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INTRODUCTION

Fish diets are frequently characterised by great
diversity of prey species, which can be related to
opportunistic predation. Fish predation is often de-
scribed as an opportunistic (i.e. non-selective) process
constrained by local prey availability and predator–
prey size ratios (Shin & Cury 2001, 2004). Size is
indeed an important factor affecting trophic interac-
tions in marine ecosystems, with most predators being
larger than their prey (e.g. Sheldon et al. 1977,
Smetacek 1999, Cury et al. 2003). To confirm that prey
size and trophic level generally increase with increas-
ing predatory fish size, analyses of stomach contents
and nitrogen isotope ratio have been conducted on fish
communities in different marine ecosystems (i.e.
Scharf et al. 2000, Badalamenti et al. 2002, Jennings et

al. 2002). In open-sea ecosystems, which are less pro-
ductive than coastal ecosystems (Pauly & Christensen
1995), tuna species represent a high biomass and are
considered opportunistic predators in terms of prey
species (e.g. Sund et al. 1981). The tunas’ prey are
micronekton organisms that exhibit different vertical
behaviours in the water column, with most undertak-
ing generally large vertical migrations during the twi-
light phases (Watanabe et al. 1999), but some remain-
ing in the shallow layers both day and night (Marchal
& Lebourges 1996). Many studies have reported the
size distribution and size range of tuna prey (e.g. Roger
1994), however empirical evidence of opportunistic
size-based predation in tuna species has not been well
studied. To our knowledge, the only study on size-
based predation focused on the size relationships
between tunas and cephalopod prey (Rancurel 1976).
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In order to explore whether predation is an opportunis-
tic size-based process for tropical tunas, the present
study aimed at specifying the size distribution of the
diet of 2 species, Thunnus obesus (Lowe, 1839) and
T. albacares (Bonnaterre, 1788) in the French Polyne-
sia EEZ, using trawling data and stomach content data
collected during the ECOTAP programme (Abbes &
Bard 1999). Acoustic surveys, pelagic trawling and
longline catches of tunas were carried out during the
ECOTAP programme, with each data set involving
specific bias. Bertrand et al. (1999, 2002a,b) combined
these data in order to obtain complementary informa-
tion about micronekton organisms in their environ-
ment, and characterised different types of nocturnal
and diurnal scattering structures. They also proposed a
typology of the micronekton distribution to predict
tuna foraging on a regional scale (Bertrand et al. 1999),
and described the pelagic trophic habitat of tunas
(Bertrand et al. 2002a,b). The aim of the present study
was to identify predation patterns in terms of predator
and prey sizes. To this end, we reanalysed the trawling
data and the stomach content data of yellowfin and
bigeye tunas as a function of size. Firstly, the feeding
habits of both tuna species were determined by
analysing prey and predator size relationships by
quantile regression. Secondly, predator–prey size
ratios were determined to obtain an indication of the
breadth of the tunas’ trophic niche as a function of size.
Finally, the size distribution of the prey in the tunas’
stomachs was compared to that of micronekton sam-
pled by trawling, and was related to tuna mouth-gape
measurements to determine whether this limits the
size range of prey ingested.

MATERIALS AND METHODS

Data. Data was collected within the framework of the
ECOTAP programme (Abbes & Bard 1999); the sam-
pling design has been described by Bertrand et al.
(2002a). Yellowfin Thunnus albacares and bigeye
T. obesus tunas were caught from October 1995 to
August 1997 in the French Polynesian EEZ, between
4 and 20° S and 134 and 154° W, by instrumental long-
line fishing (Bach et al. 2003). Longlines were set to
sample deep strata, i.e. from 100 to 400 m, thus target-
ing mostly large tunas. Several small juveniles of both
species were also caught by trolling. Tuna size was
recorded as fork length, FL (cm) (see Table 1). The
tunas were divided into 4 length classes in order to
study potential changes during ontogeny. Stomachs
were immediately removed from freshly caught fish,
and the contents sifted and rinsed on ship deck. The
stomach contents were fixed in 10% formalin onboard
ship. In the laboratory, prey items were sorted into

main prey classes (crustaceans, fishes, squids, gelati-
nous), which were then weighed (wet mass) to calcu-
late their proportions in the tunas’ diet. Prey sizes were
measured according to prey morphology: standard
length, SL (cm) for fishes, mantle length for squids, dis-
tance from eye to end of abdomen for crustaceans, and
total length for gelatinous organisms. Highly digested
prey were not measured. Assuming that prey height is
more a constraint than length for a potential predator,
we examined whether prey body height (and tuna
mouth gape) limit the size of ingested prey. Only body
lengths were available for our data set (no measure of
prey body height), but Scharf et al. (1998b) estimated
the relationship between fish height (defined as the
maximum linear dorsoventral distance) and SL for sev-
eral fish species, and from among those relationships,
we selected their estimate for the butterfish Peprilus
triacanthus, because this species has the largest height
compared to its length. The SL of our fish prey were
converted to height according to 

with H representing fish height (all measurements in
mm; Scharf et al. 1998b). This ensured that a conserv-
ative hypothesis was tested, since it overestimated the
height of the fish prey.

A total of 105 pelagic trawls were carried out during
the ECOTAP programme with a fry pelagic trawl
(5 mm mesh, mouth 18 m high) coupled with echo-
sounding. The trawls were deployed according to noc-
turnal and diurnal scattering layers revealed by the
echosounder: 69 trawls were conducted in diffuse and
thick scattering layers during the night, and 36 trawls
during the day for various forms of micronektonic
aggregations; some organisms may have been col-
lected during deployment and retrieval of the trawls.
Most trawling was between the surface and intermedi-
ate layers (~250 m), with 1 trawl extending below
400 m in depth.  The biomass (weight) of the scattering
layers was dominated by myctophids (see Bertrand et
al. 2002a for more details). Samples were immediately
frozen onboard ship. In the laboratory, micronekton
organisms were sorted into the 4 main prey classes
used for the stomach content analyses and counted
and measured as for the tuna prey. All trawling data
was combined in order to obtain a large-scale estimate
of the size spectrum of the organisms sampled.

Data analysis. Scatter diagrams of raw data linking
prey and predator body sizes typically comprise a vari-
ety of polygonal structures, suggesting that upper and
lower size boundaries change at different rates (Black-
burn et al. 1992, Scharf et al. 1998a). Therefore, ana-
lysing changes in the highest and lowest sizes may be
more informative than analysing changes in the mean
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sizes (Cade et al. 1999). Cohen et al. (1993) showed
that positive correlation between the body size of a
predator and that of its prey is rarely high (and even
negative in some cases), whereas upper boundaries of
prey size tend to increase with predator size. Quantile
regressions, as defined by Koenker & Bassett (1978),
are well adapted for estimating changes near the
upper boundaries of data distributions (Scharf et al.
2000, Eastwood et al. 2001, Cade 2003, Juanes 2003).
Quantile regression is an extension to quantiles of the
least-absolute deviation regression, whereby 50% of
the observations are less than and 50% are greater
than the fitted line (Scharf et al. 1998a, Cade et al.
1999). The package ‘quantreg’ of R available from the
Comprehensive R Archive Network (http://lib.stat.
cmu.edu/R/CRAN) was used in this study; it incorpo-
rates an estimation of the standard errors of the regres-
sion parameters. The choice of the quantiles used to
represent upper and lower boundaries is subjective
(Scharf et al. 1998a). Therefore, we first documented
the variations in the slopes of the quantile regression
according to quantiles ranging from 0.05 to 0.95. Slope
estimates were compared using an F-like test (a vari-
ant of the Wald test) proposed in the R package,
whereby the linear predictors of the fits are all the
same, but the specified quantiles are different. The
null hypothesis is that the slope coefficients of the
models are identical. Ordinary least-squares regres-
sions were also performed to estimate the relationship
between mean prey size and predator size. Further-
more, quantile regression of prey body height versus
predator body size was compared to the ordinary least-
squares regression of predator mouth-gape size versus
predator body size. For this latter analysis, data of
mouth-gape size for bigeye and yellowfin tuna were
pooled, since the mouth morphology of both species is
similar. Trophic-niche breadth for each species was
examined on a ratio scale, following the approach of
Scharf et al. (2000). Quantile regressions (5th and 95th)
were fitted to prey:predator size ratios versus predator
sizes. Slopes between upper and lower limits were

compared using an F-like test: a significant difference
corresponding to a divergence (convergence) of the
slopes indicates an increase (decrease) of the ratio-
based trophic-niche breadth.

RESULTS

A total of 136 bigeye and 97 yellow fin tunas with
non-empty stomachs were analysed (Table 1). Fishes
and squid were the most important food source by wet
weight, gelatinous organisms were less commonly
preyed on by both tuna species, and crustaceans were
significant in the yellowfin tuna diet only (Fig. 1). Diet
composition as a function of size class did not reveal
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Table 1. Thunnus albacares and T. obesus. Number and size descriptors (mean, minimum, maximum) of sampled tuna and 
number (n) and mean size of their prey. Tunas are divided into 4 size classes (fork length)

Parameter T. obesus T. albacares
≤90 cm 90–110 110–130 >130 cm Total ≤90 cm 90–110 110–130 >130cm Total

Predator n 18 65 46 7 136 14 14 57 12 97
Prey n 184 974 650 90 1898 453 307 1152 201 2113
Mean prey size (cm) 5.66 6.67 6.92 7.86 6.71 2.60 3.23 4.26 4.95 3.82
Predator size (cm)

mean 106.6 113.8
min. 47 51
max. 159 147
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Fig. 1. (a) Thunnus obesus, (b) T. albacares. Contribution of
main functional prey groups (fishes, squids, crustaceans,
gelatinous organisms) to diet. Tunas are divided into 4 size 

classes (fork length)
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strong differences with tuna ontogeny. However, we
did find that squid dominated the diet of small bigeye
tuna (FL <90 cm; mean size = 75.2 cm), whereas fishes
dominated (>60%) the diet of bigeye tuna larger than
90 cm. Crustaceans were always present in a constant
and small proportion in the diet of bigeye tuna. This
latter prey group contributed 20% by wet weight to
the diet of small yellowfin tuna (FL <90 cm; mean size
= 76.1 cm). However, the proportion of crustaceans
regularly decreased in the larger size classes. Fishes
remained the principal food source, especially for yel-
lowfin tuna larger than 110 cm. Overall, the differ-
ences in diet composition between bigeye and yel-
lowfin tunas were not great, especially for tunas larger
than 130 cm, and we therefore investigated the rela-
tionship between prey size and predator size with no
further consideration of the 4 prey groups.

Quantile regression parameters and their standard
errors were estimated for a range of quantiles between
0.05 and 0.95 for both tuna species. The slope of the
relationship between prey size and predator size
changed according to the quantile used for prey length
distributions (Fig. 2). The 5th and 95th quantiles were
selected to estimate the lower and upper bounds of
prey size distribution, respectively, for both tuna spe-
cies. Maximum prey size increased as body size
increased for both predator species, whereas minimum
prey size did not exhibit a significant trend (Fig. 3).
Table 2 shows the equations of the quantile and ordi-
nary least-squares regressions. For both tuna species,
the highest slopes were those for the upper boundary
(0.127 and 0.091 for bigeye and yellowfin tuna, respec-
tively), and the lowest corresponded to the lower
boundary (slightly negative for bigeye tuna and
slightly positive for yellowfin tuna). For each species,

the difference between the upper- and lower-bound-
ary slopes was highly significant (p < 0.0001 in both
F-like tests). Mean prey size–predator size slopes esti-
mated from ordinary least-squares regression were
similar for both tuna species and significantly positive
(0.037 and 0.036 for bigeye and yellowfin tuna, respec-
tively). They were about 3 times lower than the upper
boundaries of the corresponding quantile regressions,
indicating that the ontogenetic changes in mean prey
sizes were driven primarily by changes in maximum
prey size. The higher intercept and slope values of the
upper boundary for bigeye tuna indicates that, at
equivalent sizes, bigeye tuna feed on prey of larger
size than yellowfin tuna, and that the ontogenetic
change in maximum prey size is larger for bigeye tuna.
The distributions of prey sizes for each tuna size class
corroborate this difference between the 2 species
(Fig. 4). Larger bigeye tunas tend to feed on larger
prey, while a progressive increase in the consumption
of larger prey is less pronounced for yellowfin tunas.
All these distributions were strongly asymmetrical
(log-normal or gamma type), confirming the continued
inclusion of small prey in the diet across the whole
range of predator sizes.

We used 2 predictor variables for the measure of tuna
mouth-gape size: maxillary length (Lm) and inter-maxil-
lary length (Lim). Mouth-gape size (cm) increased lin-
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early with increasing tuna fork length: Lm = 0.0823 FL +
1.758, n = 69, R2 = 0.95; Lim = 0.0860 FL + 0.952, n = 126,
R2 = 0.83. These very close slope coefficients can be com-
pared to the slope of the maximum prey body height es-
timated from the 95th quantile regression of fish prey
body height (H) versus tuna length (H = 0.0246 FL +

4.603, Fig. 5). Mouth-gape size increased
3 to 4 times faster than the body height of
fish prey, even when adopting a conser-
vative hypothesis for the conversion of
fish prey length to body height; thus,
gape size does not seem to be the limit-
ing factor of maximum prey size con-
sumed by yellowfin and bigeye tuna.

Neither tuna species exhibited a sig-
nificant ontogenetic change in trophic-
niche breadths, estimated from quantile
regressions fitted to prey:predator size
ratios versus predator sizes (Table 3 &
Fig. 6). Tests of equality of slope coeffi-
cients between upper (95th quantile)
and lower (5th quantile) limits were not
significant (F-value = 0.725, p > 0.395 for
bigeye tuna; F-value = 0.678, p > 0.411
for yellowfin tuna). The use of other pairs
of quantiles did not modify the results:
neither convergence nor divergence was
found in the slope coefficients, which
were all close to zero.

Fig. 7 & Table 4 compare the size dis-
tribution of organisms collected by
trawling, and that of prey found in the
tuna stomachs. Bigeye tuna fed on prey
that were larger than the organisms
sampled by trawling, as well as a sig-
nificant amount of smaller prey, where-
as the size distributions of the prey of
yellowfin tuna and of trawl samples
were very similar (in the range 0.5 to
9 cm). Notwithstanding the selectivity
of the trawl, these tuna species did
exhibit an apparent difference in the
selectivity for large prey compared to
the prey available in the environment.

DISCUSSION

Body size is known to play a crucial
role in predator–prey interactions,
especially in aquatic ecosystems (Shel-
don et al. 1977). Previous studies of
predation by both marine and freshwa-
ter fishes have shown asymmetric prey
size distributions and an increase in the

range of prey size with increasing predator size (e.g.
Mittelbach & Persson 1998, Scharf et al. 2000). To our
knowledge, no study has yet dealt specifically with
tuna size-based predation in open-sea ecosystems,
even though several studies have reported the size dis-
tribution or size range of tuna prey. Rancurel (1976)
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Table 2. Thunnus obesus and T. albacares. Quantile regression equations
(95th and 5th upper and lower boundaries, respectively) relating prey size to
predator size, and least-squares equation fitted to same prey and predator
size data. Standard error estimates of slope coefficients (SEs)and intercepts (SEi)

are indicated

5th Quantile 95th Quantile Least-squares

T. obesus
y = –0.022x + 4.067 y = 0.127x + 4.067 y = 0.037x + 2.746
(SEs = 0.006; SEi 0.610) (SEs = 0.017; SEi 1.669) (SEs = 0.008; SEi 0.876)

T. albacares
y = 0.008x + 0.140 y = 0.091x – 0.926 y = 0.036x – 0.110
(SEs = 0.001; SEi 0.049) (SEs = 0.018; SEi 1.529) (SEs = 0.003; SEi 0.367)

a Bigeye tuna b Yellowfin tuna 
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studied the size distribution of cephalopods consumed
by tunas caught by longline, and showed that tunas
did not systematically seek prey of a specific size. Our
results indicate that the maximum size of the prey con-
sumed by tunas tends to increase with increasing tuna
body length, while the minimum prey size remains
fairly stable. This is evidenced by the asymmetric prey
size distributions that are roughly log-normally distrib-
uted. Thus, large tunas continue to consume large pro-
portions of small prey. The slope coefficients of the
upper bounds estimated by quantile regressions in
Scharf et al. (2000) for 18 marine fish predators from
continental shelf waters ranged from 0.077 to 0.894
(e.g. 0.435 for Atlantic cod Gadus morhua, for which
body size varied between 21 and 150 cm; 0.462 for
bluefish Pomatomus saltatrix, a pelagic species in the

size range 11 to 88 cm). The upper-boundary slopes we
estimated for bigeye and yellowfin tuna were 0.127
and 0.091, respectively. Compared with the values
estimated by Scharf et al. (2000), both tuna species are
within the category of predators that feed on prey with
the smallest relative size. The trophic-niche breadth of
bigeye and yellowfin tuna did not increase with
increasing predator size: the prey size:predator size
ratios did not change during ontogeny across the tuna
size ranges considered in the present study. The
absence of bias due to the increase of prey numbers
with increasing predator size was checked — Spear-
man correlation coefficients were not significant (p =
0.315 and 0.110 for bigeye and yellowfin tuna, respec-
tively). The lack of significant changes in trophic-
niche breadth is consistent with results of previous
studies, which focused either on larval and juvenile
stages (Pearre 1986, Munk 1997) or on both juvenile
and adult fishes (Scharf et al. 2000). We also observed
that the largest prey did not necessarily occur in the
stomach contents of the largest tunas, but the small
number of large tunas in our data set make this obser-
vation tentative. The ratio minimum:maximum tuna
size in our data set was ca. 3 for both species (Table 1).

228

0

2

4

6

8

10

12

14

16

18

40 60 80 100 120 140 160

Predator length (FL) (cm)

Fi
sh

 p
re

y 
bo

dy
 h

ei
gh

t (
cm

)

95th

(1)

(2)

Fig. 5. Scatter diagram of predator (Thunnus spp.) size versus
body height of prey estimated by conservative hypothesis
(see ‘Materials and methods’). Predator and prey data for
Thunnus obesus and T. albacares are pooled. Lines (1) and (2)
represent least-squares regressions of mouth-gape size ver-
sus predator size with gape size estimated from (1) maxillary
length and (2) inter-maxillary length. Quantile regression line
(thick line) indicates upper (95th) boundary used to describe
relationship between predator size and body height of prey. 

FL: fork length

Table 3. Thunnus obesus and T. albacares. Quantile regression
equations (95th and 5th for upper and lower boundaries, respec-
tively) fitted to prey:predator size ratios to track potential
changes in trophic-niche breadth. Standard error estimates of

slope coefficients (SEs) and intercepts (SEi) are indicated

5th Quantile 95th Quantile

T. obesus
y = –0.0005x + 0.071 y = –0.0003x + 0.199
(SEs = 0.00005; SEi = 0.0054) (SEs = 0.0002; SEi = 0.0239)

T. albacares
y = –0.00001x + 0.01064 y = 0.00015x + 0.06731
(SEs = 0.00001; SEi =  0.00069) (SEs = 0.00019; SEi = 0.01873)

a Bigeye tuna
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Samples of very small tunas were lacking, since speci-
mens of <50 cm are generally caught by purse seiners.
We complemented our longline samples with trolling
catches, which allowed us to study several small spec-
imens of both species (<90 cm) but were not sufficient
to cover a larger size range that would have enabled us
to reinforce our interpretation of changes throughout
their ontogeny. Furthermore, maturity may influence
tuna diet. The gonadosomatic indexes (GSI) of females
of both tuna species were recorded during the ECO-
TAP programme (Abbes & Bard 1999). High values of
GSI were observed for some of the bigeye tunas caught
in the NE section of the French Polynesian EEZ during
the first 2 quarters of the year, whereas low GSI values

were always recorded for yellowfin tunas. The
study area (4 to 20° S; 134 to 154° W) does not appear
to be a main spawning area for either species. Thus,
the influence of gonad development on diet was not
considered.

The stomach content analyses were performed on
deep-dwelling tunas caught by longline sets at great
depths (Bach et al. 2003). The study of the diet of shal-
lower tunas caught by surface purse-seine fishery
might give different results. Indeed, several analyses
have revealed symmetrical distribution in the prey
size of shallow-water tunas. This difference in prey
size distributions in tuna stomachs might be due to
differences in prey size distributions in the tunas’
environment. For example, Bard et al. (2002) showed
that large yellowfin tuna caught by purse seiners in
the equatorial Atlantic fed on monospecific concentra-
tions of juvenile Cubiceps pauciradiatus belonging to
the same size class. Ménard & Marchal (2003) studied
the foraging behaviour of tunas feeding on small
schooling Vinciguerria nimbaria in the surface layer
of the equatorial Atlantic. In both cases, concentra-
tions of the schooling prey were dominant in the sur-
face layer where tunas may seek their prey.

The body height of the prey as well as the mouth
gape of the predator can limit the size of the prey con-
sumed (Dennerline & Van Den Avyle 2000, Scharf et
al. 2000). In our study, only body length measurements
of prey were available, and the largest prey eaten by
both tuna species were mainly fishes. Therefore, we
adopted a conservative hypothesis for the conversion
of fish prey length to body height by using a published
body height:body length relationship that certainly
overestimated the height of the fish prey from our data
set. Despite this conservative approach, maximum
prey sizes were below those predicted by tuna mouth-
gape size. Our results provide important evidence that
size-based feeding strategies of tunas may be related
to limiting factors other than mouth-gape morphology,
such as prey availability and behavioural differences
of both predators and prey.

A slight difference was revealed between bigeye
and yellowfin tunas, with bigeye tuna feeding on prey
of larger relative sizes. This may be attributable to the
different vertical distributions of the 2 tuna species
arising from their respective physiological abilities
(Brill 1994, Swimmer et al. 2004). Results of electronic
tagging have shown that adult bigeye tuna are able to
reach very deep layers, and that they usually make
successive vertical, U-shape dives (e.g. Dagorn et al.
2000, Musyl et al. 2003). They can thus feed on organ-
isms that remain at depth during the night, and forage
in depth layers between 200 and 550 m during the day
(Dagorn et al. 2000). On the other hand, adult yellowfin
tuna spend most of their time in the surface layer, and
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Fig. 7. (a) Thunnus obesus and (b) T. albacares. Size-fre-
quency (n) distributions of organisms collected by trawling
(white columns) and of prey found in stomach contents (black 
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Table 4. Size (cm) of organisms collected by trawling and of
prey recovered from stomach contents of Thunnus obesus

and T. albacares

Size range Trawl T. obesus T. albacares 
organisms prey prey

Min. 0.5 0.9 0.5
Max. 35.5 71.0 31.2
Mean 3.1 6.7 3.8
Median 2.5 5.2 3.0
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consequently their diet is mainly composed of organ-
isms present in the upper 100 m (Bertrand et al. 2002a).
Thus both species have distinct foraging strategies,
with bigeye tuna foraging over a wider area than the
yellowfin tuna. We thus believe that bigeye tuna have
access to a larger size range of prey in the environ-
ment. Bertrand et al. (2002a) have pointed out that big-
eye tuna prey on myctophid aggregations as well as
targeting the predators of myctophids, i.e. piscivorous
fishes of larger size than myctophids. However, precise
information on size distribution of the prey available in
the environment is required to examine the selection
of prey based upon predator size–prey size relation-
ships. We used pelagic trawls for sampling the prey.
The selectivity of the trawl on small organisms was
probably not biased, whereas the frequency distribu-
tion of the larger sizes was flawed due to the escape
behaviour of the large organisms (Fig. 7). Therefore,
trawling data cannot reflect the full assemblage of prey
in the environment, and it is thus difficult to separate
the effects of prey type availability in the environment
and active size selection by a predator. Bertrand et al
(2002a) compared the proportions (by weight and by
number) of various functional prey groups observed in
trawls and in tuna stomachs, and interpreted the differ-
ences as differences in ‘sampling efficiency’. Squid are
in fact difficult to collect by nets, and cephalopod
predators capture larger specimens and a greater
diversity of species than does sampling gear (Rod-
house 1990, Cherel et al. 2004). In our trawl samples,
squid were small and numerically fewest, whereas
they contributed significantly to the diet of bigeye and
yellowfin tunas. However, we believe that comparison
of size data of prey from the stomach contents of
predators and from pelagic trawls provides a reliable
reflection of size-selection of prey by deep-dwelling
tunas. Figs. 4 & 7 show that yellowfin tuna preyed on
organisms in the same size range as those taken in the
pelagic trawls, whereas bigeye tuna selected larger
prey than yellowfin tuna, probably from deeper layers.
Our results provide some evidence that tunas adopt
opportunistic foraging behaviour, although there is an
interspecific difference, with bigeye tuna selecting
large prey when these are available.
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