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Abstract

The method of Molinari et al. (2001) is a multiple temporal cluster detection approach, which is based on a data
transformation. The model selection procedure and the test of the cluster significance are achieved by bootstrap.
The use of simulations is a common point between existing temporal cluster detection methods. The aim of this
paper is to propose a new approach to avoid the use of such simulations in the cluster significance test stage.
A direct application of the Bernstein inequality allows to compute upper bounds for p-values for each potential
cluster. We also propose another model selection procedure based on multiple structural changes developed by Bai
and Perron (1998). The new detection approach based on inequalities is detailed. Those inequalities are applied
on simulated data and on two real data set. A discussion concludes the paper.
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Introduction

A temporal cluster is an unusual aggregation of events that are grouped together in time. Clusters
of health events are often reported to health agencies. When the etiology of a disease has not yet been
established, it is sometimes required to examine data for obtaining evidence of temporal clustering and
to establish an etiologic link with exposure. Severals fields are affected by temporal cluster detection such
as medicine, social sciences, agronomy and more. The question of whether events are clustered in time
has received considerable attention in the literature. A survey is presented in Bonaldi [6].

The scan statistic proposed by Kulldorff and Nagarwalla [11] is an efficient method for detecting
temporal clusters. The size of scanning windows is variable, which allows to the cluster size (interval
length) not to be chosen a priori. This test is the generalized likelihood ratio test for a uniform null
distribution against an alternative of non random clustering. The significance of the test is provided
by Monte Carlo simulations. The method was extended for detecting disease clusters in heterogeneous
populations by Kulldorff [10].

Molinari et al. [12] proposed an original method that allows to detect several temporal clusters. This
approach is based on a simple data transformation. The serie of dates of occurence is replaced by the serie
of the time between two successive events. This method determines a time window with excess events
and scans continuously over the study period for any position of the window. A window is considered to
have a high density of events when it groups together events that are near to each other. The method is
effective with changes in the population at risk. Presence of one or more clusters is determined by using
bootstrapped simulations and a classical model selection procedure.

The common point between existing methods to detect temporal clusters (multiple or not) is the need,
to carry out the inference, to use bootstrap or Monte Carlo methods. In this paper, we propose to test the
cluster significance without using simulated samples. This approach is based on the inequality established
by Bernstein [5] for the sum of independant random variables. This inequality has been adapted to the
temporal case. This allows to obtain upper bound for the p-value in the test for cluster significance. We
propose also another model selection procedure, the double maximum test, developed by Bai and Perron
[1] which is based on multiple structural change models. This procedure was previously used in the spatial
case in Demattel et al. [7].

The first section presents briefly the method of Molinari et al. [12]. The model selection via multiple
structural changes models is detailed in section 2. In the third section, the Bernstein inequality is recalled
and then adapted to the detection of multiple temporal clusters. The method is applied both on simulated
and real data in a fourth section. The paper is concluded by a discussion.

1. Standard method

The method of Molinari et al. [12] is based on a data transformation. Initial data are constituted by the
times of occurence of events in the interval of observation. The transformation consists in obtaining values
corresponding to the time (the distance) between two successive events. Under the uniform distribution
hypothesis (no cluster), these values can be estimated by a constant, the mean distance. Under the
alternative, a piecewise constant model improves the fitting.

In this section, we recall the data transformation and the cluster location procedure. The model selection
and the detection stages will be treated separately in following sections.

Let n be the number of events occuring in the interval of observation wich can be set to [0; 1] without
loss of generality. Times of occurence of those n events are i.i.d random variables denoted Xi,..., X,.
Then, let x1,...,z, be a realization of Xi,..., X, and x(y),...,2(,) be the ordered serie of these times
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from the origin. Finally, set for k = 1,...,n, yr = 24) — T1—1) (by convention () = 0).

In order to determine potential cluster bounds, we took the distance regression on the selection order k.
Consider the data set (k,yx)k=1,....n. Under the no-cluster hypothesis, an appropriate regression function
to use would be the constant one .

2 v

(1 <i < j <n) be the mean of y; for ¢ in [i;j]7 and Iii;51(t) = 1if t € [i; j] and 0 otherwise. To

t)=7=

SI'—‘

Let g[

i3]
determine the presence of m breaks (m + 1 regimes), the regression function taken into consideration is :
m—+1
t) = Z Yinj_1+1in;] X Ty 41m,1(F)
j=1

with the convention ng = 0 and n.,+1 = n.

In order to carry out an asymptotic analysis in the detection stage, it is necessary to impose a minimum
size for each portion between two breaks. The set of possible partitions is defined as follows : for some
arbitrary positive number € € [0;1], Ac = {(n1,..., ) ; Vi=1,....m+ 1, card ([ni—1 + 1;n;]) > |ne|}.
For example, an € of 0.2 means that the number of dates between two breaks is imposed as being at least
20% of the total number of dates. See Demattel et al. [7] for more explanations on the parameter e.

Breaks (cluster bounds) are estimated by resolving the constrained least square problem

n

min_ Y (y — (1)

(n1,nm ) EAC Py

We note (i1, ..., 7y,) the solution.
For computing these estimates efficiently, we can use the method of Bai and Perron [3] which is based
on dynamic algorithm programming.

2. Model selection

In this section, we present the model selection procedure. This procedure is based on the double
maximum test developed by Bai and Perron. We must first consider the no break test versus a fixed
number m = k of breaks. The test statistic proposed by Bai and Perron [1] is

. N n—(k+1)\ - I PR
E,(N1,...,70) = <¥) AD'(DV(A)D')'DA = sup E,(ni,...,nk)
k (n1,...,nK)EAC
in which A = (G1,...,G4k+1)" is the vector of the mean distance on each portion and D is a matrix so that
DA = (a1 — aa,...,a5 — ar41)’ V(A) is an estimate of the variance covariance matrix of A.
F, is the statistic for testing a1, = ... = ap+1 against a; # G,41 for a certain ¢. A high value of F,

means a shift away from no break hypothesis. Critical values for this test statistic are given by Bai and
Perron [2] for values of ¢ between 0.05 and 0.25.

The double maximum test, defined in Bai and Perron [1], allows us to test the null hypothesis of no
break against an unknown number of breaks given a certain upper bound M. Let ¢(«, m) denote the
asymptotic critical value of the test Fy, (711, ..., 7y, ) for a significance level «. The test is denoted :

c(a, 1)
1<meM c(a,m)

WD max F,(M) = Fo(ny,...,nm) .
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The best model can now be selected. The number of breaks is chosen as the argmaz of the WD max
statistic. Critical values for this corrected test statistic are given by Bai and Perron [2] for values of ¢
between 0.05 and 0.25 and M < 9.

3. Cluster detection using inequalities

The Bernstein inequality [5] is a particular case of Hoeffding [8] and Bennett [4] inequalities. Those
three inequalities are based on the Chernoft’s bounding method.

Theorem 1 (Bernstein inequality) Let (Z;);_, be independant random variables with Z; — E[Z;] < d
foralli e {1,....n}. Let S=3""| Z; and u > 0. Then, with o? = E[Z2] — E[Z;)* we have

P(S - E[S] > u) §€$p< m) (1)
i=1 3

O

We propose to test, for a given number of breaks m, the significance for each portion between two
breaks, say ny + 1 and fig41. In order to simplify the notation, we note N = fiy1 — n, and we rename
(Y) , the distance series (Y,)l:";lﬂ

N cannot be used directly. All the probabilities have to be computed conditionnally to N. Indeed, N
is a random variable which depends on m and more generally on the sample X, ..., X,. This difficulty
is overcomed when another realization X, ..., X, is known. The number N of events falling into a given
portion is then computed on this other sample, in order to suppress the dependency between N and
X1,...,X,. We assume this in what follows.

Under the assumption that Xi,..., X, are i.i.d. uniform U(0,1), X(y),..., X () are distributed as n-
order statistics from a uniform U(0, 1) parent. In this case, X(;) follows a beta distribution 3(i,n —i+1).
Let Y; = X(;) — X(;—1) be the distance (time) between the successive events X(;_q) and X(;). ¥; has a
beta distribution 5(1,n). Thus, the null hypothesis of uniform distribution can be written Hy : ” the mean
of Y; on a portion is equal to the mean of a B(1,n) distributed variable”. For each portion, we propose to
test Hy versus Hy : 7 the mean of Y; is less than the mean of a 5(1,n)” by using the following inequalities.
H, denotes the presence of a cluster on the considered portion.

Proposition 3.1 Let (Yg)fil be independent random variables following a 5(1,n) distribution with n >
N. For alli e {1,...,N}, define Y, = (n+1)Y;. Let T = % Zf\; Y; and u > 0. Assume N is independent

of (Yi)i=, . Then we have
U2
<l——|< [
IE”(T 1 ) exp( N % ) (2)

n+2

Proof. Since Y; ~ 3(1,n), Y; is non-negative with E[Y;] = n_+1 and Var(Yi) = oy557sy- Thus, for
i =1,...N, the random variables Y, = (n + 1)Y; are independent, non-negative, with E[ﬁ] =1 and
Var(V;) = (n + 1)*Var(V;) = P B

Set Z; = 1—Y;. Since Y; is non negative and E[Z;] = 1—E[}~Q~] =0, we have Z,—E|[Z;] = Z; = 1-Y; <1
We are now in a position to apply the Bernstein inequality to the random variables Z; :

N N 5
u
P E Z; —E E Zil >2u] <exp| — ~ ) .
<¢_1 i=1 ) < 2 Ei:1 Var(Z;) + 2?u

4

—
w
~




N

>

i=1

N
Moreover, we clearly have Z Z;—E

i=1

N
=3 (1- %) = N(-T), and Var(Z,) = Var(7) = 2.
=1

Therefore, (3) becomes

2
P(N(1—T)>u) <exp <_2nNU72u>
2zt 3

as desired. O
This proposition provides an upper bound on the probability that the mean of the Y; is less than a
given threshold.

To make this result effective, we propose to control the type I error rate «. This is achieved by the
following corollary.

Corollary 3.2 Under the assumptions of Proposition 3.1, we have for all o € (0,1)

P (T <1- “W“) < o with uq = —m(;‘) + \/ <lnéa)>2 - Q”TJL\TZ(O‘). (4)

Proof. The proof is clear. U

If we set the type I error rate to «, this corollary makes it possible to specify the threshold 1 — u, /N
associated to this value for a. Hence, under Hy, the probability that the mean of a portion of size N is
under the threshold is less than «. If the mean is effectively under the threshold, we can reject Hy with a
type I error rate less than «. This provides us a conservative procedure to test the significance of a given
portion. Several clusters can be detected by applying this procedure to each potential cluster. It is worth
pointing out that it allows to avoid using bootstrapped or Monte Carlo methods for inference.

The corollary below gives, as a by-product of Proposition 3.1, the p-value corresponding to the observed
mean distance of a portion, say t.

Corollary 3.3 Under the assumptions of Proposition 3.1, we have for all t < 1

N(1—t)? )

2(1-1)

P(T < t) < p; with py = exp <— -
w2z T T3

Proof. Just apply (2) with u = N(1 —¢) and note that u > 0 since ¢ < 1. O

Thus, another way to use Proposition 3.1 is to set the threshold ¢ in Corollary 3.3 to the observed mean
distance of a given portion. This provides a p-value p;. If p; < «, Hp can be rejected with a type I error
rate a and the portion represents a significant temporal cluster.

We have to note that the threshold 1 — u, /N is negative when

1 n 1

3_N+N(n—|—2) ~ " 2In(a)’

In this case, the threshold cannot be reached by the mean distance.



4. Applications
4.1. Sample run

We applied this method with o = 0.05 to a sample of 100 times of occurrence. The times were simulated
by a mixture 0.5 x U4(0,100) + 0.25 x U(25,35) + 0.25 x U(60, 80). This mixture contains two potential
clusters. The first one (C7) has a high density and contains Ny events. The other one, denoted by Cs, has
a density twice lower and contains Ny events. N7 and N were determined on a replicate of the sample
in order to supress the dependency between the number of events in a given portion and the sample
analyzed. The regression plot for the model with m = 4 breaks is presented in Figure 1. In C7, the mean
of the distances 171 is less than the threshold and p;, = 0.008 < 0.05. In Cs, the mean of the distances 171
is higher than the threshold and p;, = 0.11. We obtain one significant cluster (C7) which corresponds to
the high density portion.

[F1c. 1 about here.]

4.2. Knox data set

The Knox data set is a classical data set used to compare cluster detection methods. This data set
consists of 35 cases of the birth defects esophageal atresia and tracheoesophageal fistula observed in a
hospital in Birmingham, United Kingdom, between 1950 and 1955. The total time period of the study
was 2191 days. Knox [9], Weinstock [14] with the scan statistic and Nagarwalla [13] with a scan statistic
with variable window used this data set to illustrate their approaches. Molinari et al. [12] also used this
data set on the regression method for multiple cluster detection. All these methods found the same cluster
of 15 cases in the 258 days time interval from day 1233 to day 1491. The existence of a second cluster of
7 cases in the 125 days from day 2049 to day 2174 is controversial.

Due to the low number of cases, we choose an € = 0.15. Indeed, an ¢ = 0.1 would have potentially found
clusters of 4 cases, which is very few. The model with 3 breaks was selected, with two potential clusters.
The first is the well-known cluster [1233-1491] with 15 cases in 258 days. The mean of the distance is below
the threshold and p = 0.045. The second potential cluster is [2049-2174]. This cluster is not significant
(p = 0.33). Those results are concordant with those obtained in Molinari et al. [12] and with the scan
statistic (p = 0.019).

[F1G. 2 about here.]

4.3. Hospital hemoptysis admission data set

This data set consists of 62 days of hemoptysis admission at Nice University Hospital from January 1
to December 31, 1995. As proposed in Molinari et al. [12], the population at risk has been modified to
take into account the of 0.72% pear year and the crowd of 55000 tourists in summer.

Since there is more cases than in the previous example, we can choose ¢ = 0.1. The model with 2 breaks
was selected. The potential cluster is [58;87] as in Molinari et al. [12]. However, the p-value associated
to this portion is 0.13. We cannot conclude that this portion is significant. The scan statistic led to the
same result (p = 0.29). Those two results are in contradiction with the one obtained by Molinari et al.
[12] (p = 0.02).

[F1G. 3 about here.]
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Discussion

In this paper, we have modified the original method by avoiding the use of bootstrap simulations.

The first way to overcome those simulations is to use the WD max statistic, initially proposed in the
econometric field by Bai and Perron [1]. This procedure, conceived for multiple structural changes, is
particularly useful to select the best model in multiple cluster detection problems.

Our approach is a direct application of the Bernstein inequality for the sum of bounded random
variables. This method provides an upper bound for the p-value. In that sense, the inequality allows to
detect clusters in a conservative way. This method also has the advantage of being very flexible. Firstly,
it can locate several potential clusters. Moreover, it makes possible to test the uniform distribution
hypothesis for each cluster separately.

This last point is well illustrated in the simulated exemple since the best model selected contains two
potential clusters : the method of Molinari et al. [12] can only test the model in its whole and would
detect two clusters or no cluster, whereas the present method allows to affirm that only one of the two
potential clusters is significant.

A perspective of this work is to adapt the Bernstein inequality to the multiple spatial cluster detection
method of Demattei et al. [7]. However, this extension is not immediate since the variables (corresponding
to the distance from a point to its nearest neighbour) are weakly dependant in the spatial case (the distance
depends on the trajectory already done until this point). Some inequalities exist for the sum of weakly
dependent variables. To apply them to the spatial field, the work will be to characterize the dependance
between the distance variables.
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1 Simulation results. Cy corresponds to the second portion (which includes orders 20 and
40), and contains Nj events with a mean distance ¢;. Cy corresponds to the fourth
portion (which includes orders 60 and 80), and contains Ny events with a mean distance
t2. The dotted lines represent the thresholds 1 — % computed for each portion. For Cy,
the threshold is higher than ¢;, which means that p;, < 0.05 and that C; is a significant
cluster. For (5, the threshold is below 5, which means that we cannot conclude that Cy

is significant. 9
2 Knox data set : regression plot. The dotted lines represent the thresholds 1 — % computed

for each portion. The first potential cluster is significant 10
3 Hemoptysis data set : regression plot. The dotted lines represent the thresholds 1 — &

computed for each portion. The potential cluster is not significant. 11
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F1G. 1. Simulation results. C1 corresponds to the second portion (which includes orders 20 and 40), and contains Np events
with a mean distance t1. C2 corresponds to the fourth portion (which includes orders 60 and 80), and contains No events
with a mean distance to. The dotted lines represent the thresholds 1 — %V“ computed for each portion. For C7, the threshold
is higher than t;, which means that p;; < 0.05 and that C is a significant cluster. For Cs, the threshold is below t2, which
means that we cannot conclude that Cs is significant.
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F1G. 2. Knox data set : regression plot. The dotted lines represent the thresholds 1 — %2 computed for each portion. The

first potential cluster is significant
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Fia. 3. Hemoptysis data set : regression plot. The dotted lines represent the thresholds 1 — “W” computed for each portion.
The potential cluster is not significant.
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