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Abstract

This paper describes an R package, named SPATCLUS, that implements a method
recently proposed for spatial cluster detection of case event data. This method is
based on a data transformation. This transformation is achieved by the definition
of a trajectory which allows to attribute to each point a selection order and the
distance to its nearest neighbour. The nearest point is searched among the points
which have not yet been selected in the trajectory. Due to the trajectory effects,
the distance is weighted by the expected distance under the uniform distribution
hypothesis. Potential clusters are located by using multiple structural change models
and a dynamic programming algorithm. The double maximum test allows to select
the best model. The significativity of potential clusters is determined by Monte
Carlo simulations. This method makes it possible the detection of multiple clusters
of any shape.
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1 Introduction

A spatial cluster is an aggregate of points in IRp (p > 1) that are grouped together
in space with an abnormally high incidence, which has a low probability to have
occured by chance alone. Clusters of events are often reported to health agencies and
an examination of the data is sometimes required for establishing an etiologic link
between exposure and cluster existence. Location and detection of spatial cluster
affects severals fields such as agronomy, medicine and social sciences.

Tests for spatial clustering have received substantial attention in the literature. A
large number of tests have been proposed by different scientists in the different fields
mentioned above. They can be classified according to their purpose. Tests for global
clustering [1–5] are used to analyse the overall clustering tendency of disease incidence
in the study area. The cluster location is unknown. Cluster detection tests [6,7] are
concerned with local clusters. Potential clusters are located and their significance is
tested. At last, focused tests [3,4,8] are used when a pre-specified focus is supposed
to be linked to disease incidence.

This paper describes the implementation in R langage of a new method of detection
and inference for multiple spatial clusters [9]. This method deals with precise events
within IR2, such as spatial coordinates for the occurrence of disease cases or the geo-
graphical positions of individuals. The approach, based on transformation of the data
set and a regression model, is an extension of the method presented in Molinari et
al. [10] for multiple temporal clusters. This new test belongs to the class of detection
tests for case event data.

The following section briefly describes the method implemented in the SPATCLUS
package. It begins with data tranformation by determining a trajectory and the
weighted distances. The ordered weighted distances are then used in the cluster lo-
cation and detection stages. In the third section, we present a decription of the SPAT-
CLUS package. Data input, optional parameters, output and result vizualization are
detailed, main algorithms are presented and explained. The use of the exportation
module in SatScan [11] format is also detailed. In the fourth section, we apply the
method to both simulated and real data. The paper is concluded by a discussion.

2 Methods

The goal of the method is to test the null hypothesis which corresponds to a uniform
distribution of the events. We only present here essential background. A detailed
presentation of the method is given in Demattëı et al. [9].
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2.1 Data transformation

Let n be the number of events occuring in A, a bounded set of IR2 or IR3. The spatial
coordinates of those n events are i.i.d random variables denoted X1, . . . , Xn.

The data transformation consists first in the determination of a trajectory con-
structed from initial data x1, . . . , xn, where xk is a realization of Xk. An order
variable, that can be seen as an order of selection for the points in the trajectory, is
constructed using a recursive algorithm initiated from the first order point x(1) which
is arbitrarily chosen (see [9] for a discussion about the choice of the first point). Then,
let x(k) be the point with selection order k. Given x(1), . . . , x(k), the point x(k+1) is the
nearest point from x(k) among the n − k points not yet selected. A trajectory that
links successively each point to the next order point is thus defined. The algorithm
used to determine the trajectory is presented in Table 1.

We can now define the distance variable Dk = d(X(k), X(k+1)) from one point to its
nearest neighbour. dk = d(x(k), x(k+1)) is a realization of Dk. This distance has to be
weighted both to correct high distances due to the elimination process of pre-selected
points and to adjust for a potential inhomogeneity in the underlying population
density. The weighted distance dw

k is defined as the ratio between the distance dk

and its expectation under H0, the uniform distribution hypothesis. Demattëı et al.
[9] have shown that the expected distance can be written

EH0

[

Dk/X(1) = x(1), . . . , X(k) = x(k)

]

=
∫ a

0



1−

∫

Ak−1

⋂

S(x(k),r)
f(x)dx

∫

Ak−1
f(x)dx





n−k

dr, (1)

in which f(x) is the underlying density from which the n points are sampled indepen-

dantly, S(x, r) is the sphere centered in x with radius r, and Ak = A r

{

⋃k
i=1 S(x(i), di)

}

with the convention A0 = A.

The numerical integration of
∫ a
0 in Equation (1) is achieved by using the trape-

zoidal rule. Moreover, the underlying population Z, constituted by N individuals
{zi : i = 1, . . . , N}, allows to estimate the density integrals

∫

Ak−1
and

∫

Ak−1

⋂

S(x(k),r)
.

For any set B ⊂ A,
∫

B f(x)dx can be approximated by #{i/zi ∈ B}/N . This integral
approximation allows to adjust the computation of dw

k for inhomogeneous popula-
tion. This adjustment is important since, with rare diseases, a large study area is
necessary to examine data for evidence of spatial clustering. Hence, due to a natural
inhomogeneity, the density of population at risk is not constant over the study area.
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2.2 Cluster location and detection

Cluster bounds can now be determined from transformed data (k, dw
k )k=1,...,T in which

T = n − 1. For this purpose we consider the weighted distance regression on the
selection order k. To determine the presence of m breaks (denoted by T1, . . . , Tm),
the regression function taken into consideration is:

f(t) =
m+1
∑

j=1

d[Tj−1+1;Tj ] × I[Tj−1+1;Tj ](t) (2)

with the convention T0 = 0 and Tm+1 = T . The notation d[Tj−1+1;Tj ] indicates the
mean of dw

t for t in [Tj−1 + 1; Tj].

The minimum percentage of points between two breaks is a parameter which have
to be taken into account. Let ǫ ∈ [0; 1] be this parameterµ. Then, the set of possible
partitions is ∆ǫ = {(T1, . . . , Tm) ; ∀i = 1, . . . , m + 1, card ([Ti−1 + 1; Ti]) ≥ |Tǫ|}.

Breaks (cluster bounds) are estimated by

(T̂1, . . . , T̂m) = argmin
(T1,...,Tm)∈∆ǫ

T
∑

t=1

(dw
t − f(t))2 , (3)

and are computed efficiently using a dynamic algorithm programming presented in
section 3.5.

The double maximum test proposed by Bai and Perron [12] is used to select the
best model. This test allows to test the the null hypothesis of no break against an
unknown number of breaks given a certain upper bound M . Once the best model
is selected, a p-value is computed for each portion between two breaks by a Monte
Carlo procedure.

3 Package description

In this section, the content of the package is presented and the algorithms for the
data transformation and the break location are emphasized. A flow chart describing
this package is presented in Figure 1. The package implements essentially the method
described in the previous section and its main function is clus( ). Because the spatial
scan statistic [7] is a reference method, the package contains also an exportation
module in the SatScan format [11].

[Fig. 1 about here.]
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3.1 User interface

Once R has started up, a window called ”R Console” appears. Within this window,
the user types his commands and R displays the results of the required computations.
Each command must be written at the right side of the ”>” symbol. The result of a
command can be stored in a R object by using the ”< −” assignement operator. All
the functions are called in the same way. For example the command

resclus < − clus(data = data ex, pop = pop ex, limx = c(0, 1), limy = c(0, 1))

will analyze the case coordinate data set data ex with the population coordinate
data set pop ex. The study area is here defined to be the unit square. The results of
this analysis will be store in a R list object called resclus.

In order to be able to use the SPATCLUS package, the user has to type the command

> library(spatclus)

which will load the package.

3.2 Data input

In 2D, the clus( ) function has 4 essential arguments that have to be specified:

data: Data frame with 2 colums giving coordinates of cases.
pop: Matrix with 2 columns giving coordinates of underlying population individu-

als. This matrix is called grille in the R programs.
limx: 2 element vector containing the study area bounds of the X-axis.
limy: 2 element vector containing the study area bounds of the Y-axis.

In 3D, the user also has to specified the parameter limz, a 2 element vector containing
the study area bounds of the Z-axis.

3.3 Optional parameters

The clus( ) function also has several optional arguments that affect the different
stage of the method. Default values (DF) are given for these parameters:

• Data input:
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dataincyn (DF=”n”): ”y” means that cases are already included in the un-
derlying population. ”n” means appends that they are not and appends data to
pop .

rndm (DF=NaN): Vector that identifies the rows containing cases coordinates
in the grid (only if datainc=”y”).

• Trajectory:
start (DF=1): Indicates the rank of the first trajectory point in term of distance

from the area edges. 1 means that the first point of the trajectory is the nearest
from the edge.

• Cluster location and detection:
m (DF=5): Maximum number of breaks.
eps (DF=0.2): Minimum size of cluster (ratio of the total number of cases).
• Spatial scan statistic location and module of exportation in SatScan format:

method (DF=1): 1 for multiple break clusters, 2 for spatial scan statistic loca-
tion, 3 for the 2 methods.

methk (DF=3): In the spatial scan statistic location, 1 for Bernoulli model, 2
for Poisson model, 3 for both models.

export (DF=”n”): If method = 2 or method = 3, and if export = ”y”, the
data will be exported in ”repexport” directory in SatScan software format.

repexport (no DF): If export = ”y”, defines the directory in which data will
be exported in SatScan software format.

3.4 Data transformation algorithm

In this section, the algorithm used for the determination of the trajectory and the
distance weighting is presented. The corresponding methodology is described in sec-
tion 2.1.

In the algorithm given in Table 1 and written in pseudocode, data = {x1, . . . , xn} is
the set of the n case locations and pop = {u1, . . . , uN} is the set of the N individual
locations that belongs to the underlying population. The trajectory is initialized by
chosing x(1) in the data set, and we consider it as given in the algorithm. This choice
is debated in [9]. For a better comprehension, we chose to use a set language rather
than a matrix language.

[Table 1 about here.]

Some explanations are necessary for a complete understanding of the correspondance
between quantities used in this algorithm and those used in Equation (1). In the kth

iteration of the global ”counting” loop:

• after the IF block, pop represents Ak−1 and #pop is used to approximate the
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quantity N ×
∫

Ak−1
f(x)dx,

• in the nested ”counting” loop, rpop represents Ak−1
⋂

S(x(k), r) and #rpop is used
to approximate the quantity N ×

∫

Ak−1

⋂

S(x(k),r)
f(x)dx,

• the nested ”counting” loop allows to compute the quantity pas ×
(

S − 1
2

)

that
represents an estimation of

∫ a

0



1−

∫

Ak−1

⋂

S(x(k),r)
f(x)dx

∫

Ak−1
f(x)dx





n−k

dr

using the trapezoidal rule,
• the last step is to store the coordinates x(k) of the kth case of the trajectory along

with its associated weighted distance dw
k .

3.5 Break location using a dynamic programming algorithm

Consider the regression of the ordered series of the weighted distances {dw
k : k =

1, . . . , n−1} on the selection order k. The regression function is given in Equation (2).
In order to determine the break locations for the m-break model in Equation (3),
we used the dynamic programming approach proposed by Bai and Perron [13] that
permits to reduce considerably the computing time. The algorithm given in Table 2,
separated in two parts, is a translation in pseudocode langage of this method.

The ǫ parameter and the optimal partition (T̂1, . . . , T̂m) are defined in section 2.2.

[Table 2 about here.]

This algorithm gives a complete description of the way to compute the break lo-
cations. In the first part, the sum of squared residuals denoted by ssri,j are com-
puted only for segments [i; j] that are necessary in the m-break determination. In
the second part, the optimal partition is obtained by solving the recursive prob-
lem Sr,j = minrh≤i≤j−h[Sr−1,i + ssri+1,j] in which Sr,j denotes the sum of squared
residuals associated with the optimal partition containing r breaks using the first j
observations.

3.6 Data output and plotting

The output of the clus( ) function is a list of objects that contains:

res: A result matrix giving, for each point ordered by its rank in the trajectory,
its distance to the nearest neighbourg, the expentancy of this distance, and its
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weighted distance.
pop: A matrix with 2 or 3 columns (depending on wether 2D or 3D data) giving

coordinates of underlying population data points.
bc: A list of vectors of size 1 to M . The kth element of the list gives the estimated

breaks for the model with k breaks.
stat: A list of non corrected statistic values (F ), corrected statistic value (wdm),

threshold value for the WDM statistic (wdms), significativity (signif) and the
number of breaks that maximizes the WDM statistic (kmax).

kulld.p: A vector giving the results of the spatial scan method with the Poisson
model. lambda is the value of the spatial scan test statistic, loglambda is its loga-
rithm, cx and cy are the coordinates of the circle center and rayon is its radius.

kulld.b: A vector giving the results of the spatial scan method with the Bernouilli
model. lambda is the value of the spatial scan test statistic, loglambda is its loga-
rithm, cx and cy are the coordinates of the circle center and rayon is its radius.

This list of objects can be used as argument in both plotting functions. The function
plotreg( ) displays the selection order in the X-axis, the weighted distance in the
Y-axis and draws the regression function with k breaks. The function plotclus( )
displays the point cloud and located cluster(s) with the k-break model. k is generally
equal to the value of the stat$kmax.

3.7 Exportation module in SatScan format

In this module, the cluster location by the spatial scan statistic [7] is implemented,
but p-value is not provided. For a full analysis with this method, including cluster
detection via Monte Carlo replications, one can use the SatScan software [11] freely
available. The SPATCLUS package allows user to export the data in a format directly
usable by this software. For this purpose, one can use the following parameter values:

method = 3
methk = 1 or 2 (Bernouilli or Poisson model)
export = ”y”
repexport = ”dir”. dir denotes the directory path in which the data will be ex-

ported in SatScan format.

8



4 Sample runs and example

4.1 Sample runs

In order to illustrate the flexibility of the method, we simulated two 200-points
samples. The first sample contains two simulated potential clusters with different
shapes (a parallelogram and a ”L”-shaped polygon) with a density inside about
6 times higher than outside. The second sample contains four simulated potential
clusters: the same than previously plus two squares. A uniform 3000-point grid was
attributed to each sample in order to represent the underlying population.

We analysed those samples with M = 8 as maximum number of breaks and ǫ = 0.1
as minimum number of points between two breaks. The critical value corresponding
to these parameter values is 10.7. For the 2-cluster sample, the 4-break (2-cluster)
model was selected and the WD max statistic value was 24.2. For the 4-cluster
sample, the 8-break (4-cluster) model was selected and the WD max statistic value
was 38.9. The no-cluster hypothesis was rejected is both samples and the model with
4 breaks (respectively 8 breaks) was selected. All the clusters were significant.

The regression plot and the cluster location result are presented for both samples in
Figure 2.

The spatial scan statistic [7] was applied on the two samples. The exportation module
was used to put data into the right format and analyze them with the SatScan soft-
ware [11]. In both cases, the most likely cluster (represented by a cercle in Figure 2)
was significant.

[Fig. 2 about here.]

4.2 fMRI application

A way of applying this method to functional Magnetic Resonance Imaging (fMRI)
data is proposed. fMRI is a technique for determining which parts of the brain are
activated under different type of experimental conditions. The standard statistical
method in analysing fMRI data is based on Statistical Parametric Mapping (SPM)
[14].

The aim of the application of the cluster detection method to fMRI data is to locate
clusters which correspond to brain regions simultaneoulsy activated for most subjects.
The process consists first in determining activation peaks for each subject by the
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standard SPM method. Then the peaks of all the subjects are grouped together,
which forms a 3D data set. Finally, the cluster detection method is applied to this
data set in order to locate and detect clusters of activation peaks.

A word fluency task was given to 11 right-handed women within a classical fMRI
block design with 5 control conditions (counting task) and 5 activity conditions (word
fluency task) alternately. During the activation conditions, subjects had to produce
silently as many words as possible beginning with a orally presented letter. The
control condition consisted in counting forward from one, at a rate of about one a
second.

The SPM method has been applied to each subject in order to detect significant hot
spots (activation peaks) at an individual level. Each subject presents an average of
32 peaks. Then, those 354 peaks has been merged together and analysed with our
method in order to determine, at a group level, which cerebral zones are activated
for most of the subjects. The model with 8 breaks (4 potential clusters) was selected
and the WD max statistic value was 25.2, higher than the critical value. One of
the 4 potential cluster was not significant, while the others were significant clusters
(p ≤ 0.05).

Hence, three hot spot clusters have been detected, two located in the frontal lobe
and the other in the occipital lobe, each containing between 36 and 39 peaks. Those
activated brain regions are represented in the Figure 3. Except for one atypical
subject presenting only one peak in one of the three clusters, all the others present
between 2 and 5 hot spots in each cluster. Those three clusters correspond to brain
regions simultaneoulsy activated for most subjects.

Moreover, the spatial scan statistic [7] was applied to this 3D data set. The maximum
spatial cluster size was initially set to 50% of population at risk (default value of
SatScan). With this value, the most likely cluster groups together 261 cases among
the 354 total number of cases, more than half of cases. Finally, we set this value
to 30%. The most likely cluster is a sphere with centre at (9,−5,−53) and radius
54.65. This significant cluster groups together 151 cases and is shown in Figure 3 by
a transparent white sphere. Here, we can see that the spatial scan statistic fails: this
approach detects a very large cluster which is not interpretable.

[Fig. 3 about here.]
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5 Hardware and software specifications

The implemention and sample runs of this package was conducted on a 2GHz PC
computer under the MandrakeLinux 9.2 distribution using the R software version
1.9.0 (CRAN, the ”Comprehensive R Archive Network”). However, R runs in any
OS platform (MAC, UNIX, Windows) and can be obtained freely via the different
CRAN mirrors. All the mirrors URLS are available via the CRAN link on the R
homepage at http : //www.r− project.org/. Hence, the SPATCLUS package can be
installed in any platform.

6 Online availability

The SPATCLUS package (link ”Télécharger l’outil”) and the package documentation
(link ”Voir la notice d’information”) are available over the web via the ”Thèmes
de recherche” tab on the IURC biostatistical laboratory website at following URL
http : //www.iurc.montp.inserm.fr/biostat/. The package downloadable file is a
”.tar.gz” archive that can be easily installed on the R software using the command
”R CMD INSTALL spatclus” from source on UNIX, or ”Rcmd INSTALL spatclus”
on Windows. Further informations on R packages installation can be found in the
”R Installation and Administration” manual available on the R homepage.

7 Discussion

This paper describes an R package that implements a new spatial cluster detection
method. This description and the package documentation are complementary to help
users to apply the method both easily and correctly, or for example to conduct
valuable power comparisons between different methods.

The main difficulties in the implementation of the method are the distance weighting
and the break location. The first algorithm presented allows to enlighten the numer-
ical computation of the distance expectation in the weighting process. The second
algorithm is a detailed version of the dynamic programming algorithm presented by
Bai and Perron. This method allows to compute the break estimates using at most
least-squares operations of order O(T 2) for any number of breaks m. This means
that it is only marginally longer to obtain the optimal partition with 8 breaks as it
is with 2 breaks.

The method implemented in the SPATCLUS package has the advantage of being
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very flexible. Firstly, it can be used to detect and locate several clusters, with no
need to adjust for the multiple testing problem. Secondly, since the method does not
need the definition of a predefined shape for potential clusters, the clusters detected
can be of any shape. Moreover, since case event data are used, the method is free
from map partition. Finally, a potential inhomogeneity in the underlying population
distribution is taken into account through the weighting process.

12



References

[1] B. Ripley, Modelling spatial patterns, Journal of the Royal Statistical Society B, 39
(1977) 172–192.

[2] A.S. Whittemore, N. Friend, B.W. Brown, E.A. Holly, A test to detect clusters of
disease, Biometrika, 74 (1987) 631–635.

[3] J. Cuzick, R. Edwards, Spatial clustering for inhomogeneous populations, Journal of
the Royal Statistical Society B, 52 (1990) 73–104.

[4] J. Besag, J. Newell, The detection of clusters in rare diseases, Journal of the Royal
Statistical Society A, 154 (1991) 143–155.

[5] T. Tango, A test for spatial disease clustering adjusted for multiple testing, Statistics
in Medicine, 19 (2000) 191–204.

[6] B.W. Turnbull, E.J. Iwano, W.S. Burnett, H.L. Howe, L.C. Clark, Monitoring for
clusters of disease: application to leukemia incidence in upstate New York, American
Journal of Epidemiology, 132 (1990) 136–143.

[7] M. Kulldorff, A spatial scan statistic, Communications in Statistics - Theory and
Methods, 26 (1997) 1481–1496.

[8] P.J. Diggle, S. Morris, T. Morton-Jones, Case-control isotonic regression for
investigation of elevation in risk around a point source, Statistics in Medicine, 18
(1999) 1605–1613.
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Fig. 1. Flow chart describing the package.
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(d)

Fig. 2. Results for the 2- and 4-cluster models on simulated data . (a) and (c): Results
of the regression of distance on the order respectively for the 2 and 4-cluster model. (b)
and (d): Representation of the clusters located respectively by the 2 and 4-cluster model.
Points located in the clusters are round points surrounded by a grey disc. Simulated cluster
areas are represented in dotted lines. The most likely cluster located by the spatial scan
statistic is represented by a cercle.
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Fig. 3. 3D representation of fMRI activation peaks (protocol described in Section 4.2). At
the top: right-hand side view of the brain from the front. At the bottom: right-hand side
view of the brain from the back. Each peak is represented by a little black cube. A line
joins two peaks that are successive in the trajectory. Points included in a significant cluster
are represented by a sphere or a big black cube. The most likely cluster detected by the
spatial scan statistic is represented by a transparent white sphere.
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Table 1
Data transformation algorithm

READ data, pop, pas, x(1)

FOR k = 1 to n− 1

IF k > 1 THEN

pop← pop r {u/d
(

x(k−1), u
)

≤ d
(

x(k−1), x(k)

)

}

ENDIF

ak ← maxu∈pop d
(

x(k), u
)

SET S to 0

FOR r = 0 to ak by pas

SET rpop to pop

rpop← rpop r {u/d
(

x(k), u
)

> r}

S ← S +
(

1− #rpop
#pop

)n−k

ENDFOR

E[dk]← pas×
(

S − 1
2

)

x(k+1) ← argminx∈datad
(

x(k), x
)

dk ← d
(

x(k), x(k+1)

)

dw
k ←

dk

E[dk]

data← data r {x(k)}

PRINT x(k), dw
k

ENDFOR

20



Table 2
Break location algorithm

READ m, ǫ, dw
1 , dw

2 , . . ., dw
n−1

T ← n− 1

h← |Tǫ|

FOR i = 1 to T

FOR j = 1 to T

IF j − i ≥ h− 1

dw
i,j ←

1
j−i+1

∑j
k=i d

w
k

ssri,j ←
∑j

k=i

(

dw
k − dw

i,j

)2

ENDIF

ENDFOR

ENDFOR

IF m = 1

T̂1 ← argminh≤j≤T−h[ssr1,j + ssrj+1,T ]

ENDIF

FOR j = h to T

S0,j ← ssr1,j

ENDFOR

IF m > 1

FOR r = 1 to m− 1

FOR j = (r + 1)h to T − (m− r)h

Sr,j ← minrh≤i≤j−h[Sr−1,i + ssri+1,j]

br,j ← argminrh≤i≤j−h[Sr−1,i + ssri+1,j]

ENDFOR

ENDFOR

Sm,T ← minmh≤j≤T−h[Sm−1,j]

T̂m ← argminmh≤j≤T−h[Sm−1,j ]

FOR k = m− 1 to 1

T̂k ← b
k,T̂k+1

PRINT T̂k

ENDFOR

ENDIF 21


