξ is not arithmetic and either 0

< E(ξ 1 ) ≤ E(|ξ 1 |) < ∞, or E(|ξ 1 |) < ∞, E(ξ 1 ) = 0 and J < ∞, and 
E log + T 1 0 exp αξ s ds < ∞, (2.8) 
where T x is the first passage time above x ≥ 0, i.e. T x = inf{t ≥ 0 : ξ t ≥ x}.

The weak limit found in [START_REF] Caballero | Weak convergence of positive self-similar Markov processes and overshoots of Lévy processes[END_REF], denoted by X (0) , is a pssMp starting from 0 which fulfills the Feller property on [0, ∞) and with the same transition function as X (x) , x > 0. In all the sequel, we suppose that the Lévy processes considered here satisfy conditions (H) and (2.8). We will distinguish the case 0

< E(ξ 1 ) ≤ E(|ξ 1 |) < ∞ saying that m := E(ξ 1 ) > 0.
It is important to note that if m > 0, we have that E(T 1 ) < ∞ and hence condition (2.8) is satisfied. Another example when this condition is satisfied is when ξ has no positive jumps (see section 2 in [START_REF] Caballero | Weak convergence of positive self-similar Markov processes and overshoots of Lévy processes[END_REF]).

We denote by P x the law, under P, of a self-similar Markov process X (x) starting from x > 0 and by P 0 the law, under P, of the limiting process X (0) . When m > 0 (i.e. ξ has positive drift) the entrance law under P 0 has been computed by Bertoin and Caballero [START_REF] Bertoin | Entrance from 0+ for increasing semi-stable Markov processes[END_REF] and Bertoin and Yor [START_REF] Bertoin | The entrance laws of self-similar Markov processes and exponential functionals of Lévy processes[END_REF] and can be expressed as follows: for every t > 0 and every measurable function f :

IR + → IR + , E 0 f (X t ) = 1 m E I -1 ξ f tI -1 ξ for t > 0, (2.9) 
where

I ξ = +∞ 0 exp α ξs ds.
When m = 0 there is no explicit form for the entrance law of X (0) in terms of the underlying Lévy process. However, Caballero and Chaumont [START_REF] Caballero | Weak convergence of positive self-similar Markov processes and overshoots of Lévy processes[END_REF] proved that it can be obtained as the weak limit of the entrance law for the positive drift case, when the drift tends towards 0. More precisely, for any bounded and continuous function f ,

E 0 f (X t ) = lim λ→0 1 λ E I -1 λ f tI -1 λ for t > 0, (2.10) 
where

I λ = +∞ 0 exp -α(ξ s -λs) ds.
Now, we introduce the so-called first and last passage times of X (0) by

S y = inf t ≥ 0 : X (0) t ≥ y and U y = sup t ≥ 0 : X (0) t ≤ y ,
for y > 0. Note that when m > 0, i.e. that the process X (0) drifts to +∞, the last passage time U x is finite a.s. for x ≥ 0. Moreover, if the process X (0) satisfies the scaling property with some index α > 0, then by the definition of S x and U x , we deduce that the first passage time process S = (S x , x ≥ 0) and the last passage time process U = (U x , x ≥ 0) are increasing self-similar processes with scaling index α -1 . From the path properties of X (0) we easily see that both processes start from 0 and go to +∞ as x increases.

When m = 0, the last passage time U x is no longer a.s. finite but the first passage time process is still self-similar, starts from 0 and goes to +∞ as x increases.

With no loss of generality, we will suppose that α = 1. Indeed, we see from the scaling property that if X (x) , x ≥ 0, is a pssMp with index α > 0, then X (x) α is a pssMp with index equal to 1. Therefore, the integral tests and LIL established in the sequel can easily be interpreted for any α > 0.

2.2 PssMp with no positive jumps and some path transformations.

Here, we suppose that ξ has no positive jumps. It is known that under this assumption, the process ξ has finite exponential moments of arbitrary positive order (see [START_REF] Bertoin | Lévy processes[END_REF] for background). In particular, we have that

E exp{uξ t } = exp{tψ(u)}, u ≥ 0
where ψ is defined by,

ψ(u) = au + 1 2 σ 2 u 2 + ]-∞,0[ e ux -1 -ux1I {x>-1} Π(dx), u ≥ 0.
It is important to note that the condition that ξ does not derive towards -∞, is equivalent to

m = ψ ′ (0+) ∈ [0, ∞[.
We recall Caballero and Chaumont's construction of X (0) , only in this particular case. In this direction, let T z = inf{s ≥ 0 : ξ s ≥ z} be the first time where the process ξ reaches the state z ≥ 0. Note that due to the absence of positive jumps and since the process ξ does not derive towards -∞, then for all z ≥ 0 T z < ∞ and ξ Tz = z, P -a.s.

Let x 1 ≥ x 2 ≥ • • • > 0, be an infinite decreasing sequence of strictly positive real numbers which converges to 0 and (ξ (n) , n ≥ 1) a sequence of random processes which are independent and have the same distribution as ξ.

From the sequences (x n ) and ξ (n) , n ≥ 1 , and by Lamperti's transformation (1.1) we may define a sequence of pssMp. More precisely,

X (xn) t = x n exp ξ (n) τ (n) (t/xn) , t ≥ 0, , n ≥ 1, (2.11) 
where

τ (n) (t) = inf s ≥ 0 : I s (ξ (n) ) > t , I t (ξ (n) ) = t 0 exp ξ (n) u du.
For each n ≥ 2, we also define the first time in which the process X (xn) reaches the state x n-1 , i.e.

S (n) = inf t ≥ 0 : X (xn) t ≥ x n-1 .
It is clear from (2.11) that

S (n) = x n I T (n) (ξ (n) )
, where T (n) is the first passage time where the process ξ (n) reaches the state log(x n-1 /x n ), i.e.

T (n) = inf{t ≥ 0 : ξ (n) ≥ log(x n-1 /x n )}.
Now from the sequences X (xn) , n ≥ 1 and S (n) , n ≥ 2 , we can construct the process X (0) as the concatenation of the processes X (xn) on each interval 0, S (n) , i.e.,

X (0) t =                X (x 1 ) t-Σ 2 if t ∈ [Σ 2 , ∞[, X (x 2 ) t-Σ 3 if t ∈ [Σ 3 , Σ 2 [, . . . X (xn) t-Σ n+1 if t ∈ [Σ n+1 , Σ n [, . . .
where Σ n = k≥n S (k) . We can deduce, by the definition of the process X (0) , that Σ n = inf t ≥ 0 :

X (0) t ≥ x n-1
Caballero and Chaumont proved that this construction makes sense, it does not depend on the sequence (x n ), and X (0) 0 = 0. As we mentioned before, X (0) is a càdlàg pssMp with the same semi-group as (X, P x ) for x > 0. In the general case such construction is more complicate since it depends also on the overshoots of the sequence of Lévy processes (ξ (n) , n ≥ 1). Note that the process X (0) inherits the path properties of the underlying Lévy process, hence X (0) does not have positive jumps and if m > 0 it drifts towards +∞. Hence for all x ≥ 0 S x and U x are finite and X (0)

S x = X (0) U x = x, almost surely.
From this construction and the path decomposition in Corollary 1 in Chaumont and Pardo [START_REF] Chaumont | The lower envelope of positive self-similar Markov processes[END_REF], we deduce that the first passage time process S = (S x , x ≥ 0) and the last passage time process U = (U x , x ≥ 0) are increasing self-similar processes with independent increments, in fact we will prove at the end of this section that these processes are also self-decomposable. This property was studied by the first time by Getoor in [START_REF] Getoor | The Brownian escape process[END_REF] for the last passage time of a Bessel process of index δ ≥ 3 and later by Jeanblanc, Pitman and Yor [START_REF] Jeanblanc | Self-similar processes with independent increments associated with Lévy and Bessel processes[END_REF] for δ > 2. If m = 0, the process S is still an increasing self-similar process with independent increments and also self-decomposable.

We are interested in describing the law of the process (X (0) (Sx-t) -, 0 ≤ t ≤ S x ) and in obtaining the law of the first passage time in terms of the underlying Lévy process. With this purpose, we now briefly recall the definition of the Lévy process conditioned to stay positive ξ ↑ and refer to [START_REF] Chaumont | On Lévy processes conditioned to stay positive[END_REF] for a complete account on this subject. The process ξ ↑ is an h-process of ξ killed when it first exists (0, ∞), i.e. at time R = inf{t : ξ t ≤ 0}. The law of this strong Markov process ξ ↑ is defined by its semi-group:

P(ξ ↑ t+s ∈ dy |ξ ↑ s = x) = h(y) h(x) P(ξ t + x ∈ dy , t < R) , s, t ≥ 0, x, y > 0
and its entrance law:

P(ξ ↑ t ∈ dx) = h(x) N (ξ t ∈ dx, t < ζ) ,
where N is the excursion measure of the reflected process ξ -I = (ξ t -inf s≤t ξ s , t ≥ 0), ζ is the lifetime of the generic excursion and h is the positive harmonic function (for ξ killed at time R) which is defined by:

h(x) = E ∞ 0 1I {I t ≥-x} dL t , x ≥ 0 ,
where I t = inf s≤t ξ s and L is the local time of the reflected process ξ -I. Note that ξ ↑ has no positive jumps and that almost surely lim t↓0 ξ ↑ t = 0, lim t↑+∞ ξ ↑ t = +∞, and ξ ↑ t > 0 for all t > 0.

The following time reversal property of ξ ↑ is an important tool for our next result, its proof can be found in Theorem VII.18 in Bertoin [START_REF] Bertoin | Lévy processes[END_REF] Lemma 1 The law of (x -ξ t , 0 ≤ t ≤ T x ) is the same as that of the time-reversed process (ξ ↑ (γ ↑ (x)-t)-, 0 ≤ t ≤ γ ↑ (x)), where γ ↑ (x) = sup{t ≥ 0, ξ ↑ t ≤ x}. Moreover, for every x > 0, the process ξ ↑ t , 0 ≤ t ≤ γ ↑ (x) is independent of ξ ↑ γ ↑ (x)+t -x, t ≥ 0 , and the latter has the same law as that of the process ξ ↑ . Now, for every y > 0 let us define X(y)

t = y exp -ξ ↑ τ ↑ (t/y) t ≥ 0, where τ ↑ t = inf s ≥ 0 : I s -ξ ↑ > t , and I s -ξ ↑ = s 0 exp -ξ ↑ u du.
We denote by Py , the law of X(y) . Since ξ ↑ derives towards +∞, we deduce that X(y) , reaches 0 at an almost surely finite random time, denoted by ρy = inf{t ≥ 0, X(y)

t = 0}.
Proposition 1 Suppose m ≥ 0. The law of the process time-reversed at its first passage time below x, X

(Sx-t)-, 0 ≤ t ≤ S x is the same as that of the process ( X(x) t , 0 ≤ t ≤ ρx ).

Proof:

Let us take any decreasing sequence (x n ) of positive real numbers which converges to 0 and such that x 1 = x. By Lemma 1, we can split ( X(x) t , 0 ≤ t ≤ ρ) into the sequence

x 1 exp -ξ ↑ τ ↑ (t/x 1 ) , x 1 I γ (n) -ξ ↑ ≤ t ≤ x 1 I γ (n+1) -ξ ↑ , n ≥ 1,
where

γ (n) = sup{t ≥ 0 : ξ ↑ t ≤ log x n /x}. Then to prove this result, it is enough to show that, for each n ≥ 1 X (0) (Sx n -t)-, 0 ≤ t ≤ S (n) (d) = x exp -ξ ↑ τ ↑ (t/x 1 ) , xI γ (n) -ξ ↑ ≤ t ≤ xI γ (n+1) -ξ ↑ where S (n) = S xn -S x n+1 .
Fix n ≥ 1, from the Caballero and Chaumont's construction, we know that the lefthand side of the above identity has the same law as

x n+1 exp ξ (n+1) τ (n+1) I T (n+1) ξ (n+1) -t/x n+1 , 0 ≤ t ≤ x n+1 I T (n+1) ξ (n+1) . (2.12) 
On the other hand by Lemma 1, we know that (-

ξ ↑ t , 0 ≤ t ≤ γ (n) ) is independent of ξ ↑(n) = (log(x/x n ) -ξ ↑ γ (n) +t , t ≥ 0)
and that the latter has the same law as -ξ ↑ . Since

τ ↑ I γ (n) -ξ ↑ + t/x = γ (n) + inf s ≥ 0 : s 0 exp -ξ ↑ (n) u du ≥ t/x n ,
it is clear that the right-hand side of the above identity in distribution has the same law as,

x n exp -ξ ↑ τ ↑ (t/x n ) , 0 ≤ t ≤ x n I γ ↑ (log(xn/x n+1 )) -ξ ↑ . (2.13)
Therefore, it is enough to show that (2.12) and (2.13) have the same distribution. Now, let us define the exponential functional of ξ

(n+1) (T (n+1) -t) -, 0 ≤ t ≤ T (n+1) as follows, B (n+1) s = s 0 exp ξ (n+1) T (n+1) -u du for s ∈ [0, T (n+1) ],
and

H(t) = inf 0 ≤ s ≤ T (n+1) , B (n+1) s 
> t , the right continuous inverse of the exponential functional B (n+1) . By a change of variable, it is clear that

B (n+1) s = I T (n+1) ξ (n+1) -I T (n+1) -s ξ (n+1) , and if we set t = x n+1 B (n+1) s , then s = H(t/x n+1 ) and hence τ (n+1) I T (n+1) ξ (n+1) -t/x n+1 = τ (n+1) I T (n+1) -s ξ (n+1) = T (n+1) -H(t/x n+1 ).
Therefore, we can rewrite (2.12) as follows

x n+1 exp ξ (n+1) T (n+1) -H(t/x n+1 ) , 0 ≤ t ≤ x n+1 B (n+1) T (n+1) , (2.14) 
and applying Lemma 1, we get that (2.14) has the same law as that of the process defined in (2.13).

An important consequence of this Proposition is the following time-reversed identity. For any y < x, X

(S x -t)-, S y ≤ t ≤ S x (d) = X(x) t , 0 ≤ t ≤ Ũy , (0) 
where Ũy = sup t ≥ 0, X(x) t ≤ y . Four the next result we need to introduce the concept of self-decomposable random variable.

Definition 1 We say that a random variable X is self-decomposable if for every constant 0 < c < 1 there exists a variable Y c which is independent of X and such that Y c + cX has the same law as X.

Corollary 1 Let m ≥ 0. For every x > 0 the law of S x , the first passage time of the process X (0) above x, has the same law as xI -ξ ↑ , where

I -ξ ↑ = ∞ 0 exp{-ξ ↑ u }du.
Proof: From Proposition 1, we see that S x and ρx have the same law. By the Lamperti representation of X(x) , we deduce that ρx = xI -ξ ↑ and then the identity in law follows. Now, let 0 < c < 1. From Lemma 1, we know that the killed process (ξ ↑ t , 0 ≤ t ≤ γ ↑ (log(1/c))) is independent of (ξ ↑ γ ↑ (log(1/c))+t + log c, t ≥ 0) and that the latter has the same as ξ ↑ , then

I -ξ ↑ = γ ↑ (log(1/c)) 0 exp{-ξ ↑ u }du + c +∞ 0 exp -ξ ↑ γ ↑ (log(1/c))+u -log c du,
the self-decomposability follows.

Lemma 2 Let m > 0. For every x > 0 the law of U x , the last passage time of the process X (0) below x, has the same law as xI ξ . Moreover, U 1 is self-decomposable.

Proof: The first part of this Lemma is consequence of Proposition 1 in [START_REF] Chaumont | The lower envelope of positive self-similar Markov processes[END_REF]. Let 0 < c < 1. From the Markov property, we know that (ξ t , 0 ≤ t ≤ T log(1/c) ) is independent of (ξ T log(1/c) +t + log c, t ≥ 0) and that the latter has the same distribution as ξ, then

I ξ = T log(1/c) 0 exp -ξ u du + c +∞ 0 exp -ξ T log(1/c) +u -log c du,
the self-decomposability follows.

3 The lower envelope of the first passage time.

In this section, we are interested in describing the lower envelope at 0 and at +∞ of the first passage time of X (0) trough integral tests. We first deal with the case when X (0) has no positive jumps since in this case we may obtain an explicit integral tests in terms of the tail probability of I(-ξ ↑ ) and also we may consider the case when m = 0. The general case will not be developed in a complete form but we will use the integral tests of the lower envelope of the last passage times due to Pardo [START_REF] Pardo | On the future infimum of positive self-similar Markov processes[END_REF] (see Theorems 3 and 4) to get the upper bound. In fact, it does not seem easy to determine the law of S 1 in terms of the underlying Lévy process and even establish integral tests in terms of the decomposition of the first passage time in the Caballero and Chaumont's construction since the sequence of the overshoots related to the underlying Lévy process is a Markov chain (see Proposition 2 in [START_REF] Caballero | Weak convergence of positive self-similar Markov processes and overshoots of Lévy processes[END_REF]). This limited to us to assume that m > 0, since the last passage time is not defined on the oscillating case.

The case with no positive jumps.

Let us define F ↑ (t)

(def) = P I(-ξ ↑ ) < t ,
and we denote by H -1 0 , the totality of positive increasing functions h(x) on (0, ∞) that satisfy i) h(0) = 0, and ii) there exists β ∈ (0, 1) such that sup

t<β h(t) t < ∞.
The lower envelope at 0 of the first passage process S is as follows:

Proposition 2 Let m ≥ 0 and h ∈ H -1 0 . i) If 0 + F ↑ h(x) x dx x < ∞,
then for all ǫ > 0

P S x < (1 -ǫ)h(x), i.o., as x → 0 = 0. ii) If 0 + F ↑ h(x) x dx x = ∞,
then for all ǫ > 0

P S x < (1 + ǫ)h(x), i.o., as x → 0 = 1.
Let us define H -1 ∞ , the totality of positive increasing functions h(t) on (0, ∞) that satisfy i) lim t→∞ h(t) = +∞, and ii) there exists β ∈ (1, +∞) such that sup

t>β h(t) t < ∞.
The lower envelope at +∞ of the first passage process S is as follows:

Proposition 3 Let m ≥ 0 and h ∈ H -1 ∞ . i) If +∞ F ↑ h(x) x dx x < ∞,
then for all ǫ > 0

P S x < (1 -ǫ)h(x), i.o., as x → +∞ = 0. ii) If +∞ F ↑ h(x) x dx x = ∞,
then for all ǫ > 0

P S x < (1 + ǫ)h(x), i.o., as x → +∞ = 1.
The above Propositions are consequence of Lemmas 3.1 and 3.2 of Watanabe [START_REF] Watanabe | Sample function behavior of increasing processes of class L[END_REF] and Corollary 1, this follows from the fact that S is an increasing self-similar process. It is important to note that the above results may be proved using similar arguments as in Theorems 3 and 4 in Pardo [START_REF] Pardo | On the future infimum of positive self-similar Markov processes[END_REF], it is enough to exchange I( ξ) by I(-ξ ↑ ) and note that Γ = 1.

The general case.

Let us define G(t)

(def) = P S 1 < t and F (t) (def) = P I( ξ) < t .
The lower envelope at 0 of the first passage process S is as follows:

Proposition 4 Let m > 0 and h ∈ H -1 0 . i) If 0 + G h(x) x dx x < ∞,
then for all ǫ > 0

P S x < (1 -ǫ)h(x), i.o., as x → 0 = 0. ii) If 0 + F h(x) x dx x = ∞,
then for all ǫ > 0

P S x < (1 + ǫ)h(x), i.o., as x → 0 = 1.
Proof: We first prove the convergent part. Let (x n ) be a decreasing sequence of positive numbers which converges to 0 and let us define the events A n = {S x n+1 < h(x n )}. Now, we choose x n = r n , for r < 1. From the first Borel Cantelli's Lemma, if

n P(A n ) < ∞, it follows S r n+1 ≥ h r n P -a.s.,
for all large n. Since the function h and the process S are increasing, we have

S x ≥ h(x) for r n+1 ≤ x ≤ r n .
On the other hand, from the scaling property, we get that

n P S r n < h r n+1 ≤ ∞ 1 P r t S 1 < h r t dt = - 1 log r r 0 G h(x) x dx x .
From our hypothesis, this last integral is finite. Then from the above discussion, there exist x 0 such that for every x ≥ x 0 S x ≥ r 2 h(x), for all r < 1.

Clearly, this implies that

P 0 S x < r 2 h(x), i.o., as x → 0 = 0, which proves part (i).
The divergent part follows from the integral test for the lower envelope of the last passage time due to Pardo [START_REF] Pardo | On the future infimum of positive self-similar Markov processes[END_REF], ( see Theorem 3, part (ii)).

The lower envelope at +∞ of the first passage process S is as follows:

Proposition 5 Let m > 0 and h ∈ H -1 ∞ . i) If +∞ G h(x) x dx x < ∞,
then for all ǫ > 0

P S x < (1 -ǫ)h(x), i.o., as x → +∞ = 0. ii) If +∞ F h(x) x dx x = ∞,
then for all ǫ > 0

P S x < (1 + ǫ)h(x), i.o., as x → +∞ = 1.
Proof: The proof is very similar to that in Proposition 4. We get the integral test following the same arguments for the proof of part (i) and (ii) for the sequence x n = r n , with r > 1.

Note that in the general case, the integral tests for the lower envelope of S no longer depend on F ↑ as in the case with no positive jumps. Recall that it does not seem easy to determine the law of S and even have a nice decomposition as for the last passage times that allows us to obtain and integral test which only depends on the law of S 1 . We remark that F (t) is smaller or equal to G(t), for t ≥ 0, but for our purpose the integral tests of above will be very useful since we will compare in sections 5 and 6 the behaviour of F and G under different conditions. [START_REF] Bertoin | The entrance laws of self-similar Markov processes and exponential functionals of Lévy processes[END_REF] The upper envelope of pssMp.

Here, we are interested in describing the upper envelope at 0 and at +∞ of the pssMp X (x) trough integral tests. By the same reasons as those mentioned in the precedent section, we will first study the case with no positive jumps.

The case with no positive jumps.

The following theorem means in particular that the upper envelope at 0 of X (0) only depends on the tail behaviour of the law of I(-ξ ↑ ) and on the additional hypothesis

E log + I -ξ ↑ -1 < ∞. (4.15)
Let us recall that

F ↑ (t) = P I -ξ ↑ < t ,
and denote by H 0 the totality of positive increasing functions h(t) on (0, ∞) that satisfy i) h(0) = 0, and ii) there exists β ∈ (0, 1) such that sup

t<β t h(t) < ∞. Theorem 2 Let m ≥ 0 and h ∈ H 0 . i) If 0 + F ↑ t h(t) dt t < ∞,
then for all ǫ > 0

P 0 X t > (1 + ǫ)h(t), i.o., as t → 0 = 0.
ii) Assume that (4.15) is satisfied. If

0 + F ↑ t h(t) dt t = ∞,
then for all ǫ > 0

P 0 X t > (1 -ǫ)h(t), i.o., as t → 0 = 1.
Proof: Let (x n ) be a decreasing sequence which converges to 0. We define the events

A n = There exists t ∈ [S x n+1 , S xn ] such that X (0) t > h(t) .
From the fact that S xn tends to 0, a.s. when n goes to +∞, we see

X (0) t > h(t), i.o., as t → 0 = lim sup n→+∞ A n .
Since h is an increasing function the following inclusions hold

x n > h S xn ⊂ A n ⊂ x n > h S x n+1 . (4.16)
Now, we prove the convergent part. We choose x n = r n , for r < 1 and h r (t) = r -2 h(t).

Since h is increasing, we deduce that

n P r n > h r S r n+1 ≤ +∞ 1 P r t > h S t r dt ≤ - 1 log r r 0 P t > h S t dt t .
Replacing h by h r in (4. [START_REF] Khoshnevisan | On the future infima of some transient processes[END_REF], we see that we can obtain our result if

r 0 P t > h S t dt t < ∞.
From elementary calculations and Corollary 1, we deduce that

r 0 P t > h S t dt t = E h -1 (r) 0 1I t/r<I(-ξ ↑ )<t/h(t) dt t ,
where h -1 (s) = inf{t > 0, h(t) > s}, the right inverse function of h. Then, this integral converges if

h -1 (r) 0 P I -ξ ↑ < t h(t) dt t < ∞.
This proves part (i).

Next, we prove the divergent case. We suppose that h satisfies

0 + F ↑ t h(t) dt t = ∞.
Take, again, x n = r n , for r < 1 and define

B n (def) = ∞ m=n A m = There exists t ∈ (0, S r n ] such that X (0) t > h r (t) .
Note that the family (B n ) is decreasing and

B (def) = n≥1 B n = X (0) t > h r (t), i.o., as t → 0 ,
then it is enough to prove that lim P(B n ) = 1 to obtain our result. Again replacing h by h r in inclusion (4.16), we see

P(B n ) ≥ 1 -P r j ≤ h r S r j ) , for all n ≤ j ≤ m -1 , (4.17) 
where m is chosen arbitrarily m ≥ n + 1. Now, we define the events

C n (def) = r n > rh S r n ) .
We will prove that P(C n ) = ∞. Since the function h is increasing, from the identity in law of Corollary 1 it is straightforward that

n≥1 P(C n ) ≥ +∞ 0 P r t > h S r t dt = - 1 log r 1 0 P t > h tI -ξ ↑ dt t .
Hence, if this last integral is infinite, we get that P(C n ) = ∞. In this direction, we have

r 0 P t > h tI -ξ ↑ dt t = E h -1 (r) 0 1I t/r<I(-ξ ↑ )<t/h(t) dt t .
On the other hand, we see

h -1 (r) 0 P I -ξ ↑ < t h(t) dt t = h -1 (r) 0 P t r < I -ξ ↑ < t h(t) dt t + h -1 (r) 0 P I -ξ ↑ < t r dt t ,
and

h -1 (r) 0 P I -ξ ↑ < t r dt t ≤ E log + h -1 (r) r I -ξ ↑ -1
which is clearly finite from our assumptions. Then, we deduce

E h -1 (r) 0 1I t/r<I(-ξ ↑ )<t/h(t) dt t = ∞,
and hence

P(C n ) = ∞. Next, for n ≤ m -1, we define H(n, m) (def) = P r j ≤ rh S r j -S r m , for all n ≤ j ≤ m -1 ,
and we will prove that there exist (n l ) and (m l ), two increasing sequences such that 0 ≤ n l ≤ m l -1, and n l , m l go to +∞ and H(n l , m l ) tends to 0 as l goes to infinity. We suppose the contrary, i.e., there exist δ > 0 such that H(n, m) ≥ δ for all sufficiently large integers m and n. Hence from the independence of the increments of S,

1 ≥ P ∞ m=n+1 C m ≥ ∞ m=n+1 P C m m-1 j=n C c j ≥ ∞ m=n+1 P r m > rh S r m H(n, m) ≥ δ ∞ m=n+1 P C m ,
but since P(C n ) diverges, we see that our assertion is true. Now, we define

ρ n l ,m l (x) (def) = P r j ≤ rh S r j -S r m l -1 + x for, n l ≤ j ≤ m l -2 ,
x ≥ 0, and G(n l , m l )

(def)

= P r j ≤ rh S r j for, n l ≤ j ≤ m l -1 .

Since h is increasing, we see that ρ n l ,m l (x) is increasing in x.

If we denote by µ and μ the laws of S 1 and S 1 -S r respectively, by the scaling property we may express H(n l , m l ) and G(n l , m l ) as follows

H(n l , m l ) = +∞ 0 μ(dx)1I h(r m l -1 x)≥r m l ρ n l ,m l (r m l -1 x) and, G(n l , m l ) = +∞ 0 µ(dx)1I h(r m l -1 x)≥r m l ρ n l ,m l (r m l -1 x).
In particular, we get that for l sufficiently large

H(n l , m l ) ≥ ρ n l ,m l (N ) +∞ N μ(dx) f or N ≥ rC,
where C = sup x≤β x/h(x).

Since H(n l , m l ) converges to 0, as l goes to +∞ and μ does not depend on l, then ρ n l ,m l (N ) also converges to 0 when l goes to +∞, for every N ≥ rC.

On the other hand, we have

G(n l , m l ) ≤ ρ n l ,m l (N ) N 0 µ(dx) + ∞ N µ(dx),
then letting l and N go to infinity, we get that G(n l , m l ) goes to 0. Then, by (4.17) we get that lim P(B n ) = 1 and with this we finish the proof.

For the integral tests at +∞, we define H ∞ , the totality of positive increasing functions h(t) on (0, ∞) that satisfy i) lim t→∞ h(t) = ∞, and ii) there exists β > 1 such that sup

t>β t h(t) < ∞.
The upper envelope of X (x) at +∞ is given by the following result.

Theorem 3 Let m ≥ 0 and h ∈ H ∞ . i) If +∞ F ↑ t h(t) dt t < ∞,
then for all ǫ > 0 and for all x ≥ 0,

P x X t > (1 + ǫ)h(t), i.o., as t → +∞ = 0. ii) Assume that (4.15) is satisfied. If +∞ F ↑ t h(t) dt t = ∞,
then for all ǫ > 0 and for all x ≥ 0

P x X t > (1 -ǫ)h(t), i.o., as t → +∞ = 1.
Proof: We first consider the case where x = 0. In this case the proof of the tests at +∞ is almost the same as that of the tests at 0. It is enough to apply the same arguments to the sequence x n = r n , for r > 1. Now, we prove (i) for any

x > 0. Let h ∈ H ∞ such that +∞ F ↑ t h(t) dt t is finite. Let x > 0 and S x = inf{t ≥ 0 : X (0) t ≥ x}. Since clearly +∞ F ↑ t h(t -S x ) dt t < ∞,
from the Markov property at time S x , we have for all ǫ > 0

P 0 X t > (1+ǫ)h(t-S x ), i. o., as t → ∞ = P x X t > (1+ǫ)h(t), i. o., as t → ∞ = 0,
which proves part (i). Part (ii) can be proved in the same way.

The general case.

Proposition 6 Let m > 0 and h ∈ H 0 .

i) If

0 + G t h(t) dt t < ∞,
then for all ǫ > 0

P X (0) t > (1 + ǫ)h(t), i.o., as t → 0 = 0. ii) If 0 + F t h(t) dt t = ∞,
then for all ǫ > 0

P X (0) t < (1 -ǫ)h(t), i.o., as t → 0 = 1.
Proof: Let (x n ) be a decreasing sequence which converges to 0. We define the events

A n = There exists t ∈ [S x n+1 , S xn ) such that X (0) t > h(t) .
From the fact that S xn tends to 0, a.s. when n goes to +∞, we see

X (0) t > h(t), i.o., as t → 0 = lim sup n→+∞ A n .
Since h is an increasing function the following inclusion hold

A n ⊂ x n > h S x n+1 . (4.18)
Now, we prove the convergent part. We choose x n = r n , for r < 1 and h r (t) = r -2 h(t).

Since h is increasing, we deduce

n P r n > h r S r n+1 ≤ - 1 log r r 0 P t > h S t dt t .
Replacing h by h r in (4. [START_REF] Lamperti | Semi-stable Markov processes[END_REF], we see that we can obtain our result if

r 0 P t > h S t dt t < ∞.
From elementary calculations, we get

r 0 P t > h S t dt t = E h -1 (r) 0 1I t/r<S 1 <t/h(t) dt t ,
where h -1 (s) = inf{t > 0, h(t) > s}, the right inverse function of h. Then, this integral converges if

h -1 (r) 0 P S 1 < t h(t) dt t < ∞.
This proves part (i).

The divergent part follows from the integral test for the upper envelope of the future infimum of pssMp due to Pardo [START_REF] Pardo | On the future infimum of positive self-similar Markov processes[END_REF], ( see Theorem 1, part (ii)).

Proposition 7 Let m > 0 and h ∈ H ∞ . i) If +∞ G t h(t) dt t < ∞,
then for all ǫ > 0 and for all x ≥ 0

P X (x) t > (1 + ǫ)h(t), i.o., as t → +∞ = 0. ii) If +∞ F t h(t) dt t = ∞,
then for all ǫ > 0 and for all x ≥ 0

P X (x) t < (1 -ǫ)h(t), i.o., as t → +∞ = 1.
Proof: We first consider the case where x = 0. In this case the proof of the tests at +∞ is almost the same as that of the tests at 0. It is enough to apply the same arguments to the sequence x n = r n , for r > 1. Now, we prove (i) for any

x > 0. Let h ∈ H ∞ such that +∞ G t h(t)
dt t is finite. Let x > 0 and S x and note by µ x the law of X (0)

Sx . Since clearly +∞ G t h(t -S x ) dt t < ∞,
from the Markov property at time S x , we have for all ǫ > 0 ----→ z→+∞ θ.

P 0 X t > (1 + ǫ)h(t -S x ), i. o., as t → ∞ = [x,+∞) P y X t > (1 + ǫ)h(t), i. o.,
Then from section 2 in [START_REF] Caballero | Weak convergence of positive self-similar Markov processes and overshoots of Lévy processes[END_REF], the law of θ is given by

P(θ > t) = E(σ 1 ) (t,∞) sν(ds), t ≥ 0,
where σ is the upward ladder height process associated with ξ and ν its Lévy measure. Hence, P(e θ > z) > 0 for z > 1, and for any α > 0, µ x (x, x + α) > 0. Hence (4. [START_REF] Pardo | On the future infimum of positive self-similar Markov processes[END_REF] shows that there exists y > x such that

P X (y) t > (1 + ǫ)h(t), i. o., as t → ∞ = 0,
for all ǫ > 0. The previous allows us to conclude part (i). Part (ii) can be proved in the same way.

5 The regular case.

In this section, we will assume that m > 0. According to Chaumont and Pardo [START_REF] Chaumont | The lower envelope of positive self-similar Markov processes[END_REF] the law of U 1 , the last passage time below level 1, is the same as νI( ξ) where ν is a positive random variable bounded above by 1 and independent of the exponential functional I( ξ). Hence, we have the following inequality νI( ξ) ≤ I( ξ) a.s. Now, let us define F ν (t) := P νI( ξ) < t , and suppose that

ct β L(t) ≤ F (t) ≤ F ν (t) ≤ Ct β L(t) as t → 0, (5.20) 
where β > 0, c and C are two positive constants such that c ≤ C and L is a slowly varying function at 0. An important example included in this case is when F and F ν are regularly varying functions at 0.

Proposition 8 Under condition (5.20), we have that

ct β L(t) ≤ G(t) ≤ C ǫ t β L(t) as t → 0,
where C ǫ is a positive constant bigger than C.

Proof:

The lower bound is clear since F (t) ≤ G(t), for all t ≥ 0 and our assumption. Now, let us define M (0) t = sup 0≤s≤t X (0) s and fix ǫ > 0. Then, by the Markov property and the fact that J (x) is an increasing process, we have

P 0 J 1 > 1 -ǫ t ≥ P 0 J 1 > 1 -ǫ t , M 1 ≥ 1 t = E S 1/t ≤ 1, P X (0) S 1/t J 1-S 1/t > 1 -ǫ t ≥ E S 1/t ≤ 1, P X (0) S 1/t J 0 > 1 -ǫ t .
Since X

S 1/t ≥ 1/t a.s., and the Lamperti representation (1.1), we deduce that

E S 1/t ≤ 1, P X (0) S 1/t J 0 > 1 -ǫ t ≥ P S 1/t < 1 P inf s≥0 ξ s > log(1 -ǫ) .
On the other hand, under the assumption that ξ drifts towards +∞, we know from Section 2 of Chaumont and Doney [START_REF] Chaumont | On Lévy processes conditioned to stay positive[END_REF] (see also Proposition VI.17 in [START_REF] Bertoin | Lévy processes[END_REF]) that for all ǫ > 0

K ǫ := P inf s≥0 ξ s > log(1 -ǫ) > 0.
Hence

K -1 ǫ P 0 J 1 > 1 -ǫ t ≥ P S 1 < t which implies that CK -1 ǫ t 1 -ǫ β L(t) ≥ K -1 ǫ P U 1 < t 1 -ǫ ≥ P S 1 < t , as t → 0,
then the proposition is proved.

The next result give us integral tests for the lower envelope of S at 0 and at ∞, under condition (5.20).

Theorem 4 Under condition (5.20), the lower envelope of S at 0 and at +∞ is as follows:

i) Let h ∈ H -1 0 , such that either lim x→0 h(x)/x = 0 or lim inf x→0 h(x)/x > 0, then P S x < h(x), i.o., as x → 0 = 0 or 1, according as Since F (t) ≤ G(t) for all t ≥ 0, it is clear that we only need to prove that

0 + F h(x) x dx x is finite or infinite. ii) Let h ∈ H -1 ∞ ,
λ 0 F h(x) x dx x < ∞ implies that λ 0 G h(x) x dx x < ∞.
From the hypothesis, either lim x→0 h(x)/x = 0 or lim inf x→0 h(x)/x > 0. In the first case, from condition (5.20) there exists λ > 0 such that, for every

x < λ c h(x) x β L h(x) x ≤ F h(x) x ≤ C h(x) x β L h(x) x .
Since, we suppose that

λ 0 F h(x) x dx x is finite, then λ 0 h(x) x β L h(x) x dx x < ∞,
hence from Proposition 8, we get that

λ 0 G h(x)
x dx

x is also finite. In the second case, since for any 0 < δ < ∞, P I < δ > 0, and lim inf x→0 h(x)/x > 0, we have for any y

0 < P I < lim inf x→0 h(x) x < P I < h(y) y . (5.22) 
Hence, since for every t ≥ 0, F (t) ≤ G(t), we deduce that

λ 0 F h(x) x dx x = λ 0 G h(x) x dx x = ∞.
Now, let us check that for any constant β > 0,

λ 0 F h(x) x dx x < ∞ if and only if λ 0 F βh(x) x dx x < ∞, (5.23) 
Again, from the hypothesis either lim x→0 h(x)/x = 0 or lim inf x→0 h(x)/x > 0. In the first case, we deduce (5.23) from (5.20). In the second case, from (5.22) both of the integrals in (5.23) are infinite. Next, it follows from Proposition 4 part (i) and (5.21) that if 0 + F h(x)

x dx

x is finite, then for all ǫ > 0, P S x < (1 -ǫ)h(x), i.o., as x → 0 = 0.

If 0 + F h(x)
x dx

x diverges, then from Proposition 4 part (ii) that for all ǫ > 0,

P S x < (1 + ǫ)h(x), i.o., as x → 0 = 1.
Then (5.23) allows us to drop ǫ in this implications.

The tests at +∞ are proven through the same way.

From the previous Theorem, we deduce that under condition (5.20) the first and the last passage time processes have the same lower functions ( see Theorem 5 in [START_REF] Pardo | On the future infimum of positive self-similar Markov processes[END_REF]).

Theorem 5 Under condition (5.20), the upper envelope of the pssMp at 0 and at +∞ is as follows: Proof: We prove this result by following the same arguments as the proof of the previous Theorem.

i) Let h ∈ H 0 ,
Note that from this result, we deduce that under condition (5.20) a pssMp and its future infimum have the same upper functions ( see Theorem 6 in [START_REF] Pardo | On the future infimum of positive self-similar Markov processes[END_REF]).

6 The log-regular case.

In this section, we also assume that m > 0. Here, we will study to types of behaviour of F and F ν , both types of behaviour allow us to obtain laws of the iterated logarithm for the upper envelope of X (0) . The first type of behaviour that we will consider is when log F and log F ν are regularly varying at 0, i.e.

-log F ν (1/t) ∼ -log F (1/t) ∼ λt δ L(t), as t → +∞, (6.24) where λ > 0, δ > 0 and L is a slowly varying function at +∞. The second type of behaviour that we will consider is when log F and log

F ν satisfy that -log F ν (1/t) ∼ -log F (1/t) ∼ K(log t) γ , as t → +∞, (6.25) 
where K and γ are strictly positive constants.

6.1 Laws of the iterated logarithm for pssMp.

Proposition 9 Under condition (6.24), the tail probability of S 1 satisfies

-log G(1/t) ∼ λt δ L(t) as t → +∞. (6.26)
Similarly, under condition (6.25), the tail probability of S 1 satisfies

-log G(1/t) ∼ K(log t) γ as t → +∞. ( 6 

.27)

Proof: First, we prove the upper bound of (6.26). With the same notation as in the proof of Proposition 8, we see

-log P νI( ξ) < 1/t = -log P 0 J 1 > t ≥ -log P 0 M 1 > t , which implies 1 ≥ lim sup t→∞ -log P 0 M 1 > t λt δ L(t) ,
and since P 0 M 1 > t = P S 1 < 1/t , we get the upper bound. Now, fix ǫ > 0. From the proof of Proposition 8, we have

P 0 J 1 > (1 -ǫ)t ≥ P S t < 1 P inf s≥0 ξ s > log(1 -ǫ) .
On the other hand, we know

K ǫ := P inf s≥0 ξ s > log(1 -ǫ) > 0,
Hence,

-log P 0 J 1 > (1 -ǫ)t ≤ -log P S 1 < 1/t -log K ǫ ,
which implies the following lower bound

(1 -ǫ) δ ≤ lim inf t→∞ -log P S 1 < 1/t λt δ L(t) ,
and since ǫ can be chosen arbitrarily small, (6.26) is proved.

The upper bound of tail behaviour (6.27) is proven through the same way. For the lower bound, we follow the same arguments as above and we get that

-log P 0 J 1 > (1 -ǫ)t ≤ -log P S 1 < 1/t -log K ǫ , which implies 1 = lim inf t→∞ log(1 -ǫ)t log t γ ≤ lim inf t→∞ -log P S 1 < 1/t K(log t) γ ,
then the proposition is proved.

The following result gives us laws of iterated logarithm for the first passage time process when condition (6.24) is satisfied. Define the functions

ϕ(x) := x inf s : 1/F (1/s) > | log x| , x > 0, x = 1, and 
ϑ(t) := t 2 ϕ(t)
, t > 0, t = 1.

Theorem 6 Under condition (6.24), we have the following law of the iterated logarithm for S:

lim sup x→0 S x ϕ(x) = 1 and lim sup x→∞ S x ϕ(x) = 1 almost surely.
The upper envelope of pssMp, under condition (6.24), are described by the following law of the iterated logarithm: i)

lim sup t→0 X (0) t ϑ(t) = 1, almost surely. ii) For all x ≥ 0, lim sup t→+∞ X (x) t ϑ(t) = 1, almost surely.
Proof: This Theorem is a consequence of Propositions 4, 5,6,7 and 9, and it is proven in the same way as Theorem 4 in [START_REF] Chaumont | The lower envelope of positive self-similar Markov processes[END_REF], we only need to emphasize that we can replace log G by log F , since they are asymptotically equivalent.

Note that under condition (6.24) a pssMp and its future infimum satisfy the same law of the iterated logarithm (see Theorem 8 in [START_REF] Pardo | On the future infimum of positive self-similar Markov processes[END_REF]) but they do not necessarily have the same upper functions. Similarly, under condition (6.25) we may establish laws of the iterated logarithm for the upper envelope of pssMp and their future infimum. In this direction, let us define

φ(x) := x exp -K -1 log | log x| 1/γ , x > 0, x = 1,
and

Φ(t) := t 2 φ(t) , t > 0, t = 1.
We recall that J (x) = (J

(x)
t , t ≥ 0) is the future infimum process of X (x) , for x ≥ 0, where J The upper envelope of pssMp and their future infimum processes, under condition (6.25), are described by the following laws of the iterated logarithm:

(x) t = inf s≥t X (x) .
iii)

lim sup t→0 X (0) t Φ(t) = 1 and lim sup t→0 J (0) t Φ(t) = 1 almost surely. iv) For all x ≥ 0, lim sup t→+∞ X (x) t Φ(t) = 1 and lim sup t→0 J (x) t Φ(t) = 1 almost surely.
Proof: We first prove part (i) for small times. Note that it is easy to check that both φ(x) and φ(x)/x are increasing in a neighbourhood of 0, moreover the function φ(x)/x is bounded by 1, for x ∈ [0, 1).

From condition (6.25) and Proposition 9, we have for all k 1 < 1 and k 2 > 1 and for all t sufficiently large,

k 1 K(log t) γ ≤ -log G(1/t) ≤ k 2 K(log t) γ ,
so that for φ defined above,

k 1 log | log t| ≤ -log G (φ(x)/x) ≤ k 2 log | log t|, hence G φ(x) x ≥ (| log t|) -k 2 .
Since k 2 > 1, we obtain the convergence of the integral

0+ G φ(x) x dt t ,
which proves that for all ε > 0,

P(S x < (1 -ε)φ(x), i.o., as x → 0) = 0 from Proposition 4 part (i).
The divergent part is proven through the same way so that from Proposition 4 part (ii), one has for all ε > 0,

P(S x < (1 + ε)φ(x), i.o., as x → 0) = 1
and the conclusion follows. Condition (6.25) implies that φ(x) is increasing in a neighbourhood of +∞ whereas φ(x)/x is decreasing in a neighbourhood of +∞. Hence, the proof of the result at +∞ is done through the same way as at 0, by using Proposition 5.

The parts (ii), (iii) and (iv) can be proved following the same arguments, it is enough to specify that the laws of the iterated logarithm of the last passage process and the future infimum process will use the integral tests found by Pardo [START_REF] Pardo | On the future infimum of positive self-similar Markov processes[END_REF], (see Theorems 1,2,3 and 4 in [START_REF] Pardo | On the future infimum of positive self-similar Markov processes[END_REF])

6.2 The case with no positive jumps.

Here, we suppose that the pssMp X (x) has no positive jumps. Our next result is a remarkable asymptotic property of this type of pssMp. This Theorem means in particular that if there exists a positive function that describes the upper envelope of X (x) by a law of the iterated logarithm then the same function describes the upper envelope of the future infimum of X (x) and the pssMp X (x) reflected at its future infimum.

Theorem 8 Let us suppose that

lim sup t→0 X (0) t Λ(t) = 1 almost surely,
where Λ is a positive function such that Λ(0) = 0, then

lim sup t→0 J (0) t Λ(t) = 1 and lim sup t→0 X (0) t -J (0) t Λ(t) = 1 almost surely. Moreover, if for all x ≥ 0 lim sup t→+∞ X (x) t Λ(t) = 1 almost surely,
where Λ is a positive function such that lim t→+∞ Λ(t) = +∞, then

lim sup t→+∞ J (x) t Λ(t) = 1 and lim sup t→+∞ X (0) t -J (0) t Λ(t) = 1 almost surely.
Proof: First, we prove the result for large times. Let x ≥ 0. Since J

(x) t ≤ X (x) t
for every t ≥ 0 and our hypothesis, then it is clear

lim sup t→+∞ J (x) t Λ(t) ≤ 1 almost surely.
Now, fix ǫ ∈ (0, 1/2) and define

R n = inf s ≥ n : X (x) s Λ(s) ≥ (1 -ǫ) .
From the above definition, it is clear that R n ≥ n and that R n diverge a.s. as n goes to +∞. From our hypothesis, we deduce that R n is finite, a.s. Now, since X (x) has no positive jumps and applying the strong Markov property and Lamperti representation (1.1), we have

P J (x) R n Λ(R n ) ≥ (1 -2ǫ) = P J (x) R n ≥ (1 -2ǫ)X (x) R n (1 -ǫ) = E P J (x) Rn ≥ (1 -2ǫ)X (x) R n (1 -ǫ) X (x) Rn = P inf t≥0 ξ ≥ log (1 -2ǫ) (1 -ǫ) = cW log 1 -ǫ 1 -2ǫ > 0,
where W : [0, +∞) → [0, +∞) is the unique absolutely continuous increasing function with Laplace exponent

+∞ 0 e -λx W (x)dx = 1 ψ(λ)
for λ > 0, and c = 1/W (+∞), (see Bertoin [START_REF] Bertoin | Lévy processes[END_REF] Theorem VII.8). Since R n ≥ n,

P J (x) t Λ(t) ≥ (1 -2ǫ), for some t ≥ n ≥ P J (x) Rn Λ(R n ) ≥ (1 -2ǫ) .
Therefore, for all ǫ ∈ (0, 1/2),

P J (x) t Λ(t) ≥ (1 -2ǫ), i.o., as t → +∞ ≥ lim n→+∞ P J (x) Rn Λ(R n ) ≥ (1 -2ǫ) > 0.
The event of the left hand side is in the upper-tail sigma-field ∩ t σ{X

(x) s : s ≥ t} which is trivial, then lim sup t→+∞ J (x) t Λ(t) ≥ 1 -2ǫ almost surely.
The proof of part (ii) is very similar, in fact

P X (x) R n -J (x) R n Λ(R n ) ≥ (1 -2ǫ) = P J (x) R n ≤ ǫX (x) R n 1 -ǫ = E P J (x) Rn ≤ ǫX (x) Rn 1 -ǫ X (x) Rn = P inf t≥0 ξ ≤ log ǫ 1 -ǫ = 1 -cW log 1 -ǫ ǫ > 0. Since R n ≥ n, P X (x) t -J (x) t Λ(t) ≥ (1 -2ǫ), for some t ≥ n ≥ P X (x) R n -J (x) R n Λ(R n ) ≥ (1 -2ǫ) .
Therefore, for all ǫ ∈ (0, 1/2),

P X (x) t -J (x) t Λ(t) ≥ (1 -2ǫ), i.o., as t → ∞ ≥ lim n→+∞ P X (x) R n -J (x) R n Λ(R n ) ≥ (1 -2ǫ) > 0.
The event of the left hand side of the above inequality is in the upper-tail sigma-field

∩ t σ{X (x) s 
: s ≥ t} which is trivial and this establishes part (ii) for large times. In order to prove the LIL for small times, we now define the following stopping time

R n = inf 1 n ≤ s : X (0) s Λ(s) ≥ (1 -ǫ) .
Following same arguments as above, we get that for a fixed ǫ ∈ (0, 1/2) and n sufficiently large

P J (0) Rn Λ(R n ) ≥ (1 -2ǫ) > 0 and P X (0) Rn -J (0) Rn Λ(R n ) ≥ (1 -2ǫ) > 0.
Next, we note

P J (0) R p Λ(R p ) ≥ (1 -2ǫ), for some p ≥ n ≥ P J (0) Rn Λ(R n ) ≥ (1 -2ǫ) , and 
P X (0) R p -J (0) R p Λ(R p ) ≥ (1 -2ǫ), for some p ≥ n ≥ P X (0) Rn -J (0) Rn Λ(R n ) ≥ (1 -2ǫ) .
Since R n converge a.s. to 0 as n goes to ∞, the conclusion follows taking the limit when n goes towards to +∞ Hence, when F ↑ satisfies condition (6.24) we have the following laws of the iterated logarithm for the future infimum of X (x) and the pssMp X (x) reflected at its future infimum.

Corollary 

Bessel processes

Recall that Bessel processes are the only continuous positive self-similar Markov processes. Recall also that a Bessel process of dimension δ ≥ 0 with starting point x ≥ 0 is the diffusion R whose square satisfies the stochastic differential equation

R 2 t = x 2 + 2 t 0 R s dβ s + δt, t ≥ 0, (7.28) 
where β is a standard Brownian Motion. Now, we define ξ = (2(B t + at), t ≥ 0), where B is a standard Brownian motion and a ≥ 0. By the Lamperti representation, we know that we can define a pssMp starting from x > 0, such that X

(x) t = x exp{ξ τ (t/x) }, t ≥ 0.
Applying the Itô's formula and Dubins-Schwartz's Theorem (see for instance Revuz and Yor [START_REF] Revuz | Continuous martingale and Brownian motion[END_REF]), we see that X (x) satisfy (7.28) with δ = 2(a + 1). Obviously, ξ satisfies the conditions under which we can define X (x) when x = 0. When a > 0, it is clear that X (x) is transient and when a = 0, it is also clear that the process X (x) oscillates.

Gruet and Shi [START_REF] Gruet | The occupation time of Brownian motion in a ball[END_REF] proved that there exist a finite constant K > 1, such that for any 0 < s ≤ 2,

K -1 s 1-δ/2 exp - 1 2s ≤ P(S 1 < s) ≤ Ks 1-δ/2 exp - 1 2s . (7.29)
Hence we establish the following integral test for the lower envelope of the first passage time process of the squared Bessel process X (0) .

Theorem 9 Let h ∈ H -1 0 and δ ≥ 2, i) If

0 + t h(t) δ-2 2 exp - t 2h(t) dt t < ∞,
then for all ǫ > 0

P S t < (1 -ǫ)h(t), i.o., as t → 0 = 0. ii) If 0 + dt t t h(t) δ-2 2 exp - t 2h(t) = ∞,
then for all ǫ > 0

P S t < (1 + ǫ)h(t), i.o., as t → 0 = 1.
Proof: The proof of this Theorem is a simple application of (7.29) to Proposition 2.

Similarly, we have the same integral test for large times.

Theorem 10 Let h ∈ H -1 ∞ and δ ≥ 2, i) If +∞ t h(t) δ-2 2 exp - t 2h(t) dt t < ∞,
then for all ǫ > 0

P S t < (1 -ǫ)h(t), i.o., as t → +∞ = 0. ii) If +∞ dt t t h(t) δ-2 2 exp - t 2h(t) = ∞,
then for all ǫ > 0 For the upper envelope of X (0) , we have the following integral tests.

P S t < (1 + ǫ)h(t
Theorem 11 Let h ∈ H 0 and δ ≥ 2, i) If 0 + h(t) t δ-2 2 exp - h(t) 2t dt t < ∞,
then for all ǫ > 0

P X (0) t > (1 + ǫ)h(t), i.o., as t → 0 = 0. ii) If 0 + h(t) t δ-2 2 exp - h(t) 2t dt t = ∞, then for all ǫ > 0 P X (0) t > (1 -ǫ)h(t), i.o., as t → 0 = 1.
Proof: The proof of this Theorem follows from a simple application of (7.29) to Theorem 2. The proof of the additional hypothesis (4.15), is clear from (7.29).

Similarly, we have the same integral tests for large times.

Theorem 12 Let h ∈ H ∞ and δ ≥ 2, i) If +∞ h(t) t δ-2 2 exp - h(t) 2t dt t < ∞,
then for all ǫ > 0 and for all x ≥ 0

P X (x) t > (1 + ǫ)h(t), i.o., as t → +∞ = 0. ii) If +∞ h(t) t δ-2 2 exp - h(t) 2t dt t = ∞,
then for all ǫ > 0 and for all x ≥ 0

P X (x) t > (1 -ǫ)h(t), i.o., as t → +∞ = 1.
Recall from the Kolmogorov and Dvoretzky-Erdös (KDE for short) integral test (Theorem 1) that for h a nondecreasing, positive and unbounded function as t goes to +∞, the upper envelope of X (0) at 0 may be described as follows: 8 Examples.

P X (0) t > h(t
Example 1. The first example that we will consider here, is the stable subordinator. Let X (0) be the stable subordinator with index α ∈ (0, 1). From Zolotarev [START_REF] Zolotarev | One-dimensional stable distributions[END_REF], we know that there exists k a positive constant such that

P 0 (X 1 > x) ∼ kx -α x → +∞,
and since a subordinator is an increasing process, then

P(S 1 < x) ∼ kx α x → 0,
From Example 3 in Section 7.1 in [START_REF] Pardo | On the future infimum of positive self-similar Markov processes[END_REF], we also have that

P I( ξ) < x ∼ mkαx α+1 x → 0.
Hence from Theorems 4 and 5, we obtain the following corollaries.

Corollary 3

The lower envelope of S, the first passage time of the stable subordinator X (0) with index α ∈ (0, 1) at 0 and at +∞ is as follows:

i) Let h ∈ H -1 0 , such that either lim x→0 h(x)/x = 0 or lim inf x→0 h(x)/x > 0, then P S x < h(t), i.o., as x → 0 = 0 or 1, according as

0 + h(x) x α dx
x is finite or 

0 + h(x) x α+1 dx x is infinite. ii) Let h ∈ H -1 ∞ ,
0 + h(x) x α dx
x is finite or

0 + h(x) x α+1 dx x is infinite. ii) Let h ∈ H ∞ , such that either lim t→+∞ t/h(t) = 0 or lim inf t→+∞ t/h(t) > 0, then for all x ≥ 0 P X (x) t > h(t), i.o., as t → ∞ = 0 or 1, according as +∞ h(x) x α dx x is finite or +∞ h(x) x α+1 dx
x is infinite.

Example 2. Let X (0) be a stable Lévy process conditioned to stay positive with no positive jumps and index 1 < α ≤ 2 (See Bertoin [START_REF] Bertoin | Lévy processes[END_REF] for a proper definition).

From Pardo [START_REF] Pardo | On the future infimum of positive self-similar Markov processes[END_REF], we know that X (0) drifts towards +∞ and that

-log F (1/t) ∼ α -1 α 1 α 1/(α-1)
x 1/α-1 as t → +∞.

Then applying Theorems 5 and 6, and Corollary 3, we get the following laws of the iterated logarithm.

Corollary 5 Let X (0) be a stable Lévy process conditioned to stay positive with no positive jumps and α > 1. Then, the first passage time process satisfies

lim inf t→0 S t log | log t| α-1 t α = 1 α 1 - 1 α α-1
, almost surely.

The same law of the iterated logarithm is satisfied for large times. The processes X (x) , J (x) and X (x) -J (x) satisfy the following laws of the iterated logarithm

lim sup t→0 X (0) t t 1/α log | log t| 1-1/α = α (α -1) -α-1 α , almost surely, lim sup t→0 J (0) t t 1/α log | log t| 1-1/α = α (α -1) -α-1 α , almost surely, lim sup t→0 X (0) t -J (0) t t 1/α log | log t| 1-1/α = α (α -1) -α-1 α , almost surely,
and for all x ≥ 0,

lim sup t→+∞ X (x) t t 1/α log log t 1-1/α = α (α -1) -α-1 α , almost surely, lim sup t→+∞ J (x) t t 1/α log log t 1-1/α = α (α -1) -α-1 α , almost surely, lim sup t→+∞ X (x) t -J (x) t t 1/α log log t 1-1/α = α (α -1) -α-1 α , almost surely.
Example 3. Let ξ be a Lévy process which drifts towards +∞ and with finite exponential moments of arbitrary positive order. Note that this condition is satisfied, for example, when the jumps of ξ are bounded from above by some fixed number, in particular when ξ is a Lévy process with no positive jumps. More precisely, we have E e λξt = exp tψ(λ) < +∞ t, λ ≥ 0.

From Theorem 25.3 in Sato [START_REF] Sato | Lévy processes and infinitely divisible distributions[END_REF], we know that this hypothesis is equivalent to assume that the Lévy measure Π of ξ satisfies e λx Π(dx) < +∞ for every λ > 0.

Under this condition and with the hypothesis that ψ, the Laplace exponent of ξ, varies regularly at +∞ with index β ∈ (1, 2), Pardo [START_REF] Pardo | On the future infimum of positive self-similar Markov processes[END_REF] gave the following estimates of the tail probabilities of I( ξ) and νI( ξ),

-log P νI( ξ) < 1/x ∼ -log P I( ξ) < 1/x ∼ (β -1) ↼ H(x) as x → +∞, where ↼ H(x) = inf s > 0 , ψ(s)/s > x ,
is a regularly varying function with index (β -1) -1 . Hence, the pssMp associated to ξ satisify condition (6.24). This allow us to obtain laws of iterated logarithm for the first passage time process and for the pssMp in terms of the following function.

Let us define the function

f (t) := log | log t| ψ(log | log t|) for t > 1, t = e.
By integration by parts, we can see that the function ψ(λ)/λ is increasing, hence it is straightforward that the function tf (t) is also increasing in a neighbourhood of ∞. Moreover, if the processes X (x) has no positive jumps, J (x) and X (x) -J (x) satisfy the following laws of the iterated logarithm: 1) , almost surely, and for all x ≥ 0, lim sup 1) , almost surely.

lim sup t→0 J (0) t tg(t) = (β -1) -(β-1) , almost surely, lim sup t→0 X (0) t -J (0) t tg(t) = (β -1) -(β-
t→+∞ J (x) t tg(t) = (β -1) -(β-1) , almost surely, lim sup t→+∞ X (x) t -J (x) t tg(t) = (β -1) -(β-
Example 4. Sato [START_REF] Sato | Self-similar processes with independent incrementes[END_REF] ( see also Sato [START_REF] Sato | Lévy processes and infinitely divisible distributions[END_REF]) studied some interesting properties of positive increasing self-similar processes with independent increments. In particular, the author showed that if Y = (Y t , t ≥ 0) is a process with such characteristics and starting from 0, we can represent its Laplace transform by

E exp -λY 1 = exp -κ(λ) for λ > 0,
where

κ(λ) = cλ + +∞ 0 1 -e -λx l(x) x dx,
c ≥ 0 and l(x) is a nonnegative decreasing function on (0, +∞) with

+∞ 0 l(x) 1 + x dx < +∞.
From its definition, it is clear that the Laplace exponent κ is an increasing continuous function and more precisely a concave function.

Under the assumption that κ varies regularly at +∞ with index α ∈ (0, 1), we will have the following sharp estimate for the distribution of Y 1 .

Let us define the function

ρ(t) = t log | log t| ↼ κ(log | log t|) , for t = e, t > 1,
where ↼ κ is the inverse function of κ.

Proposition 10 Let (Y t , t ≥ 0) be a positive increasing self-similar processes with independent increments and suppose that κ, its Laplace exponent, varies regularly at +∞ with index α ∈ (0, 1). Then for every c > 0, we have

-log P Y 1 ≤ cρ(t) t ∼ α/c α 1-α (1 -α) log | log t| as t → 0 (t → ∞).
Proof: From de Brujin's Tauberian Theorem (see for instance Theorem 4.12.9 in [START_REF] Bingham | Regular Variation[END_REF]), we have that if κ varies regularly at +∞ with index α ∈ (0, 1) then This estimate allow us to get the following law of the iterated logarithm.

-log P Y 1 ≤ x ∼ α
Corollary 8 Let (Y t , t ≥ 0) be a positive increasing self-similar processes with independent increments and suppose that κ, its Laplace exponent, satisfies the conditions of the previous Proposition. Then, we have lim inf t→0 Y t ρ(t)

= α(1 -α) (1-α)/α , almost surely.

The same law of iterated logarithm is satisfied for large times.

Proof : The proof of this Corollary follows from the integral test found by Watanabe [START_REF] Watanabe | Sample function behavior of increasing processes of class L[END_REF] and applying the above estimate of the distribution of Y 1 . Now, we denote by κ 1 and κ 2 the Laplace exponents of the last and first passage time processes, respectively. Since S 1 ≤ U 1 , it is clear that κ 2 (λ) ≤ κ 1 (λ) for all λ ≥ 0. Let us suppose that κ 1 and κ 2 are regularly varying at +∞ with index α 1 and α 2 respectively, such that 0 < α 2 ≤ α 1 < 1. By Proposition 9 and Theorem 8, we can deduce that κ 1 and κ 2 are asymptotically equivalents and that α 1 = α 2 . Then by the above Corollary, we have that for Now, we will apply these results to the case of transient Bessel process. Here, we employ the usual Bessel functions I a and K a , as in Kent [START_REF] Kent | Some probabilistic properties of Bessel functions[END_REF] and Jeanblanc, Pitman and Yor [START_REF] Jeanblanc | Self-similar processes with independent increments associated with Lévy and Bessel processes[END_REF]. It is well known that E exp -λS 1 = λ a/2 1 2 a/2 Γ(a + 1)I a ( √ 2λ) , λ > 0, and

h
E exp -λU 1 = λ a/2 2 a/2-1 Γ(a) K a ( √ 2λ), λ > 0,
where Γ is the gamma function (see for instance Jeanblanc, Pitman and Yor [START_REF] Jeanblanc | Self-similar processes with independent increments associated with Lévy and Bessel processes[END_REF]). Now, we define for λ > 0 φ 1 (λ) = log(2 a/2-1 Γ(a)) -log K a ( √ 2λ) -log λ a/2 , φ 2 (λ) = log I a ( √ 2λ) + log(2 a/2 Γ(a + 1)) -log λ a/2 .

Since, we have the following asymptotic behaviour I a (x) ∼ (2πx) -1/2 e x and K a (x) ∼ π 2x

1/2 e -x when x → +∞, (see Kent [START_REF] Kent | Some probabilistic properties of Bessel functions[END_REF] for instance), we deduce that φ 1 and φ 

Theorem 7

 7 Under condition(6.25),we have the following laws of the iterated logarithm: i) For the first passage time, we have

ω

  is the asymptotic inverse of ω, a regularly varying function at +∞ with index (α -1)/α and that satisfies x = cρ(t)/t and λ = ↼ κ(log | log t|), and doing some calculations we get the desired result.

  such that either lim x→+∞ h(x)/x = 0 or lim inf x→+∞ h(x)/x > 0, then P S x < h(x), i.o., as x → ∞ = 0 or 1,

	according as		+∞	F	h(x) x	dx x	is finite or infinite.
	Proof: First let us check that under condition (5.20) we have
	0	λ	F	h(x) x	dx x	< ∞ if and only if	0	λ	G	h(x) x	dx x	< ∞.	(5.21)

  ), i.o., as t → +∞ = 1.

	From these integral tests, we get the following law of the iterated logarithm
	lim inf t→0	S t	2 log | log t| t	= 1 and lim inf t→+∞	S t	2 log log t t	= 1 almost surely.

  ), i.o., as t → 0 = 0 or 1, Note that the class of functions that satisfy the divergent part of Theorems 11 and 12 implies the divergent part of the KDE integral test, hence ǫ can also take the value 0. The convergent part of the KDE integral test obviously implies the convergent part of Theorems 11 and 12. From these integral tests, we get the following law of the iterated logarithm

	according as,						
		0	h(t) t	δ 2	exp -	h(t) 2t	dt t	is finite or infinite.
	lim sup t→0 for x ≥ 0.	X t 2t log | log t|	= 1 and lim sup t→+∞	X (x) 2t log log t	= 1 almost surely,

  such that either lim x→+∞ h(x)/x = 0 or lim inf x→+∞ h(x)/x > 0, then P S x < h(x), i.o., as x → ∞ = 0 or 1,

	according as						
	+∞	h(x) x	α dx x	is finite or	+∞	h(x) x	α+1 dx x	is infinite.
	Corollary 4 The upper envelope of the stable subordinator with index α ∈ (0, 1) at 0 and at +∞ is as follows:
	i) Let h ∈ H 0 , such that either lim t→0 t/h(t) = 0 or lim inf t→0 t/h(t) > 0, then
			P X	(0) t	> h(t), i.o., as t → 0 = 0 or 1,
	according as						

  Corollary 6 If ψ is regularly varying at +∞ with index β ∈ (1, 2), then

		lim inf x→0	S x xf (x)	= (β -1) β-1	almost surely
	and,	lim inf x→+∞	S x xf (x)	= (β -1) β-1	almost surely.
	Let us define				
		lim sup t→0	X t tg(t)	= (β -1) -(β-1)	almost surely
	and for all x ≥ 0,				
		lim sup t→+∞	(x) t tg(t) X	= (β -1) -(β-1)	almost surely.

g(t) := ψ(log | log t|) log | log t| for t > 1, t = e.

Corollary 7 If ψ is regularly varying at +∞ with index β ∈ (1, 2), then

  (1 -α 1 ) (1-α 1 )/α 1 almost surely.Note that we can replace h 1 by h 2 and that we also have the same laws of the iterated logarithm for large times. By the sharp estimation in Proposition 10 of the tail probability of S 1 , we deduce the following law of the iterated logarithm. Let κ 2 be the Laplace exponent of S 1 . If κ 2 is regularly varying at +∞ with index α 2 ∈ (0, 1), then On the other hand, from Theorem 8 we get the following Corollary.Corollary 10 Let κ 2 be the Laplace exponent of S 1 and ↼ κ 2 its inverse. If κ 2 is regularly varying at +∞ with index α 2 ∈ (0, 1), then -α 2 ) -(1-α 2 )/α 2 almost surely.

	i)				
	lim sup t→0	(0) t f 2 (t) J	= α -1 2 (1 -α 2 ) -(1-α 2 )/α 2	almost surely,
	and for any x ≥ 0,		
	lim sup t→+∞	(x) t f 2 (t) J	= α -1 2 (1 -α 2 ) -(1-α 2 )/α 2	almost surely.
	ii)				
	lim sup t→0	X t -J (0) f 2 (t)	(0) t	= α -1 2 (1 -α 2 ) -(1-α 2 )/α 2	almost surely,
	and for any x ≥ 0,		
	lim sup t→+∞	X	(x) t f 2 (t) -J	(x) t	= α -1 2 (1
						almost surely,
	and = α 1 Let us define lim inf t→0 S t h 1 (t)
	f 2 (t) :=	t
	lim sup t→0	(0) t X f 2 (t)	= α -1 2 (1 -α 2 ) -(1-α 2 )/α 2	almost surely,
	and for any x ≥ 0,				
	lim sup t→+∞	(x) t X f 2 (t)	= α -1

1 (t) := t log | log t| ↼ κ 1 (log | log t|) and h 2 (t) := t log | log t| ↼ κ 2 (log | log t|) , for t = e, t > 1, where ↼ κ 1 and ↼ κ 2 are the inverse of κ 1 and κ 2 , respectively; the processes U and S satisfy lim inf t→0

U t h 1 (t) = α 1 (1 -α 1 ) (1-α 1 )/α 1 ↼ κ 2 (log | log t|) log | log t| , for t = e, t > 1.

Corollary 9 2 (1 -α 2 ) -(1-α 2 )/α 2 almost surely.

  [START_REF] Bertoin | Lévy processes[END_REF] are regularly varying at +∞ with index 1/2. From Proposition 9 and Theorem 8, we deduce that they are asymptotically κ 2 are the inverse functions of κ 1 and κ 2 , respectively. Similarly, we have all these laws of the iterated logarithm for large times. Example 5. Let ξ = N be a standard Poisson process. From Proposition 3 in Bertoin and Yor[START_REF] Bertoin | On the entire moments of self-similar Markov processes and exponential functionals of Lévy processes[END_REF] and Example 1 in Pardo[START_REF] Pardo | On the future infimum of positive self-similar Markov processes[END_REF], we know-log P I( ξ) < t ∼ -log P νI( ξ) < t ∼ 1 2 (log 1/t) 2 , as t → 0.Corollary 11 Let N be a Poisson process, then the pssMp X (x) associated to N by the Lamperti representation satisfies the following law of the iterated logarithm,

	equivalent.							
	From the above results, we have that
		lim inf t→0	U t h 1 (t)	= 1/4,	lim inf t→0	S t h 2 (t)	= 1/4 almost surely,
		lim sup t→0	X t (0) f 2 (t)	= 4,	lim sup t→0	(0) t f 1 (t) J	= 4 almost surely,
	and	lim sup t→0	J f 2 (t) (0) t		= 4,	lim sup t→0	X t -J (0) f 1 (t)	(0) t	= 4 almost surely,
	where							
	h 1 (t) =	t log | log t| ↼ κ 1 (log | log t|)	, h 2 (t) =	t log | log t| ↼ κ 2 (log | log t|)	, f 1 (t) =	t 2 h 1 (t)	, f 2 (t) =	t 2 h 2 (t)
	and,							
					lim sup t→0	X	(0) t m(t) t 2	= 1	almost surely.
	For x ≥ 0				lim sup t→+∞	X t m(t) (x) t 2	= 1	almost surely.
	The first passage time process S associated to X (0) satisfies the following law of the
	iterated logarithm,						
		lim inf x→0	S x m(x)	= 1,	and	lim inf x→+∞	S x m(x)	= 1, almostsurely.

↼ κ 1 and ↼ Hence, we obtain the following laws of the iterated logarithm. Let us define m(t) := t exp -2 log | log t| .
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