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Abstract. This paper contribution is abogtiaranteechumerical methods based
on interval analysis for approximating sets, and about th@ieation of these
methods to vast classes of statistical problems. 'Guagdhteeans here the inner
and outer approximations of the sets of interest are oldaimbich can be made
as precise as desired, at the cost of increasing the corignabeffort. It thus
becomes possible to archieve tasks still thought by mang twub of the reach of
numerical methods, such as finding all solutions of sets ofliteear equations
and inequalities or a global optimizer of possible multidabcriteria.

Notations

Throughout the text, the following conventions are usediglocase letters in italics
such ase or y; denote scalar variables and elements of vectors. Vecterpramted
in bold. A row vector is denoted by the transpose operaterx” . Uppercase bold
characters denote matrices, for instaXte

1 Introduction

Interval computation is a special case of computation os, setd set theory provides
the formulations for interval analysis [1,2]. Set and insrmathematics come from
the same general theory developped during the 30’s by tinelir&chool of Topology:
if a numbera and a bound of a approximate the value of some numhesuch that
|z — a| < b, theninterval mathematictells us thate is in the intervalla — b,a + b].
Hence, the type of an interval is dual: at the same timamberandset with evident
implications in set arithmetics [3]. For instance, suppaseal axis provided with an
order relation<, the interval[x], bounded byz andz, is a closed connected subset
of real numbersz|z < z < T}. Interval arithmetic follows from order properties
and basic operations on real numbers or vectors extend inuaahavay to intervals.
However, the arithmetical rules for intervals differ frommose for real numbers. For
instancez? + z 4+ 100 = (z + $)? + 22 whereas[z]® + [z] + 100 differs from
([z] + 3)* + 232, as illustrated in the following example. For instancefzdt= [0, 1],
[2]2+[2]+100 = [0, 1]2+[0, 1]+100 = [100, 102], and([0, 1]+3)+332 = [1297 1621}
The first result is a pessimistic approximation of the imagteo$z? + = + 100 at [0, 1]
whereas the second (and beteter one) is equal to this image se

A box or vectorof intervals[x] is the cartesian product of intervals and is noted
[x1] X ... X [zy], with [z;] = [z;,7;],i = 1,...,n. Notions introduced for intervals



extend without difficulty to boxes. The set of all boxesRif is denotedlR™. Note
that] — 0o, 0o[Xx ... x] — 00, o0 is an element of R™. Consider the situation where
we have a model which acts as a functibnrmapping (inputs) to (outputs)y. This
model f might be quite complex, with multiple input parameters anthwifferent
kinds of uncertainty represented on them: informationlaizé& on inputs may be rich
or sparse, so-called “aleatory” and may be made known thralgective measure-
ments. Mathematically inputs might be represented by paitibaor possibility distri-
butions, by strong or sparse collections of data points, itk intervals, or even by
non-quantified linguistic expressions.

Given f, how can we propagate the uncertainty.oito y through f? Moreover, how
can we do so in a way which respects all the original uncestajnantifications as pro-
vided, making no unnecessary assumptions? How can we darsacliay which uses
only, butall of what we are given?

In this paper, we propose an approach for solving such pnedileve assume that ex-
perimental points (both inputs and outputs) are modeledtasvials and provide exact
solutions. The contribution of this article is two fold: fiss it is shown that interval
analysis can directly be applied to perform optimizatiae]ding to close form expres-
sions of results. Secondly, , shortillustrative exampietiding a nonlinear process and
a blind source separation problem are given which show thafgative improvement
of the approach in comparison with standard linear iderattiioe.

2 Arefresher on parameter estimation

Consider some functiofi : X € R™ — Y C R*, whereY is a bounded set and suppose
we wish to construct a model: X ¢ X — Y c Y, whereX andY are some domains
of interest, by choosing a parameter vegioe R? so that, mathematically speaking,

y = f(X) = g(X, p) + €(p), (l)

forall x € X andy € Y, where the error in approximatior(p), is as small as
possible.

We suppose that all that is available to choose the parasetir g is some part of
the unknownfunction f in the form of the input-output data pair associations. The
ith input-output pair for the systenfi is denoted by(x;,y;), wherex; € X)y; €

Y andy; = f(x;). This may correspond for instance #o+ s scalar measurements
corresponding to various experimental conditions on acspabcess or on a dynamical
one. Therow vectat; = (x!'y!) € R"** denotes one particular data sample. Stacking
N consecutive samples on top of each other gives the dataxmatri

Z=| .| eXxY. 2
zy
The purpose of parameter estimation is, for instance, togirsdich thaty(x, p) best
fits y in a sense to be specified. In [4], the parameters are copsideimissible if the

errore(p) belongs to some prior compact set of admissible dirar R°. For instance,
E may be the box defined as

E={ele” <e<et}, 3)

wheree™ ande™ are some prior bounds. One is then interested in finding thg eé
all values ofp such that the error is admissibiee. S = {p|e(p) € E}. This set has



been callednembership set, likelihood sahd posterior feasible self the data were
generated by a statistical modék, p*), wherep* is some true value of the parameters
and ife(p*) € E, thenS containsp*. Thus,S provides an accurate description of the
uncertainty with whichp* is estimated [4].

If the reciprocal ofg exists and is denoteg-!, S is defined a§ = g~ '(y — E) =

g~ 1(Y), whereY = y — E is themeasurement sein other words, for any € S there
existse € E such thaty = g(x,p) + e.

System identificatiofi.e. function approximation) amounts to adjustipgising infor-
mation fromZ so thatg(x,p) ~ f(x),Vx € X. Measured and model outputs never
match perfectly in practice, but differ a$p). An obvious modeling goal must be that
this discrepancy is “small” in some sense that is archiewethb value of theapproxi-
mation errorwe wish to bound. Such a bound is for example

sup [ f(x) — g(x, p)]|, (4)
xeX

which requires thaf is known everywhere. The problem is that we only know the part
of f given byZ, and it is the only evaluation we can make based on knownrimdition.

Let us consider a system with imprecise input and outpaind y resp., which are
readings from unreliable sensor (“noisy data”). To simpkfikposition, we shall only
consider output errors :

ez(p):y7_g(xup)77/:157$ (5)

but other types of errors could be considered as well. Wenasshat these errors should
satisfye; < e;(p) <@, i = 1,...,s to be “admissible”, where; ande; are known
lower and upper prior bounds of the approximation error it@syifrom technical speci-
fications or pointing out how far we can go in accepting dipareies between our data
and model outputs. Note thaf(p) is an interval.

Let y be the vector of all datg;,7 = 1,...,s collected on a given system, and let
g(x; p) be the vector of all corresponding model outpgts;;p), i =1,...,s.
Equation (5) can then be rewritten as

e(p) =y — 9(x;p), (6)

Picked in intervals, equation (6) gives:

[e(p)] = [y] = 9(IJ; [P)), (7)

The model (7) is said to bedmissiblef p is such that € E, i.e. errors should satisfy

[y] = lg]([x]; [p]) € [e]([p])- (8)

[g] is aninclusion functionof ¢ that returns arenveloping boxguaranteed to contain
the image byg of any given boxx] included in the domain of. [g]([x]) is a box
such thatg([x]) C [g]([x]). The including functiorig] is easy to compute for usual
elementary functions that can be obtained by compositioal@hentary operations
such ast+, —, x, /, exp, tan, sin, . .. by replacing each of these elementary operations
by their inclusion function in the formal expressiongf

When no efficient algorithm exists for its computatidggi, can be approximated by an
inclusion functionG : R” — RP? satisfyingg([x]) C [g]([x]) and such that:

w(x]) = 0= w([G)([x])) — 0. 9)
wherew([x]) is the width of the boxXx], defined as the length of its largest side(s).
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Fig. 1. Minimal inclusion function[g] and inclusion functior; of a functiong.

Figure 1 illustrates conditions([x]) C [g]([x]) and (9).
Let§ = {plg([x]; [p]) € Y}. Then

g(x;p) €Yo peg ' (Y) and p e [p](0) (10)
& pepl(0)ngH(Y) (11)

where[p](0) is the search domain. Thus
§=[pl0)Ng"(V), (12)

and characterizin@ is aset inversion problem

We shall say thafp] is feasibleif [p] C S, unfeasiblef [p] NS = &, else[p] is am-
biguous

To perform computation db in an approximate but guaranteed way, an interval anal-
ysis algorithm is applied to compute the possible interaalge[p] of p. The interval
computation stage is detailed in the following.

3 lIdentification by set characterization

Methods allowing to implement interval analysis are reklif few and date from the
nineties and among them, one may quote the Moore’s algofBhandsiviA proposed
by Jaulin [5]. Most of the methods for estimating paramegeesbased on computations
performed at point values of the parameter vector. The mdgrest in the notion of
paving is to replace point values by subsets of the paramsptare. For simplicity, we
will use pavings based upon boxes.

A pavingof a compact subséP} C R™ is a set of non overlapping boxes with nonzero
width such that the union of these boxes correspond®fo A subpavingK of P is

a subset ofP. Upon completion, the algorithm enclosedetween two compact sets
corresponding to 2 subpavings (Fig. 3). [E2be the feasible error set. Initialisation is
performed by settin’ = y — E. The principle is as follows:

. Define an initial box of |ntere$p]( 0) within which the search will be performed
b Compute a pavm@P’} of |

. Compute the image([x ﬁo for each box of this paving. Three situations must

then be considered (see flgure 2).

[9]([x]; [p]) € [Y] = [p] € S so thalp]is feasible
[9)([x];[p)) N[Y] =@ = [p]NS =2 sothajp]
is unfeasible

otherwise[p] is indetermined



The exploration algorithm performs a recursive implemaeateof the principle that has
just been described:k#section algorithnsplits each box of the subpaving into smaller
boxes whenever needed until the width of the box becomedeantizin some tolerance
parametet to be specified by the user. Cutting is carried out again a3 &srthe boxes
contain solutions or stops if the boxes do not contain any.

[y] [yl vl
. u
b. C.

Fig. 2. Feasibility of boxes: a test function allows to distinguikh cases (a-c) represented in this
figure. Let[z] and[y] be two boxes. Suppose tHafl = [z] N [y]. &) [n] = @ means thafz] has
an empty intersection witfy]. b) [n] = [z], so that[z] is included insiddy]. ¢) [n] C [z] and
[n] # [z]. [z] intersectdy], so that we cannot conclude. The bakcan be split again.

We shall splitP iteratively into three subpavings S andS corresponding to the sets of
all feasible, unfeasible and indetermined boxes respsygtias plotted in figure 3.

a. b.

Fig. 3. a. Regular paving of a box: accepted, rejected and indetednsubpavings are respec-
tively coloured in red, blue and yellow. §S andS} brackets the portion ¢ contained inp](0).

These subpavings satisfy the following relations :

1. {S}cSc{S}us) B
2. vol({S})< vol(S)< vol({S}) + vol({S})
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Provided thas is full, this means that the pa{iS; S} defines a neighbourhodif =

S\S of S with a diameter that can be chosen arbitrarily small.

The previous algorithm makes an extensive use sthakL of boxes,.e. a dynamical
structure on which only 3 operations are possible: at ang timme may put an element
on top of the list, remove the top element or test the stackfigptiness. We define the
required accuracy for the pavingP as the maximum widh that an indetermined box
can have. In the following, the principal plane of a box is #yenmetry plane of this
box that is orthogonal to the axiss {j|w([p]) = w([p,])}, where the operator “width”
w([-]) of a box is the length of its largest side.

Let [p](0) be the box considered at iteratidn Initialisation is performed by setting

k=0,L=@,S =S = @. The recursive algorithm can be described as follows:

[Argorithm BISECT |

INPUTS
dat a:
i nclusion function: [g]([])
feasible error set: E
prior feasible box: [p](0)
accuracy for the paving: e
INITIALIZATION
Y=y —E;
stack: L=go
iteration: k=0
[p] = [p](0);
ITERATION k&
Begi n
step 1. if [g]([x]; [p](k)) C [Y] then
step 2 else if [g]([x];[p](k))N[Y] =
[p](k) as unfeasi bl e;
step 3: else if w([p](k)) <e then S:=SU[p](k);

el se cut [p](k) along the principal plane and stack the
resulting boxes in L.
step 4. if the stack is not enpty, then unstack and store the
resulting box in [p](k+1);
k=k+1, go to step 1;
End

S::SU[ ] and S:=Suipl;
@, the

SU[p]; then unstack

Table 1. Recursive implementation of the bisection algorithm.

The union of all the boxes in the listreturned by the program contaifisthe parti-
tion P consisting of feasible, unfeasible and indetermined basesbe plotted in the
parameter space in the case the space dimension is less themg. 3).

4 Discussion

The method oBet characterizatiomtroduced in section 3 appeals to some comments.
Upon completion, this approach encompasdkihe acceptable values of the parameter

vector in a set that is fully characterized bysBCT. S andS will tend toS from inside
and outside whem — 0. SinceS is a finite union of boxes guaranteed to contain



the portion ofS of interest, it is very convenient for implementing setdhatic mani-
pulations [6,4].
The advantages of this approach are threefold:

(i) no assumption is made on the image fonctjon
(i) no statistical assumption on the modeling error is rieepl
(iif) any bounded error can be treated independently franoitgin (modeling and/or
measurement error).

An other advantage of the proposed approach is that the-mytput roles of the vari-
ablesz andy can be reversed since the linking functign x — y can be rurforward
as well asbackwardwhen using interval analysis. Subpavings form a usefulsctds
objects for manipulating statistical estimations.

The algorithm requires a possibly very large search [pd¢0) to whichS is guaranteed
to belong. Solvers split the search box into an union of bd@#espaving with guar-
anteed error bounds €. mathematically valid) [7] (see section 3). The paving idtbui
by the solver itself. A computer program can represent a Eé\entually disjoint)
intervals as dist L. The precision of the solver is controlled by coefficients@fying,
for example, the width of the smallest boxes of the paving, or the accuracy in the lo-
calization of a global optimum. The computing time of thevgolcan increase quickly
with the dimension and size of the list

Special care must be taken in avoiding memorizing unnepgsgarmation, otherwise
the quantity of memory required to store the pavingafill increase linearily at each
iteration, which may result into a memory overflow even foolgems of modest di-
mension.

One can observe that the parameter space is not isotropacibethe sensitivities gf
with respect to the various componentgpdadre not of the same order of magnitude. The
basic bisection technique suggested in Tab. 1 may not béeeffienough. The prob-
lem is then how to choose the fastest bisection policy thatltg in a convergence as
fast as possible. Jaulet al.[4] suggests the bisections if] into boxesp4] and|[p2]
that minimize vo{g([x]; [p1]))+Vvol(g([x]; [p2])). If [p] is not ambiguous, this policy
will tend to avoid classifying as indetermined. Experingeesgem to show that this can
improve the efficiency of the solver when the anisotropy isse.

5 Application to statistical problems

Example 1 (Parameter estimatiof).this example, a simplified version of the problem
explored by Jaulin and Walt&f4] is given. The vector comprising all The numerical
values of the corresponding interval data are gives by ([1.18, 2.00], [0.62, 2.26], [0.40, 2.21], [1.09, 1.27], [0.32, 1.81

The setP to be characterized consists of the set of variable vedfprs, [p2])” such
that the graph of the function :

f(pa t) = P2 eXp(_plt)7 (13)

crosses all the data bars of Figure 4. In this simulated elartipe[y;] were computed
by adding a random error interval with radips= 0.5]y;| + 1 to they;. The initial box
domains for the parameteps andp, may be arbitrarily large, for example

[p1] = [—10,000; 10,000] and [p2] = [—10,000; 10, 000], (14)

i.e. no priorinformation is available on the parameters. The feasikliéosehe param-
eters is given by (12), where the search donjgir0) is [—1, 5] x [—5, 5].

% The extension of the method to multiple-output problemsraightforward.
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a. t o]

Fig. 4. a) Measurement times and corresponding interval data. p)view of the paving gen-
erated by BSECT to bracket the solution set (in red) in the parameter spahe.duter frame
corresponds to the bdx-1, 5] x [—5, 5].

In less than 1s, on agRiTIuM |V, BISECT generates the pavings of figure 4, thus brack-
eting the posterior feasible set fpr, between the inner and the outer approximations.
Figures 4.b gives a top-view representatiorpof.e. the bounded support of the vari-
ablesp, andp, that is consistent with the equation (13) and the domain (14

Example 2 (Curve estimationlhe curvature:(t) of an arbitrary twisted curvé€ mea-
sures the rate of change of the tangent when moving alongitive . dt measures, so to
speak, the deviation of the curve from a straight line in thighbourhood of any of its
points. It is quite easy to derive an analytic expressiorhefdurvature which is valid
whenC is represented by an allowable parametric representation

x' x x"

K(t) = WP (15)

where x denotes the vector product. Derivatives with respect tetare denoted by

d*x

: r__ dx "o
primes,e.g.x’ = 5 andx” = %=.

0.26

0.24 -

0.22 -

0.2 1

0.18 -

Curvature

0.16 -

0.14 -

0121

0.1

. . . . . .
0 20 40 60 80 100 120 140
Time

Fig. 5. a. 3-dimensional representation of the Clelia curve. bpBaf the functions(t).



WhenC is aclelia curve (see figure 5.a), the cartesian representhison
x(t) = (Rcosntcost, Rcosntsint, Rsinnt) (16)

with ¢ as a parameter. Figure 5.b plots the domair @.

A statistical approach assume that a se¥dhput-output data pairg;, x;)Y, is avail-
able. Recall thak; € R? are vectors and; is scalar. The data set is split into a training
and a validation data set. A neural network such as repred@mtig. 6 is designed for
supervised learning and prediction task from a particalgBuch architecture is called
multi-layer perceptro{MLP). Hidden units are placed between the features unis an
the predictions units. A deterministic MLP trained by a nuetlsuch as backpropaga-
tion [8], can implement any input-output function providiset the number of hidden
neuronsyy, is sufficiently large.

Fig. 6. A deterministic two-layer feedforward neural network witiputx = (z1, z2, z3).

Fig. 7.a depicts th&raining error performed on the training data set.

0241 : iR B

o21| || [ 15 b

Error
Expected/Predicted curvature
o
=
=
|

01 I I I I I
0 10 20 30 40 50 60

b, Samples

Fig. 7. a. Training error. b. Measured outputs (-) and simulategwst(...) computed by the
neural network.

With increased number of hidden neurons, the accuracy afethdting neural system
with respect to the training data set is improved, but thditglof the model to gen-

4 Clelia curve was studied by Guido Grandi in 1728.



eralize for inputs (test set) may be degraded as illustratexir results (Fig. 7.b). In

a similar way, descreasing the output error improves theraoy with respect to the
training data set, but accuracy in the presence of inpufsrdift from the training data
set is degraded. These tests Illustrate some effects imgaea choice on the resulting
neural model.

A second approach consists in using interval analysis tdolhis simulated example,
we assume that the values taken+bgre imprecise and sampled at the ratg : the

prior intervals|x;] are computed by adding a centered error interval to the &tsoc
measurement;. The solution sef to be characterized consists of all the values of

p = (R, ré)T such that the graph of the functietit) crosses all the data bars of figure
8.a. The dataset is made of 22 data, so very few for a learnodgem

05 05

045 E 045 i
04f E 04 E

03 T

5 %) 7 5 1 i .
= ; } , SN h“ % %}} 1

0.05 T 0.05 T

03 T

curvature
=3
]
o
I
curvature
=3
]
o
T

0 20 40 60 80 100 120 1 0 20 40 60 80 100 120 1
a. t b. t

Fig. 8.a) Experimental data#() together with their uncertainty intervals and graph offilmection
x(t). b) Posterior feasible intervals for the superposed on the graph of the functia(t).

Fore = 0.03, BISECT generates the subpaving represented in Figure 9 in 7s @ana P
TIuM IV. The prior box for the parameters is taken [@ = [—10,10] x [-10, 10].
More interesting, one may want to generate the posteriailiéaset for thes; (poste-
rior estimates) from the formula as can be seen in figure 8.b.

Fig. 9. Top-view of the paving generated by&:cTto bracket the solution set (in red) in the
parameter space. The outer frame corresponds to thé-biix 10] x [—10, 10].



Example 3 (Blind source separatiohe problem adressed here is the recovery of
unknown independent sourcegt) from the observation of a linear mixturese;. In
matrix and vector notations, this model reads= As, wheres = (s, s2)7 is the
vector of sourcesg = (z1,22)T the vector of observations antl= {a,;} the mixture
matrix. It is a noise-free, time-free model. To recover atoeg close to the source
vectors knowing the vector only, one should estimate some inversedoflenoted as
B. The corresponding estimate s&fis y = Bx. It should be noted, however that the
matrix A (or its inverse) is not identifiable from the observatiorse(.9.[9]): even if
we can extrach independent components, we do not know their ordering. inhidies
that there exists &eedom of permutationsf the original signals. The magnitudes of
the original signals; are also not recoverable, because a scalar mutiplg of; of s;

by a constant cannot be distinguished from multiplication of tfta column of A by
the same constant Therefore, therefore,we can recover only a permuted aschted
version of the sources.e. we can obtain at bes?DA~!, whereP is a permutation
matrix andD is nonsingular scaling matrix.

The important question is: does the independence of the eoemts ofy imply nec-
essarily theseparabilityof the mixing model ? The answer to this question is positive
in the linear instantaneous domain: the transformatiorttvhaps a non-Gaussian ran-
dom vector with independent components to a random vectbrindependent compo-
nents is unique, up to some trivial transformation. Thigamby is a direct result of the
Darmois-Skitovich theorem [10]. A solution to the problewith 2 sources) was first
adressed by Herault and Jutten [11] who compute

y1 =21+ biaye
{yz =2 + ba1y1. (@7
whereb,, andby; are adaptive weights adjusted by means of an adaptationdaadb
on the product of 2 nonlinear functiorfsandg. The sources are assumed to be zero-
mean {.e.E[s1] = E[s;] = 0), stationary and independent.
The independence of the signals means that these sourcétaweszero covariance,
i.e.E[s1s2] = 0 and thereforé&[y,y2] = 0. These constitute a basis for the adaptation
rule considered in [11] to learn the coefficienis.

db1a 3 dba 3
= 2 18
o = iy =y, (18)
wherey is a positive constant. It is well-known that the equililoripoints are solutions

of E[y3y2] = 0 andE[y143] = 0. However this does najuaranteethat (b; bf)

converges to the inverse of the mixing equation, even lgcall
Let (a” a”) be the (unknown) separating matrix. The solutions of thiefdhg

a21 a22
system:
].blg -1 ail a1\ _ 10 01
(b21 1 ) (CL21 CLQQ) - (0 1) or (1 0) ' (19)
readshiz = ¢12 andby; = £2t, 0rbiz = ¢ andby,; = £22. O
Comonet al.[12] and Sorouchyari [13] investigate the convergence ertigs of the al-
gorithm and perform a stability analysis for such a netwdhey demonstrate that there
areexactly4 paired equilibrium points (see figure 10): indeed, if thenpb,, b3, ) is

a equilibrium point, then the poir@;}%—g, b; ) is also a solution (see e.qg. [13]).

One can show that such a pair of equilibrium points is on a fiassing through the
origine of the(b12, b21) plane. But only one of these stationary points will bstable
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Fig. 10. Theoretical equilibrium points of the system in tfie., b21) plane.

separating solutiofl4].

As an illustration, consider the discrete time model in vahice data have been gener-
ated by simulating fok = 1,...,500: <§;EZ;) = (013 0716) <§;EZ;) wheres; (k) =

sin(7, 3kT.), s2(k) = sin(4kT.), T. = 0,2. Prior interval([z1 (k)], [x2(k)]) are obtained
by adding a random white noisgk) ~ U_. 4, with e = 0.01. Fig. 11.a plots the
sources and Fig. 11.b the observed data.

Otsenca st Wedsgas  enedsg

VWY St AN

Fig. 11.a) The unknown sources b) the observations c) The separatecks.

An Newton algorithm can be used to find the equilibrium pooftthe solution. Figure
12.a shows that the algorithm is capable to find the four daguilibrium points the
similarity with Fig. 10 is relevant. The interval algorithgenerates also in tHé:, ba1)
plane (Fig. 12.b and c) the subpaving of the parametersigatisthe independence
constraint in less than 1s on &®TIum Il1. After completion, the contracted intervals



in the figures 12.b and c include the true values of the parmsigdnce the equilibirum
point is identified, it is used for separating the signalg (Eil.c).

Fig. 12.a) Theoretical equilibrium points of the system b,c) stadeilibrium points obtained
by interval analysis in thébi2, b21) plane.

6 C++ implementation

The identification algorithm presented in section 3 was anm@nted in C++.

A BOXclass was designed, which allows the programmer to ignerdéails of interval
implementation. Th&OX class contains the properties of the intervals, the dedimibif
arithmetical operations on intervals, input-output fuoes, etc.

The instanciation of 80X is very similar to & | oat , thus one may write

int main()

BOX y(2,3);
BOX x;

Il ...

}

Itis now possible to create and initialize intervals. ThetinctionBOX& oper at or =( const
BOX&) ; assigns the value of tH&OX argument to the callinOX instance. For exam-
ple, a possible implementation of the addition is

BOX& oper at or +(const BOX& a, const BOX& b)

BOX res;
res.inf=a.inf+b.inf;
res. sup=a. sup+b. sup;
return res;

with evident notations. The implementation of the inclusfonctions for the standard
mathematical functions obey the usual syntax for mathemlgfiuinctions Cos, Si n,
Exp,...) and can be used to evaluate properties of an intenvelh as its width, or its
centre, etc. They are stored in a moduoig h. cpp which constitues an interval coun-
terpart to the standard mathematical library.



One may prefer to use a ready-made libragOFIUBIAS is a library for interval com-
putation. It runs under many operating systems, fromtto DOS. The library can be
downloaded fronf t p: // ti 3sun. t u- har bur g. de/ pub/ profil/.Bias (Ba-
sic Interval Arithmetic Subroutine), has been written inrCtihe spirit of the BR-
TRAN BLAS library (Basic Linear Algebra Subroutines). The basicharietic opera-
tions, rounding controls and elementary mathematicaltfans are implemented. For
instance, an inclusion function for the exponential fumetcould be implemented as
follows:

BOX Exp(const BOX& x)
{return BOX(exp(Inf(x)),exp(Sup(x)));}

The implementation of algorithms for interval analysis uggs specific tools, to be
stored in a modul8i sect . cpp. This module implements, for instance, the bisection
of an interval vectok accross it$ th dimensiorvia the functiond_ower andUpper ,
which compute the two interval vectors resulting from theeltion.

BOX Lower (const BOX& x, int&i);
BOX Upper (const BOX& x, int&i);

Bi sect . h starts with the definition of a new type of varial8&©X_BOOL correspond-
ing to interval booleans.e. variables that can take their valueB_TRUE, | B_FALSE
andl B_I NDET. Thus, an interval boolean test can be pass@i 8ect . cpp as a pa-
rameter.

The codeBi sect . cpp uses a recursive structure (the routine calls itself).dtré-
sult is true or false, then a message indicating the resulisislayed, followed by a
return statement. Else the box is indeterminate, and itdvisccomputed. If it turns out
to be lower than the precision parameggrs, then a message is displayed, followed
by a return statement. Else the current box is bisected usigr andUpper , and

Bi sect . cpp is called for each of the resulting subboxes.

I e
#i nclude ‘' *Bisect.h’

voi d Bi sect (repere& R, const BOX& P,
float eps,float al pha)

i f (W dth(P)<eps)

R. Dr awBox( P, XFI G_YELLOW ;
//draw a yel | ow box
return;

}
BOX_BOL test=Inside(P, al pha);
i f (test==IB_TRUE)

R. DrawBox(P, XFI G RED); //draw a red box
?I se if (test !'= 1B _FALSE)

R I ncDivision();

Pl=Lower ( P, MaxW P) ) ;

P2=Upper ( P, MaxW P) ) ;

Bi sect (R, P1, eps, al pha) ;

/1l Bisect is called recursively
) Bi sect (R, P2, eps, al pha) ;

MaxW() function returns the index of the first component with maximmth of this
box by reference to ainnt . The functiorBi sect () produces a console and a graphic



outputs with the functiorR. Dr awBox () . To useBi sect . cpp, it now suffices to
define the testnsi de() to be inverted and to write the functiomi n() , which will
callBi sect () :

R e P
#i nclude ‘ ‘' Bisect.h’

/[l Definition of the test
BOX _BOL I nsi de(BOX& P, fl oat al pha)

t float y[11];

BOX_BOL dedans;
for (i=1;i<=10;i ++)

fl oat e=(1-al pha);
dedans=dedans&& n( P[ 1] * Exp(- P[ 2] *i )
interval (y[1]-e,y[i]te));

return dedans;

b

void Estim (repere& R BOX& P, fl oat a)
y[ 1] =1. 597038; // dat a

y[ 10] =0. 649307:
R. Dr awBox( P, XFI G_BLUE) ;
Bi sect (R, P, eps, al pha)

voi d mai n()

BOX PO(2); /| search box
PO[ 1] = | NTERVAL( - 10, 10);
/'l initiate search box
PO[ 2] = | NTERVAL( - 10, 10);
for (int k=0; k<=9; k++)

float a=(float) k/10;
repere R(Inf(PO[1]), Sup(PO[1]),
I nf (PO[2]), Sup(PO[2]))
Esti m R, PO, 0. 05, al pha) ; /1l eps is set to 0.05

7 Conclusion

The problem of parameter estimation of a (non)linear moaehfprior knowledge, ex-
perimental data and collateral constraints is viewed imdiicle as one afet inversion
which is solved in an approximate but guaranteed way withdbés of interval analy-
sis. Itis possible to charaterize the set of all parametetore that areonsistentvith
the data in the sense that the errors between the data am$pgonding model outputs
fall within known prior bounds. This has been illustratedsimple simulated examples
for time-invariant models whose outputs are linear in thimgiuts, even if nonlinear in
their parameters. it is worth stressing that the schemeatiose3 is robust in the sense



that the fit of the tuned model is at least as good as what israatavith the classical
optimization approach.

Upon completion of the algorithm, a paving bracketing thatoars of the solution
membership functions is found (or not) with a precision colted by the solver.

This computation process has drawbadksits complexity is exponential in the num-
ber of parameters which restricts its use to low-dimendiprablems(i7) the algorithm
presented here is far from optimal from the viewpoint of catgional time and sig-
nificant improvements can be expected in the near fuiiié), efficient functions are
needed which are available only when an explicit solutiaritie equations defining the
model can be found.

Realistic advantages can be found compared to the statiapproach:

1. The error structure is quite simple and similar inforroatis usually available in
most practical cases, not assumiugy a priori statistical information about the
error.

. The computation of the parameter domain is conceptuiatigle and is practically
feasible even if the number of data is not large.

. The algorithm igleterministic

. guaranteedesults are available for (non)linear models even when Hrampeters
are not identifiable. Nonlinear constraints are easily techd

. the solver characteristics are different from optimaapproaches that requires a
(large) set of data points.

Least-Square estimation suffers from the fact that the fewsition to be minimized is
a sum of terms involving the same parameters, so multiooceref these parameters
is unavoidable and tends to make inclusion functions forcibt function very pes-
simistic, which complicates the elimination of interegtparts of the search domain.
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