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We are interested in estimating conditional quantiles when we have functional covariates, aiming to forecast Ozone pollution. We modelize conditional quantiles as a continuous linear functional of the covariates and we propose a spline estimator of the coefficient which minimizes a L 1 -type penalized criterion. Then we give some insights on the asymptotic behaviour of this estimator. At last, we apply this approach to pollution data in the area of Toulouse.

Presentation of the pollution data

Pollution forecasting is nowadays of primary importance, particularly for prevention. In the city of Toulouse (France), ORAMIP 1 deals with measures stations of specific pollutants. These measures, as well as meteorological measures, are made each hour. So we have functional variables (see Ramsay and[START_REF] Ramsay | Functional Data Analysis[END_REF][START_REF] Ramsay | Applied Functional Data Analysis[END_REF] known in some discretisation points.

More precisely, the data consist in hourly measurements during the period going from the 15 th May to the 15 th September for the years 1997, 1998, 1999 and 2000, for the following variables : Nitrogen Monoxide, Nitrogen Dioxide, Dusts, Ozone, Wind Direction, Wind Speed, Temperature, Humidity and Sun Radiance. These variables are observed in six different stations in Toulouse. There are some missing data, principally because of breakdowns or missing measurement apparatus.

A PCA of these data has shown that the behaviour of these variables does not vary much from a station to another. That is why we considered the mean over the stations for each variable. This will also have the advantage to remove the problem of missing data. However, for some variables, the missing data were too numerous, so, in the following, we will just consider the five following variables : Nitrogen Monoxide (NO), Nitrogen Dioxide (N2), Ozone (O3), Wind Direction (WD) and Wind Speed (WS).

The aim of the study is to predict the maximum of Ozone for a day knowing the (functional) values of the above five variables the day before. We will achieve this goal in section 3 by means of estimating the conditional median of the Ozone. Before this, we study in section 2 the general problem of estimating a conditional quantile for a (or several) functional predictor(s).
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2 Quantile regression for functional covariates

Conditional quantiles for functional covariates

Let us consider a sample (X i , Y i ) i=1,...,n of pairs of random variables, independent and identically distributed, with the same distribution as (X, Y ), with X belonging to the functional space L 2 ([0, 1]) of square integrable functions defined on [0, 1], and Y belonging to R. Without loss of generality, we suppose that X is a centered variable, that is to say E(X) = 0. Assume that H, the range of X, is a closed subspace of L 2 ([0, 1]). Let α be a real number in ]0, 1[ and x a function in H. The conditional α-quantile of Y given [X = x] is defined as the scalar g α (x) such that

P (Y ≤ g α (x)|X = x) = α, (1) 
where

P (.|X = x) is the conditional probability given [X = x].
Provided that E|Y | < ∞, g α (x) can be defined in an equivalent way as the solution of the minimization problem

min a∈R E(l α (Y -a)|X = x), (2) 
where l α is the function defined by l α (u) = |u| + (2α -1)u (see [START_REF] Koenker | Regression Quantiles[END_REF].

We assume now that g α is a linear and continuous functional. This condition can be seen as the direct generalization of the model introduced by Koenker and Bassett, the difference being that here, the covariates are functions. Then, there exists a unique function

Ψ α ∈ L 2 ([0, 1]) such that g α (X) = Ψ α , X = c + 1 0 Ψ α (t)X(t) dt, (3) 
where the notation . , . refers to the usual inner product of L 2 ([0, 1]). The norm of L 2 ([0, 1]) induced by this inner product will be noted . .

Spline estimator of Ψ α

Our goal is now to introduce an estimator of the function Ψ α . In the case where the covariate X is real, [START_REF] Koenker | Regression Quantiles[END_REF] have proposed an estimator based on the minimization of the empirical version of (2) ; for nonparametric modelling, estimators have already been proposed : see for example Bhattacharya and Gangopadhyay (1990), [START_REF] Fan | Robust Nonparametric Function Estimation[END_REF] or [START_REF] Lejeune | Quantile Regression : A Nonparametric Approch[END_REF]. [START_REF] He | Convergence Rate of B-Spline Estimators of Nonparametric Conditional Quantile Functions[END_REF] proposed a spline estimator and although our setting is quite different, the estimator of Ψ α defined below is of the same type as the one introduced by He and Shi (based on regression splines). However in our (functional) case there is a need to introduce a penalization in the criterion to be minimized.
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We consider a space of spline functions : for this we choose a degree (fixed) and knots in the interval [0, 1]. For given integers q and k = k n , with k = 0, we consider splines of degree q and k -1 equispaced knots on [0, 1] (see [START_REF] De Boor | A Practical Guide to Splines[END_REF]. This space of spline functions is a vectorial space of dimension k + q. A basis of this vectorial space is the set of the so-called B-spline functions, that we note B k,q = t (B 1 , . . . , B k+q ).

We estimate Ψ α by a linear combination of the B l functions. This leads us to find a vector θ = t ( θ 1 , . . . , θ k+q ) in R k+q such that

Ψ α = k+q l=1 θ l B l = t B k,q θ, (4) 
with θ solution of the following minimization problem, which is the penalized empirical version of (2), min

θ∈R k+q 1 n n i=1 l α (Y i -c -t B k,q θ, X i ) + ρ ( t B k,q θ) (m) 2 , (5) 
where ( t B k,q θ) (m) is the m-th derivative of the spline function t B k,q θ and ρ is a penalization parameter which role is to control the smoothness of the estimator. This criterion is similar to the one introduced by Cardot et. al.

(2003) for the estimation of the conditional mean in the functional linear model, the quadratic function being here replaced by the loss function l α . In this case, we have to deal with an optimization problem that does not have an explicit solution, contrary to the case of the functional linear model. That is why we adopted the strategy proposed by [START_REF] Lejeune | Quantile Regression : A Nonparametric Approch[END_REF]. At first, let us note that the minimization problem ( 5) is equivalent to

min c∈R,θ∈R k+q 1 n n i=1 δ i (α) | Y i -c -t B k,q θ, X i | +ρ ( t B k,q θ) (m) 2 . ( 6 
)
where the function δ i is defined by

δ i (α) = 2α1 1 {Yi-c-t B k,q θ,Xi ≥0} + 2(1 - α)1 1 {Yi-c-t B k,q θ,Xi <0}
. The algorithm for solving (6) described below consists in performing iterative reweighted least squares (see Ruppert and Carroll, 1988) : at step j + 1, δ i (α) is replaced by the value δ j i (α) evaluated at step j and the absolute value is replaced by the ratio of square residuals (at step j + 1) on the root of residuals computed from step j.

-Initialization We determine

β 1 = t (c 1 , θ 1 ) solution of the minimization problem min c∈R,θ∈R k+q 1 n n i=1 (Y i -c -t B k,q θ, X i ) 2 + ρ ( t B k,q θ) (m) 2 , C 4 P A P E R D R A F T which solution β 1 is given by β 1 = 1 n ( 1 n t DD + ρK) -1 t DY, with D =    1 B 1 , X 1 . . . B k+q , X 1 . . . . . . . . . 1 B 1 , X n . . . B k+q , X n    and K = 0 0 0 G , where G is the (k +q)×(k +q) matrix such that G jl =< B (m) j , B (m) l 
> .

-Step j+1

Knowing β j = t (c j , θ j ), we determine β j+1 = t (c j+1 , θ j+1 ) solution of the minimization problem min c∈R,θ∈R k+q

1 n n i=1 δ j i (α)(Y i -c -t B k,q θ, X i ) 2 [(Y i -c -t B k,q θ j , X i ) 2 + η 2 ] 1/2 +ρ ( t B k,q θ) (m) 2 ,
where η is a strictly positive constant that allows us to avoid a denominator equal to zero. Let us define the n × n diagonal matrix W j with diagonal elements given by

[W j ] ll = δ j 1 (α) n[(Y l -c -t B k,q θ, X l ) 2 + η 2 ] 1/2 . Then, β j+1 = ( t DW j D + ρK) -1 t DW j Y.
Let us notice that, at each step of the algorithm, the estimator depends on many parameters : the number k of knots, the degree q of the spline functions, the order m of derivation, and the parameter ρ of the penalization. In our experience, we found that the penalization parameter ρ is of primary importance at least when the number of knots is large enough (see also Marks andEilers, 1996, Besse et. al., 1997). For this reason, we choose in our study (see section 3) to fix q = 3 and m = 2, which are values commonly used to reach a sufficient degree of regularity. After several attempts, we fix k to be 8 i.e. a number of knots which is not too small. Now, the parameter ρ is chosen at each step of the algorithm by minimizing the generalized cross validation criterion (see [START_REF] Wahba | Spline Models for Observational Data[END_REF])

GCV (ρ) = 1 n n l=1 (Y l -Y l ) 2 1 - 1 n T r(H(ρ)) 2 , (7) 
where

Y = H(ρ)Y and H(ρ) = 1 n D( 1 n t DW j D + ρK) -1 t DW j .

Multiple conditional quantiles

Let us notice that this estimation procedure can be easily extended to the case where there is more than one covariate. Considering now v functional covariates X 1 , . . . , X v , we have the following model

C 4 P A P E R D R A F T P (Y i ≤ c + g 1 α (X 1 i ) + . . . + g v α (X v i )/X 1 i = x 1 i , . . . , X v i = x v i ) = α. (8)
If we assume as before that g 1 α , . . . , g v α are linear and continuous functionals from a clsoed subspace of L 2 ([0, 1]), we can write g r α (X r i ) = Ψ r α , X r i for r = 1, . . . , v with Ψ 1 α , . . . , Ψ v α in L 2 ([0, 1]). The estimation of each function Ψ r α is obtained using the iterative backfitting algorithm (see [START_REF] Hastie | Generalized Additive Models[END_REF]) combined with the algorithm described previously.

An asymptotic result

In this section we give some insights on the asymptotic behavior of Ψ α . As a matter of fact, we give an upper bound for the L 2 convergence : the proof of this result can be found in [START_REF] Cardot | Spline Estimators of Conditional Quantiles for Functional Covariates[END_REF]. Let us now introduce some notations that we use in the following. If we assume that E X 2 < ∞, the covariance operator of X, denoted by Γ X , is defined for all u in L 2 ([0, 1]) by Γ X u = E ( X, u X). This operator is non-negative, so we can associate it a semi-norm noted . 2 and defined by u 2 2 = Γ X u, u . Using notations from [START_REF] Cardot | Spline Estimators for the Functional Linear Model[END_REF], we consider the (k + q) × (k + q) matrix C with general term Γ n (B j ), B l where Γ n is the empirical version of Γ. Moreover, we set C ρ = C + ρG where the matrix G is defined in section 2.2. It is possible to find a sequence (η n ) n∈N of non negative reals such that Ω n = ω/λ min ( C ρ ) > cη n , where λ min ( C ρ ) is the smallest eigenvalue of C ρ , has probability going to 1 when n goes to infinity (see [START_REF] Cardot | Spline Estimators for the Functional Linear Model[END_REF] To prove the convergence result of the estimator Ψ α , we assume that the following hypotheses are satisfied.

(H.1) X i ≤ C 0 < +∞, as. In the following, we set p = p + ν and we suppose that q ≥ p ≥ m.

(H.

3) The eigenvalues of Γ X are strictly positive. (H.4) For x ∈ H, Y has a conditional density function f x Y given [X = x] continuous and strictly positive at the α-quantile. Then, we have the following result.

Theorem 1 Under hypotheses (H.1) -(H.4), if we also suppose there exists

β, γ in ]0, 1[ such that k n ∼ n β , ρ ∼ n -γ and η n ∼ n -β-(1-δ)/2
, then (i) Ψ α exists except on a set whose probability goes to zero as n goes to infinity,

(ii) E Ψ α -Ψ α 2 2 |X 1 , . . . , X n = O P 1 k 2p n + 1 nη n + ρ 2 k n η n + ρk 2(m-p) n .
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We want to predict the maximum of the variable Ozone one day i, noted Y i , using the functional covariates observed the day before until 5 :00 pm. We consider covariates with length of 24 hours. We can assume that, beyond 24 hours, the effects of the covariate are negligible knowing the last 24 hours, so each curve X i begins at 6 :00 pm the day i -2.

We ramdomly splitted the initial sample (X i , Y i ) i=1,...,n into two subsamples :

-a learning sample (X ai , Y ai ) i=1,...,n l with n l = 332, used to determine the estimators c and Ψ α , -a test sample (X ti , Y ti ) i=1,...,nt with n t = 142, used to evaluate the quality of the models and to make a comparison. We use the conditional median to predict the value of Y i , i.e. α = 0.5. To judge the quality of the models, we give a prediction of the maximum of Ozone for each element of the test sample,

Y ti = c + D Ψ α (t)X ti (t) dt.
Then, we consider three criteria given by

C 1 = 1 nt nt i=1 (Y ti -Y ti ) 2 1 nt nt i=1 (Y ti -Y l ) 2 , C 2 = 1 n t nt i=1 | Y ti -Y ti |, C 3 = 1 nt nt i=1 l α (Y ti -Y ti ) 1 nt nt i=1 l α (Y ti -q α (Y l ))
, where Y l is the empirical mean of the learning sample (Y ai ) i=1,...,n l and q α (Y l ) is the empirical α-quantile of the learning sample (Y ai ) i=1,...,n l . This last criterion C 3 is similar to the one proposed by [START_REF] Koenker | Goodness of Fit and Related Inference Processes for Quantile Regression[END_REF]. We remark that, the more these criteria take low values (close to 0), the better is the prediction. After testing all the possible models with one to five covariates, we finally kept the model using the four covariates Ozone, Nitrogen Monoxide, Nitrogen Dioxide and Wind Speed (we have put some of the results obtained in table 1). For this model, figure 1 represents predicted Ozone vs measured Ozone. Except for one outlier, the prediction seems rather good. The most efficient covariate to estimate the maximum of Ozone is the Ozone curve the day before ; however, we noticed an improvement adding other covariates. We can also think that the results we obtained can be improved by other covariates that were not available, like the curve of temperature for example. Finally, let us note that we can similarly estimate conditional quantiles of Y i to derive some kind of predictive intervals. 
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(H. 2 )

 2 The function Ψ α is supposed to have a p -th derivative Ψ (p ) α lipschitz continuous of order ν ∈ [0, 1].

Fig. 1 -

 1 Fig. 1 -Predicted Ozone vs measured Ozone (prediction with the variables O3, NO, N2 and WS).
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  NO, N2, WD, WS 0, 401 11, 750 0, 639Tab. 1 -Forecast quality for some models of mediane regression.

	Models	Variables	C 1	C 2	C 3
		N2	0, 814 16, 916 0, 906
	1 covariate	O3	0,414 12,246 0,656
		WS	0, 802 16, 836 0, 902
		O3, NO	0, 413 11, 997 0, 643
	2 covariates	O3, N2	0, 413 11, 880 0, 637
		O3, WS	0, 414 12, 004 0, 635
		O3, NO, N2	0, 412 12, 127 0, 644
	3 covariates	O3, N2, WD	0, 409 12, 004 0, 645
		O3, N2, WS	0, 410 11, 997 0, 642
	4 covariates	O3, NO, N2, WS	0,400 11,718 0,634
	5 covariates O3,			
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