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Abstract. This paper contribution is aboutguaranteednumerical methods based
on interval analysis for approximating sets, and about the application of these
methods to vast classes of statistical problems. ’Guaranteed’ means here the inner
and outer approximations of the sets of interest are obtained, which can be made
as precise as desired, at the cost of increasing the computational effort. It thus
becomes possible to archieve tasks still thought by many to be out of the reach of
numerical methods, such as finding all solutions of sets of non-linear equations
and inequalities or a global optimizer of possible multi-modal criteria.

Notations

Throughout the text, the following conventions are used: lower case letters in italics
such asx or yi denote scalar variables and elements of vectors. Vectors are printed
in bold. A row vector is denoted by the transpose operator,i.e. xT . Uppercase bold
characters denote matrices, for instanceX.

1 Introduction

Interval computation is a special case of computation on sets, and set theory provides
the formulations for interval analysis [1,2]. Set and interval mathematics come from
the same general theory developped during the 30’s by the french School of Topology:
if a numbera and a boundb of a approximate the value of some numberx such that
|x − a| ≤ b, theninterval mathematicstells us thatx is in the interval[a − b, a + b].
Hence, the type of an interval is dual: at the same timenumberandset, with evident
implications in set arithmetics [3]. For instance, supposea real axis provided with an
order relation≤, the interval[x], bounded byx andx, is a closed connected subset
of real numbers{x|x ≤ x ≤ x}. Interval arithmetic follows from order properties
and basic operations on real numbers or vectors extend in a natural way to intervals.
However, the arithmetical rules for intervals differ from those for real numbers. For
instance,x2 + x + 100 = (x + 1

2 )2 + 399
4 whereas[x]2 + [x] + 100 differs from

([x] + 1
2 )2 + 399

4 , as illustrated in the following example. For instance, at[x] = [0, 1],
[x]2+[x]+100 = [0, 1]2+[0, 1]+100 = [100, 102], and([0, 1]+ 1

2 )+ 399
4 = [159716 , 1621

16 ].
The first result is a pessimistic approximation of the image set ofx2 + x + 100 at [0, 1]
whereas the second (and beteter one) is equal to this image set.
A box or vector of intervals [x] is the cartesian product ofn intervals and is noted
[x1] × . . . × [xn], with [xi] = [xi, xi], i = 1, . . . , n. Notions introduced for intervals



extend without difficulty to boxes. The set of all boxes ofRn is denotedIRn. Note
that ] − ∞,∞[× . . .×] − ∞,∞[ is an element ofIRn. Consider the situation where
we have a model which acts as a functionf , mapping (inputs)x to (outputs)y. This
modelf might be quite complex, with multiple input parameters and with different
kinds of uncertainty represented on them: information available on inputs may be rich
or sparse, so-called “aleatory” and may be made known through objective measure-
ments. Mathematically inputs might be represented by probability or possibility distri-
butions, by strong or sparse collections of data points, by simple intervals, or even by
non-quantified linguistic expressions.
Givenf , how can we propagate the uncertainty onx to y throughf? Moreover, how
can we do so in a way which respects all the original uncertainty quantifications as pro-
vided, making no unnecessary assumptions? How can we do suchin a way which uses
only, butall of what we are given?
In this paper, we propose an approach for solving such problems: we assume that ex-
perimental points (both inputs and outputs) are modeled as intervals and provide exact
solutions. The contribution of this article is two fold: firstly, it is shown that interval
analysis can directly be applied to perform optimization, yielding to close form expres-
sions of results. Secondly, , short illustrative examples including a nonlinear process and
a blind source separation problem are given which show the significative improvement
of the approach in comparison with standard linear identification.

2 A refresher on parameter estimation

Consider some functionf : X ⊂ Rn → Y ⊂ Rs, whereY is a bounded set and suppose
we wish to construct a modelg : X ⊂ X → Y ⊂ Y, whereX andY are some domains
of interest, by choosing a parameter vectorp ∈ Rp so that, mathematically speaking,

y = f(x) = g(x,p) + e(p), (1)

for all x ∈ X and y ∈ Y, where the error in approximation,e(p), is as small as
possible.
We suppose that all that is available to choose the parameters p in g is some part of
the unknownfunction f in the form of the input-output data pair associations. The
ith input-output pair for the systemf is denoted by(xi,yi), wherexi ∈ X,yi ∈
Y andyi = f(xi). This may correspond for instance ton + s scalar measurements
corresponding to various experimental conditions on a static process or on a dynamical
one. The row vectorzi = (xT

i yT
i ) ∈ Rn+s denotes one particular data sample. Stacking

N consecutive samples on top of each other gives the data matrix

Z =





z1
z2
...

zN



 ∈ X × Y. (2)

The purpose of parameter estimation is, for instance, to findp such thatg(x,p) best
fits y in a sense to be specified. In [4], the parameters are considered admissible if the
errore(p) belongs to some prior compact set of admissible errorE ⊂ Rs. For instance,
E may be the box defined as

E = {e|e− ≤ e ≤ e+}, (3)

wheree+ ande− are some prior bounds. One is then interested in finding the set S of
all values ofp such that the error is admissible,i.e. S = {p|e(p) ∈ E}. This set has



been calledmembership set, likelihood setandposterior feasible set. If the data were
generated by a statistical modelg(x,p∗), wherep∗ is some true value of the parameters
and if e(p∗) ∈ E, thenS containsp∗. Thus,S provides an accurate description of the
uncertainty with whichp∗ is estimated [4].
If the reciprocal ofg exists and is denotedg−1, S is defined asS = g−1(y − E) =
g−1(Y), whereY = y − E is themeasurement set. In other words, for anyp ∈ S there
existse ∈ E such thaty = g(x,p) + e.
System identification(i.e. function approximation) amounts to adjustingp using infor-
mation fromZ so thatg(x,p) ≈ f(x), ∀x ∈ X. Measured and model outputs never
match perfectly in practice, but differ ase(p). An obvious modeling goal must be that
this discrepancy is “small” in some sense that is archieved by the value of theapproxi-
mation errorwe wish to bound. Such a bound is for example

sup
x∈X

‖f(x) − g(x,p)‖, (4)

which requires thatf is known everywhere. The problem is that we only know the part
of f given byZ, and it is the only evaluation we can make based on known information.
Let us consider a system with imprecise input and outputx and y resp., which are
readings from unreliable sensor (“noisy data”). To simplify exposition, we shall only
consider output errors :

ei(p) = yi − g(xi;p), i = 1, . . . , s (5)

but other types of errors could be considered as well. We assume that these errors should
satisfyei ≤ ei(p) ≤ ei, i = 1, . . . , s to be “admissible”, whereei andei are known
lower and upper prior bounds of the approximation error resulting from technical speci-
fications or pointing out how far we can go in accepting discrepancies between our data
and model outputs. Note thatei(p) is an interval.
Let y be the vector of all datayi, i = 1, . . . , s collected on a given system, and let
g(x;p) be the vector of all corresponding model outputsg(xi;p), i = 1, . . . , s.
Equation (5) can then be rewritten as

e(p) = y − g(x;p), (6)

Picked in intervals, equation (6) gives:

[e(p)] = [y] − g([x]; [p]), (7)

The model (7) is said to beadmissibleif p is such thate ∈ E, i.e.errors should satisfy

[y] − [g]([x]; [p]) ∈ [e]([p]). (8)

[g] is an inclusion functionof g that returns anenveloping boxguaranteed to contain
the image byg of any given box[x] included in the domain ofg. [g]([x]) is a box
such thatg([x]) ⊂ [g]([x]). The including function[g] is easy to compute for usual
elementary functions that can be obtained by composition ofelementary operations
such as+,−,×, /, exp, tan, sin, . . . by replacing each of these elementary operations
by their inclusion function in the formal expression ofg.
When no efficient algorithm exists for its computation,[g] can be approximated by an
inclusion functionG : Rn → Rp satisfyingg([x]) ⊂ [g]([x]) and such that:

w([x]) → 0 ⇒ w([G]([x])) → 0. (9)

wherew([x]) is the width of the box[x], defined as the length of its largest side(s).
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Fig. 1. Minimal inclusion function[g] and inclusion functionG of a functiong.

Figure 1 illustrates conditionsg([x]) ⊂ [g]([x]) and (9).
Let Ŝ = {p|g([x]; [p]) ∈ Y}. Then

g([x]; [p]) ∈ Y ⇔ p ∈ g−1(Y) and p ∈ [p](0) (10)

⇔ p ∈ [p](0) ∩ g−1(Y) (11)

where[p](0) is the search domain. Thus

Ŝ = [p](0) ∩ g−1(Y), (12)

and characterizinĝS is aset inversion problem.
We shall say that[p] is feasibleif [p] ⊂ S, unfeasibleif [p] ∩ S = ∅, else[p] is am-
biguous.
To perform computation ofS in an approximate but guaranteed way, an interval anal-
ysis algorithm is applied to compute the possible interval range[p] of p. The interval
computation stage is detailed in the following.

3 Identification by set characterization

Methods allowing to implement interval analysis are relatively few and date from the
nineties and among them, one may quote the Moore’s algorithm[3] andSIVIA proposed
by Jaulin [5]. Most of the methods for estimating parametersare based on computations
performed at point values of the parameter vector. The main interest in the notion of
paving is to replace point values by subsets of the parameterspace. For simplicity, we
will use pavings based upon boxes.
A pavingof a compact subset{P} ⊂ Rn is a set of non overlapping boxes with nonzero
width such that the union of these boxes corresponds to{P}. A subpavingK of P is
a subset ofP. Upon completion, the algorithm enclosesS between two compact sets
corresponding to 2 subpavings (Fig. 3). LetE be the feasible error set. Initialisation is
performed by settingY = y − E. The principle is as follows:
a). Define an initial box of interest[p](0) within which the search will be performed
b). Compute a paving{P} of [p](0)
c). Compute the imageg([x]; [p]) for each box of this paving. Three situations must

then be considered (see figure 2).





[g]([x]; [p]) ⊂ [Y] ⇒ [p] ⊂ S so that[p]is feasible
[g]([x]; [p]) ∩ [Y] = ∅ ⇒ [p] ∩ S = ∅ so that[p]
is unfeasible
otherwise,[p] is indetermined.



The exploration algorithm performs a recursive implementation of the principle that has
just been described: abisection algorithmsplits each box of the subpaving into smaller
boxes whenever needed until the width of the box becomes smaller than some tolerance
parameterǫ to be specified by the user. Cutting is carried out again as long as the boxes
contain solutions or stops if the boxes do not contain any.

a.

[y]

[z]

b.

[z]

[y]

c.

[z]

[y]

Fig. 2.Feasibility of boxes: a test function allows to distinguishthe cases (a-c) represented in this
figure. Let[z] and[y] be two boxes. Suppose that[n] = [z] ∩ [y]. a) [n] = ∅ means that[z] has
an empty intersection with[y]. b) [n] = [z], so that[z] is included inside[y]. c) [n] ⊂ [z] and
[n] 6= [z]. [z] intersects[y], so that we cannot conclude. The box[z] can be split again.

We shall splitP iteratively into three subpavingsS, S andS corresponding to the sets of
all feasible, unfeasible and indetermined boxes respectively, as plotted in figure 3.

a. b.

S

S

∂S

Fig. 3. a. Regular paving of a box: accepted, rejected and indetermined subpavings are respec-
tively coloured in red, blue and yellow. b.{S andS} brackets the portion ofS contained in[p](0).

These subpavings satisfy the following relations :

1. {S} ⊂ S ⊂ {S} ∪ {S}
2. vol({S})≤ vol(S)≤ vol({S}) + vol({S})



3. [{S}] ⊂ [S] ⊂ [{S}] ∪ [{S}]

Provided thatS is full, this means that the pair{S; S} defines a neighbourhood∂S ,

S\S of S with a diameter that can be chosen arbitrarily small.
The previous algorithm makes an extensive use of astackL of boxes,i.e. a dynamical
structure on which only 3 operations are possible: at any time, one may put an element
on top of the list, remove the top element or test the stack foremptiness. We define the
required accuracyǫ for the pavingP as the maximum widh that an indetermined box
can have. In the following, the principal plane of a box is thesymmetry plane of this
box that is orthogonal to the axisi ∈ {j|w([p]) = w([pj ])}, where the operator “width”
w([·]) of a box is the length of its largest side.
Let [p](0) be the box considered at iterationk. Initialisation is performed by setting
k = 0, L = ∅, S = S = ∅. The recursive algorithm can be described as follows:

Algorithm BISECT

INPUTS
data: y
inclusion function: [g]([·])
feasible error set: E

prior feasible box: [p](0)
accuracy for the paving: ǫ
INITIALIZATION
Y = y − E;
stack: L = ∅

iteration: k = 0
[p] = [p](0);
ITERATION k
Begin
step 1: if [g]([x]; [p](k)) ⊂ [Y] then S := S ∪ [p] and S := S ∪ [p];
step 2: else if [g]([x]; [p](k))∩[Y] = ∅, then S := S∪[p]; then unstack
[p](k) as unfeasible;
step 3: else if w([p](k)) ≤ ǫ, then S := S ∪ [p](k);

else cut [p](k) along the principal plane and stack the
resulting boxes in L.
step 4: if the stack is not empty, then unstack and store the
resulting box in [p](k + 1);
k = k + 1; go to step 1;
End

Table 1.Recursive implementation of the bisection algorithm.

The union of all the boxes in the listL returned by the program containsS; the parti-
tion P consisting of feasible, unfeasible and indetermined boxescan be plotted in the
parameter space in the case the space dimension is less than 4(see fig. 3).

4 Discussion

The method ofset characterizationintroduced in section 3 appeals to some comments.
Upon completion, this approach encompassesall the acceptable values of the parameter
vector in a set that is fully characterized by BISECT: S andS will tend toS from inside
and outside whenǫ → 0. SinceS is a finite union of boxes guaranteed to contain



the portion ofS of interest, it is very convenient for implementing set-theoretic mani-
pulations [6,4].
The advantages of this approach are threefold:

(i) no assumption is made on the image fonctiong,
(ii) no statistical assumption on the modeling error is required,
(iii) any bounded error can be treated independently from its origin (modeling and/or

measurement error).

An other advantage of the proposed approach is that the input-output roles of the vari-
ablesx andy can be reversed since the linking functiong : x → y can be runforward
as well asbackwardwhen using interval analysis. Subpavings form a useful class of
objects for manipulating statistical estimations.
The algorithm requires a possibly very large search box[p](0) to whichS is guaranteed
to belong. Solvers split the search box into an union of boxes(thepaving) with guar-
anteed error bounds (i.e. mathematically valid) [7] (see section 3). The paving is built
by the solver itself. A computer program can represent a set of (eventually disjoint)
intervals as alist L. The precision of the solver is controlled by coefficients specifying,
for example, the widthǫ of the smallest boxes of the paving, or the accuracy in the lo-
calization of a global optimum. The computing time of the solver can increase quickly
with the dimension and size of the listL.
Special care must be taken in avoiding memorizing unnecessary information, otherwise
the quantity of memory required to store the paving ofS will increase linearily at each
iteration, which may result into a memory overflow even for problems of modest di-
mension.
One can observe that the parameter space is not isotropic because the sensitivities ofg
with respect to the various components ofp are not of the same order of magnitude. The
basic bisection technique suggested in Tab. 1 may not be efficient enough. The prob-
lem is then how to choose the fastest bisection policy that results in a convergence as
fast as possible. Jaulinet al. [4] suggests the bisections of[p] into boxes[p1] and[p2]
that minimize vol(g([x]; [p1]))+vol(g([x]; [p2])). If [p] is not ambiguous, this policy
will tend to avoid classifying as indetermined. Experiments seem to show that this can
improve the efficiency of the solver when the anisotropy is severe.

5 Application to statistical problems

Example 1 (Parameter estimation).In this example, a simplified version of the problem
explored by Jaulin and Walter3 [4] is given. The vector comprising all The numerical
values of the corresponding interval data are given byy = ([1.18, 2.00], [0.62, 2.26], [0.40, 2.21], [1.09, 1.27], [0.32, 1.81]

The set̂P to be characterized consists of the set of variable vectors([p1], [p2])
T such

that the graph of the function :

f(p, t) = p2 exp(−p1t), (13)

crosses all the data bars of Figure 4. In this simulated example, the[yi] were computed
by adding a random error interval with radiusρi = 0.5|yi|+ 1 to theyi. The initial box
domains for the parametersp1 andp2 may be arbitrarily large, for example

[p1] = [−10, 000; 10, 000] and [p2] = [−10, 000; 10, 000], (14)

i.e. no prior information is available on the parameters. The feasible set for the param-
eters is given by (12), where the search domain[p](0) is [−1, 5]× [−5, 5].

3 The extension of the method to multiple-output problems is straightforward.



a. b.

Fig. 4. a) Measurement times and corresponding interval data. b) Top-view of the paving gen-
erated by BISECT to bracket the solution set (in red) in the parameter space. The outer frame
corresponds to the box[−1, 5] × [−5, 5].

In less than 1s, on a PENTIUM IV, B ISECTgenerates the pavings of figure 4, thus brack-
eting the posterior feasible set forpα between the inner and the outer approximations.
Figures 4.b gives a top-view representation ofp, i.e. the bounded support of the vari-
ablesp1 andp2 that is consistent with the equation (13) and the domains (14).

Example 2 (Curve estimation).The curvatureκ(t) of an arbitrary twisted curveC mea-
sures the rate of change of the tangent when moving along the curve. It measures, so to
speak, the deviation of the curve from a straight line in the neighbourhood of any of its
points. It is quite easy to derive an analytic expression of the curvature which is valid
whenC is represented by an allowable parametric representationx(t):

κ(t) =
x′ × x′′

|x′|3
, (15)

where× denotes the vector product. Derivatives with respect to time are denoted by
primes,e.g.x′ = dx

dt
andx′′ = d2

x

dt2
.
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Fig. 5. a. 3-dimensional representation of the Clelia curve. b. Graph of the functionκ(t).



WhenC is aclelia curve (see figure 5.a), the cartesian representation4 is:

x(t) = (R cosnt cos t, R cosnt sin t, R sin nt) (16)

with t as a parameter. Figure 5.b plots the domain ofκ(t).
A statistical approach assume that a set ofN input-output data pairs(xi, κi)

N
i=1 is avail-

able. Recall thatxi ∈ R3 are vectors andκi is scalar. The data set is split into a training
and a validation data set. A neural network such as represented in Fig. 6 is designed for
supervised learning and prediction task from a particularx. Such architecture is called
multi-layer perceptron(MLP). Hidden units are placed between the features units and
the predictions units. A deterministic MLP trained by a method such as backpropaga-
tion [8], can implement any input-output function providedthat the number of hidden
neuronsnh is sufficiently large.

no

nh

x2 x3x1

Fig. 6. A deterministic two-layer feedforward neural network withinputx = (x1, x2, x3).

Fig. 7.a depicts thetraining error performed on the training data set.
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Fig. 7. a. Training error. b. Measured outputs (–) and simulated outputs (. . . ) computed by the
neural network.

With increased number of hidden neurons, the accuracy of theresulting neural system
with respect to the training data set is improved, but the ability of the model to gen-

4 Clelia curve was studied by Guido Grandi in 1728.



eralize for inputs (test set) may be degraded as illustratedin our results (Fig. 7.b). In
a similar way, descreasing the output error improves the accuracy with respect to the
training data set, but accuracy in the presence of inputs different from the training data
set is degraded. These tests illustrate some effects in parameter choice on the resulting
neural model.
A second approach consists in using interval analysis tools. In this simulated example,
we assume that the values taken byκ are imprecise and sampled at the raten π

11 : the
prior intervals[κi] are computed by adding a centered error interval to the associated
measurementκi. The solution set̂S to be characterized consists of all the values of
p = (R, n)T such that the graph of the functionκ(t) crosses all the data bars of figure
8.a. The dataset is made of 22 data, so very few for a learning model.
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Fig. 8.a) Experimental data (�) together with their uncertainty intervals and graph of thefunction
κ(t). b) Posterior feasible intervals for theκi superposed on the graph of the functionκ(t).

For ǫ = 0.03, BISECT generates the subpaving represented in Figure 9 in 7s on a PEN-
TIUM IV. The prior box for the parameters is taken as[p] = [−10, 10] × [−10, 10].
More interesting, one may want to generate the posterior feasible set for theκi (poste-
rior estimates) from the formula as can be seen in figure 8.b.

Fig. 9. Top-view of the paving generated by BISECT to bracket the solution set (in red) in the
parameter space. The outer frame corresponds to the box[−10, 10] × [−10, 10].



Example 3 (Blind source separation).The problem adressed here is the recovery ofn
unknown independent sourcessi(t) from the observation of an linear mixturesxi. In
matrix and vector notations, this model readsx = As, wheres = (s1, s2)

T is the
vector of sources,x = (x1, x2)

T the vector of observations andA = {aij} the mixture
matrix. It is a noise-free, time-free model. To recover a vector y close to the source
vectors knowing the vectorx only, one should estimate some inverse ofA, denoted as
B. The corresponding estimate ofs is y = Bx. It should be noted, however that the
matrix A (or its inverse) is not identifiable from the observations (see e.g.[9]): even if
we can extractn independent components, we do not know their ordering. Thisimplies
that there exists afreedom of permutationsof the original signals. The magnitudes of
the original signalssi are also not recoverable, because a scalar mutiple ofsi, csi of si

by a constantc cannot be distinguished from multiplication of theith column ofA by
the same constantc. Therefore, therefore,we can recover only a permuted and rescaled
version of the sources,i.e. we can obtain at bestPDA−1, whereP is a permutation
matrix andD is nonsingular scaling matrix.
The important question is: does the independence of the components ofy imply nec-
essarily theseparabilityof the mixing model ? The answer to this question is positive
in the linear instantaneous domain: the transformation which maps a non-Gaussian ran-
dom vector with independent components to a random vector with independent compo-
nents is unique, up to some trivial transformation. This property is a direct result of the
Darmois-Skitovich theorem [10]. A solution to the problem (with 2 sources) was first
adressed by Herault and Jutten [11] who compute

{
y1 = x1 + b12y2

y2 = x2 + b21y1.
(17)

whereb12 andb21 are adaptive weights adjusted by means of an adaptation law based
on the product of 2 nonlinear functionsf andg. The sources are assumed to be zero-
mean (i.e.E[s1] = E[s2] = 0), stationary and independent.
The independence of the signals means that these sources must have zero covariance,
i.e. E[s1s2] = 0 and thereforeE[y1y2] = 0. These constitute a basis for the adaptation
rule considered in [11] to learn the coefficientsbij .

db12

dt
= µy3

1y2,
db21

dt
= µy3

2y1, (18)

whereµ is a positive constant. It is well-known that the equilibrium points are solutions

of E[y3
1y2] = 0 andE[y1y

3
2 ] = 0. However this does notguaranteethat

(
1 b12

b21 1

)

converges to the inverse of the mixing equation, even locally.

Let
(
a11 a12
a21 a22

)
be the (unknown) separating matrix. The solutions of the following

system:
(

1 b12
b21 1

)−1 (
a11 a12
a21 a22

)
=

(
1 0
0 1

)
or

(
0 1
1 0

)
. (19)

readsb12 = a12

a22

andb22 = a21

a11

, or b12 = a11

a21

andb22 = a22

a12

. �

Comonet al.[12] and Sorouchyari [13] investigate the convergence properties of the al-
gorithm and perform a stability analysis for such a network.They demonstrate that there
areexactly4 paired equilibrium points (see figure 10): indeed, if the point (b∗12, b

∗

21) is
a equilibrium point, then the point( 1

b∗
12

, 1
b∗
21

) is also a solution (see e.g. [13]).
One can show that such a pair of equilibrium points is on a linepassing through the
origine of the(b12, b21) plane. But only one of these stationary points will be astable



Fig. 10.Theoretical equilibrium points of the system in the(b12, b21) plane.

separating solution[14].

As an illustration, consider the discrete time model in which the data have been gener-

ated by simulating fork = 1, . . . , 500:
„

x1(k)
x2(k)

«

=
“

1 0, 6
0, 3 1

”

„

s1(k)
s2(k)

«

, wheres1(k) =

sin(7, 3kTe), s2(k) = sin(4kTe), Te = 0, 2. Prior interval([x1(k)], [x2(k)]) are obtained
by adding a random white noisen(k) ∼ U[−ǫ,ǫ], with ǫ = 0.01. Fig. 11.a plots the
sources and Fig. 11.b the observed data.

a.

Observed signals

b.

Mixed signals

c.

Demixed signal

Fig. 11.a) The unknown sources b) the observations c) The separated sources.

An Newton algorithm can be used to find the equilibrium pointsof the solution. Figure
12.a shows that the algorithm is capable to find the four paired equilibrium points the
similarity with Fig. 10 is relevant. The interval algorithmgenerates also in the(b12, b21)
plane (Fig. 12.b and c) the subpaving of the parameters satisfying the independence
constraint in less than 1s on a PENTIUM III. After completion, the contracted intervals



in the figures 12.b and c include the true values of the parameters. Once the equilibirum
point is identified, it is used for separating the signals (Fig. 11.c).

a b. c.

Fig. 12. a) Theoretical equilibrium points of the system b,c) stableequilibrium points obtained
by interval analysis in the(b12, b21) plane.

6 C++ implementation

The identification algorithm presented in section 3 was implemented in C++.
A BOX class was designed, which allows the programmer to ignore the details of interval
implementation. TheBOX class contains the properties of the intervals, the definition of
arithmetical operations on intervals, input-output functions, etc.
The instanciation of aBOX is very similar to afloat, thus one may write

int main()
{

BOX y(2,3);
BOX x;

// ...
}

It is now possible to create and initialize intervals. The instructionBOX& operator=(const
BOX&); assigns the value of theBOX argument to the callingBOX instance. For exam-
ple, a possible implementation of the addition is

BOX& operator+(const BOX& a,const BOX& b)
{

BOX res;
res.inf=a.inf+b.inf;
res.sup=a.sup+b.sup;
return res;

}

with evident notations. The implementation of the inclusion functions for the standard
mathematical functions obey the usual syntax for mathematical functions (Cos, Sin,
Exp,. . . ) and can be used to evaluate properties of an interval, such as its width, or its
centre, etc. They are stored in a modulemath.cpp which constitues an interval coun-
terpart to the standard mathematical library.



One may prefer to use a ready-made library:PROFIL/BIAS is a library for interval com-
putation. It runs under many operating systems, from UNIX to DOS. The library can be
downloaded fromftp://ti3sun.tu-harburg.de/pub/profil/. BIAS (Ba-
sic Interval Arithmetic Subroutine), has been written in C in the spirit of the FOR-
TRAN BLAS library (Basic Linear Algebra Subroutines). The basic arithmetic opera-
tions, rounding controls and elementary mathematical functions are implemented. For
instance, an inclusion function for the exponential function could be implemented as
follows:

BOX Exp(const BOX& x)
{return BOX(exp(Inf(x)),exp(Sup(x)));}

The implementation of algorithms for interval analysis requires specific tools, to be
stored in a moduleBisect.cpp. This module implements, for instance, the bisection
of an interval vectorx accross itsith dimensionvia the functionsLower andUpper,
which compute the two interval vectors resulting from the bisection.

BOX Lower (const BOX& x, int& i);
BOX Upper (const BOX& x, int& i);

Bisect.h starts with the definition of a new type of variableBOX_BOOL correspond-
ing to interval booleans,i.e.variables that can take their valuesIB_TRUE, IB_FALSE
andIB_INDET. Thus, an interval boolean test can be passed toBisect.cpp as a pa-
rameter.
The codeBisect.cpp uses a recursive structure (the routine calls itself). It its re-
sult is true or false, then a message indicating the result isdisplayed, followed by a
return statement. Else the box is indeterminate, and its width is computed. If it turns out
to be lower than the precision parametereps, then a message is displayed, followed
by a return statement. Else the current box is bisected usingLower andUpper, and
Bisect.cpp is called for each of the resulting subboxes.

//-----------------------------------------
#include ‘‘Bisect.h’’

void Bisect(repere& R,const BOX& P,
float eps,float alpha)

{
if (Width(P)<eps)
{
R.DrawBox(P,XFIG_YELLOW);
//draw a yellow box
return;

}
BOX_BOL test=Inside(P,alpha);
if (test==IB_TRUE)
R.DrawBox(P,XFIG_RED); //draw a red box

else if (test != IB_FALSE)
{
R.IncDivision();
P1=Lower(P,MaxW(P));
P2=Upper(P,MaxW(P));
Bisect(R,P1,eps,alpha);
// Bisect is called recursively
Bisect(R,P2,eps,alpha);

}

MaxW() function returns the index of the first component with maximal width of this
box by reference to anint. The functionBisect() produces a console and a graphic



outputs with the functionR.DrawBox(). To useBisect.cpp, it now suffices to
define the testInside() to be inverted and to write the functionmain(), which will
call Bisect():

//-----------------------------------------
#include ‘‘Bisect.h’’

// Definition of the test
BOX_BOL Inside(BOX& P,float alpha)
{

float y[11];
BOX_BOL dedans;
for (i=1;i<=10;i++)
{
float e=(1-alpha);
dedans=dedans&&In(P[1]*Exp(-P[2]*i)

,interval(y[i]-e,y[i]+e));
}
return dedans;

};

void Estim (repere& R,BOX& P,float a)
{

y[1]=1.597038;//data
...
y[10]=0.649307;
R.DrawBox(P,XFIG_BLUE);
Bisect(R,P,eps,alpha)

}

void main()
{

BOX P0(2); //search box
P0[1]= INTERVAL(-10,10);
// initiate search box
P0[2]= INTERVAL(-10,10);
for (int k=0;k<=9;k++)
{

float a=(float) k/10;
repere R(Inf(P0[1]),Sup(P0[1]),

Inf(P0[2]),Sup(P0[2]))
Estim(R,P0,0.05,alpha); // eps is set to 0.05

}

7 Conclusion

The problem of parameter estimation of a (non)linear model from prior knowledge, ex-
perimental data and collateral constraints is viewed in this article as one ofset inversion,
which is solved in an approximate but guaranteed way with thetools of interval analy-
sis. It is possible to charaterize the set of all parameter vectors that areconsistentwith
the data in the sense that the errors between the data and corresponding model outputs
fall within known prior bounds. This has been illustrated onsimple simulated examples
for time-invariant models whose outputs are linear in theirinputs, even if nonlinear in
their parameters. it is worth stressing that the scheme of section 3 is robust in the sense



that the fit of the tuned model is at least as good as what is obtained with the classical
optimization approach.
Upon completion of the algorithm, a paving bracketing the contours of the solution
membership functions is found (or not) with a precision controlled by the solver.
This computation process has drawbacks:(i) its complexity is exponential in the num-
ber of parameters which restricts its use to low-dimensional problems,(ii) the algorithm
presented here is far from optimal from the viewpoint of computational time and sig-
nificant improvements can be expected in the near future,(iii) efficient functions are
needed which are available only when an explicit solution for the equations defining the
model can be found.
Realistic advantages can be found compared to the statistical approach:

1. The error structure is quite simple and similar information is usually available in
most practical cases, not assumingany a priori statistical information about the
error.

2. The computation of the parameter domain is conceptually simple and is practically
feasible even if the number of data is not large.

3. The algorithm isdeterministic.
4. guaranteedresults are available for (non)linear models even when the parameters

are not identifiable. Nonlinear constraints are easily handled.
5. the solver characteristics are different from optimization approaches that requires a

(large) set of data points.

Least-Square estimation suffers from the fact that the costfunction to be minimized is
a sum of terms involving the same parameters, so multioccurence of these parameters
is unavoidable and tends to make inclusion functions for thecost function very pes-
simistic, which complicates the elimination of interesting parts of the search domain.
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