
HAL Id: hal-00134179
https://hal.science/hal-00134179

Submitted on 1 Mar 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rationalizing Musical Time: Syntactic and
Symbolic-Numeric Approaches

Bernard Bel

To cite this version:
Bernard Bel. Rationalizing Musical Time: Syntactic and Symbolic-Numeric Approaches. BARLOW,
Clarence. The Ratio Book, Feedback Papers, pp.86-101, 2001. �hal-00134179�

https://hal.science/hal-00134179
https://hal.archives-ouvertes.fr


Rationalizing musical time: syntactic and
symbolic-numeric approaches*

Bernard Bel

Music, like mathematics but unlike language, is not intelligible unless it is
grammatical: its form is its content.  As a product of “the unchanging human mind”
and body in the context of different cultures, music reflects both man’s biological
structure and the patterns of interaction that have been institutionalized as systems of
relationships in culture.  (Blacking 1974)

This paper deals with various problems in quantifying musical time encountered both in
the analysis of traditional drumming and in computer-generated musical pieces based on
“sound-objects”, hereby meaning code sequences controlling a real-time sound processor.

In section 1 it is suggested that syntactic approaches may be closer to the intuitions of
musicians and musicologists than commonly advocated numeric approaches.  Further,
symbolic-numeric approaches lead to efficient and elegant solutions of constraint-
satisfaction problems relative to symbolic and physical durations, as illustrated in sections
2 and 3 respectively.

1. A syntactic representation of musical accentuation

Many players of the tabla, a North Indian two-piece drum set, claim to follow a “rational”
system of improvisation, the rules of which are generally not explicit and conveyed
informally to students — much like a natural language.  Therefore, a strong initial
motivation of our formal study of the Lucknow tradition of tabla playing was the
challenge of modelling a knowledge relying exclusively on oral transmission (Kippen &
Bel 1989a).  Indian musicians make use of onomatopeic syllables (bols, from the verb
bolna, to speak) to represent elementary sounds or finger movements that may precisely
be transcribed on a computer (Kippen 1988:xvi-xxiii).  The very first version of the Bol
Processor (BP1) developed in 1982, was a customized word-processor allowing real-
time transcription of drumming sequences thanks to a mapping of keyboard strokes to the
vocabulary of tabla bols.  Analytical work was then undertaken with the aim of (1)
making rules explicit for some compositional types, and (2) checking the consistency of
musicians’ assessments of correctness in both teaching and performance situations.

The following is an example of a compositional type known as qa‘ida, the “theme and
variations” form par excellence (Kippen 1988:xi).  This example is borrowed from the
Ajrara tradition.  It should be read linearly from left to right, and each group represents a
beat comprising six units.
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Theme:
dhin--dhagena dha--dhagena dhatigegenaka dheenedheenagena
tagetirakita dhin--dhagena dhatigegenaka teeneteenakena
tin--takena ta--takena tatikekenaka teeneteenakena
tagetirakita dhin--dhagena dhatigegenaka dheenedheenagena

A few variations:
dhin--dhagena dha--dhagena dhatigegenaka dheenedheenagena
tagetirakita dhin--dhagena dhatigegenaka teeneteenakena
dheenedheenagena teeneteenakena tirakitatira kitatirakita
tagetirakita dhin--dhagena dhatigegenaka teeneteenakena
tin--takena ta--takena tatikekenaka teeneteenakena
taketirakita tin--takena tatikekenaka teeneteenakena
dheenedheenagena teeneteenakena tirakitatira kitatirakita
tagetirakita dhin--dhagena dhatigegenaka dheenedheenagena

dhin--dhagena dha--dhagena dhatigegenaka dheenedheenagena
tagetirakita dhin--dhagena dhatigegenaka teeneteenakena
dhin--dhagena dha-dha-dha- dhagenadheen-- dhagenadha--
tagetirakita dhin--dhagena dhatigegenaka teeneteenakena
tin--takena ta--takena tatikekenaka teeneteenakena
taketirakita tin--takena tatikekenaka teeneteenakena
dhin--dhagena dha-dha-dha- dhagenadheen-- dhagenadha--
tagetirakita dhin--dhagena dhatigegenaka dheenedheenagena

dhin--dhagena dha--dhagena dhatigegenaka dheenedheenagena
tagetirakita dhin--dhagena dhatigegenaka teeneteenakena
dheenedheenagena dheenedha-dheene dhatigegenaka teeneteenakena
tagetirakita dhin--dhagena dhatigegenaka teeneteenakena
tin--takena ta--takena tatikekenaka teeneteenakena
taketirakita tin--takena tatikekenaka teeneteenakena
dheenedheenagena dheenedha-dheene dhatigegenaka teeneteenakena
tagetirakita dhin--dhagena dhatigegenaka dheenedheenagena

Our observations based on several samples of variations (from performances and
demonstrations by the late Ustad Afaq Husain Khan of Lucknow) suggested that variable
lines (shown in italics) were constructed with “words”, i.e. chunks of bols of lengths
three, four and six in permutations that we presumed to be context-free.  This view was
reinforced by the fact that no technical (i.e. fingering) difficulties were encountered when
words were arranged in arbitrary order.  Words occurring most frequently are listed in the
following lexical rules:

A3 -->  dhin--
A3 -->  dha--
A3 -->  dhagena
A4 -->  tirakita
A3 A3 -->  dhagenadhin--
A3 A3 -->  dhagenadha--
A6 -->  dha-dha-dha-
A6 -->  dha-ta-dha-
A6 -->  dheenedheenedheene
A6 -->  dheenedha-dheene
A6 -->  tagetirakita
A6 -->  dheenedheenagena
A6 -->  teeneteenakena
A6 -->  dhatigegenaka
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In view of their frequent occurrence in examples, words dhagenadhin-- and dhagenadha-
- have been identified specifically.  A grammar for defining all possible sequences in
variable lines of six, twelve or twenty-four units is easy to construct (Kippen & Bel
1992).  However, some of the pieces generated by the grammar display irregularities in
their accentuation.  For instance,

dhin--tiraki tadhagenadhati gegenakatira kitatirakita

impose a rhythm counter to the natural stresses of the beat and half-beat, and is therefore
virtually impossible to recite or perform at speeds normally employed by musicians
(mm = 108-120, i.e. up to twelve bols per second).  In a four-beat string comprising
twenty-four units, primary accents fall on beats and half-beats: 1, 4, 7, 10, 13, 16, 19,
and 22.  A cursory analysis of variations created by musicians showed that in addition to
these divisions they employed hemiolic rhythmic patterns beginning on units 1, 7, and 13.
This produces a series of secondary stresses on units 5, 9, 11, 15, 17, 21.  The following
is a list of possible starting positions for the blocks defined above:

A3: 1, 4, 7, 10, 13, 16, 19, 22
A4: 1, 5, 7, 9, 11, 13, 15, 17, 21
A6: 1, 4, 7, 10, 13, 16, 19
tagetirakita: 1, 4, 5, 7, 9, 10, 11, 13, 15, 16, 17, 19

The exceptional status of “tagetirakita” is due to the fact that it is accentuated in two
different ways.  Therefore it is labelled with a new variable: C6.

We developed a way to define derivations of B24, B12, and B6 in a systematic way
that took into account acceptable starting positions.  The grammar was right-linear,
therefore instruction “LIN” appears in the first line:

LIN
B24 --> A3 B21 ...(A3 in starting position: 24 - (3+21) +1 = 1)
B24 --> A4 B20
B24 --> C6 B18
B24 --> A6 B18
B21 --> A3 B18 ...(A3 in starting position:  24 - (3+18) +1 = 4)
B21 --> A4 B17 ...(cancelled: A4 in starting position 4)
B21 --> A6 B15
B21 --> C6 B15
B20 --> A3 B17 ...(cancelled: A3 in starting position 5)
B20 --> A4 B16
B20 --> A6 B14 ...(cancelled: A6 in starting position 5)
B20 --> C6 B14
etc...

This grammar may produce a string “A4 A4 A4 A4 A4 A4” whose only derivation is an
unbroken series of tirakitas that musicians would certainly assess as incorrect.  It was
found that more than two consecutive A4’s were not accepted. The solution to this
problem lies in introducing left contexts in all rules producing A4.  Rather then enlisting
all acceptable left contexts (as standard Chomsky grammars would force us to do) we
found it practical to introduce negative contexts.

The resulting grammar is

B24 --> A3 B21
#A4 #A4 B24 --> #A4 #A4 A4 B20
B24 --> C6 B18
B24 --> A6 B18
B21 --> A3 B18
B21 --> A6 B15
B21 --> C6 B15
#A4 #A4 B20 --> #A4 #A4 A4 B16
B20 --> C6 B14
…
etc...
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Here, for instance, rule

#A4 #A4 B24 --> #A4 #A4 A4 B20

means “B24” may be rewritten “A4 B20” if not preceded by “A4 A4”.

A full description of the grammar of this qa‘ida is discussed in (Kippen & Bel 1992,
appendix 3) a variant of it is available in the Bol Processor BP2 shareware package.  A
detailed comment of syntactic extensions of the formal language model applied to musical
sequences, which we call BP grammars, may be found in (Bel & Kippen 1992).  Readers
may also refer to (Bel 1992) to understand the parsing algorithm that is used for assessing
the compatibility of arbitrary sentences with a given BP grammar.

The qa‘ida example makes it clear that quantization of rhythm and metre, although
generally described as a typical numeric problem (e.g., Vuza 1988), may also yield
syntactic descriptions with the advantage of reflecting productive and analytical processes
based on permutations and substitutions.   Learning these processes from examples is
an important part of the basic training in traditional drum improvisation/composition
(Kippen & Bel 1989b).

2. Symbolic representation of discrete sound-object structures

2.1 Bol Processor BP2: the environment

“BP2” is a new version of Bol Processor operating in a MIDI environment for design-
based (stipulatory) or improvisational rule-based composition (Laske 1989:51,53).  It is
available as a shareware package for Macintosh™ computers.

Several operational modes are available in BP2, from one that leaves all decisions to
the machine (stochastic improvisation) to one that allows a composer to take stepwise
decisions.  Since BP2 does not yet contain a parsing module, it is oriented towards
productive, rather than analytical, work.

The interaction of modules is summarized in the block diagram of Fig.1.

Item(s)

Display

Interpreter

Grammar(s) Sound-object 
prototypes

Editor MIDI input

Keyboard and/or graphic 
input.

MIDI musical 
instrument(s)

Sound 
processor(s)

MIDI output

Inference 
engine

Other BP2, sequencer, etc.…

Fig.1  A block diagram of Bol Processor BP2
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Three fields are used for storing a grammar, items generated by the grammar (on the basis
of decisions taken by the inference engine) and sound-object prototypes.  These
prototypes are arbitrary sequences of messages loaded from a MIDI musical instrument
and edited manually.  Terminal symbols in the grammar are the labels of sound-objects
replacing the onomatopeic syllables (bols) used by BP1.

The interpreter works in three stages:

1) The item generated by the grammar is interpreted as a polymetric expression
(see §2.7 infra).  The output is a complete polymetric expression yielding a
bidimensional array of terminal symbols called the phase diagram (see §2.3).

2) The expression is interpreted as a sound-object structure, using information
about the structure of time (see §2.2) and object prototype definitions.  The
main output is an extension of the phase table containing the performance
parameters of objects in the structure: their start/clip dates, time-scale ratios, etc.

3) MIDI messages contained in sound-objects are dispatched in real time to control
the sound processor.

The block diagram indicates that an external control can be exerted on the inference
engine, grammars, and the interpretation module.  Specific MIDI messages may be
assigned to changes of rule weights, tempo, the nature of time (striated/smooth) and many
other parameters.  Messages may also be used for synchronizing events during the
performance, or even assigning computation time limits.  These features are used in
improvisational rule-based composition.

Several BP2’s may be linked together and with other devices such as MIDI
sequencers.  Messages on the different MIDI channels may be used for making machines
communicate or control several sound processors.  Therefore it must be kept in mind that
“sound-objects” do not necessarily produce sounds.  Depending on the implementation
they may contain any kind of control/synchronization message as well.

2.2 Symbolic time

Let us assume that “a”, “b”, “c”, “e”, “f”, “g” and “-” are labels of arbitrary sound-objects
(similar to “dhin”, “dha”, etc. in §1).  Label “-” is reserved to silences which are viewed
as particular objects.  Fig.2 represents a structure of two sequences which, in first
approximation, might be notated S1 = “a b c a”  and S2 = “e - f g”.

Structure
of time

D
Symbolic

dates

S1

θ2 Rhythmic
structure

θ1

(sec.)

R

Physical dates0

S2

φ

a b c a NIL e - f g NIL

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11t12 t13 t14

Fig.2  A representation of sequences S1 and S2

—  5  —



In Fig.2 a set of strictly ordered symbolic dates D = {t1,t2,…} is introduced along with

θi , an injective mapping of each Si into D.  By convention, each θi is a monotonous
increasing function: sequentiality implies that all objects appearing in a sequence are
ordered in increasing symbolic dates.  Each mapping θi may in turn be viewed as a

restriction to Si of a general mapping θ which we call the rhythmic structure of the
sound-object structure.  “NIL” symbols are used to mark the ends of sequences.

The mapping of sequences to the set of symbolic dates is mainly information about the
ordering of any pair of events belonging to either sequence.  Here, for instance, S1 and S2
will be partly overlapping.

The set of symbolic dates D  is then mapped to physical time, i.e. the set of real

numbers R.  We call this mapping Φ the structure of time.  (The same was called

structure temporelle in Xenakis 1963:190-191,200)  In the example shown above, Φ is a
multivocal mapping, which means, for instance, that each sound-object “a” and “e” at
symbolic date t3 would be performed twice.  Ιn general only strictly increasing (univocal)
mappings are envisaged, so that:

∀ i,j ∈  N,     ti < tj <=> Φ(ti) < Φ(tj)  .

In this case, if we consider Dist(ti,tj) = |Φ(tj) - Φ(ti)| (the absolute value of the difference),

Dist is a distance on D.  Besides, since

∀ i,j,k ∈  N,   Dist(ti ,tj) + Dist(tj ,tk) ≥ Dist(ti ,tk)

(D,Dist) is also a metric  space.  (D,Dist) is also Euclidian  (metronomic time) if the
additional property holds:

∀ i,j,k,l ∈  N,   j - i = l - k  => Φ(tj) - Φ(ti) = Φ(tl) - Φ(tk)

The composition of the two mappings (Φ .θ) is the in-time structure of the musical
item, i.e. the mapping that permits its actual performance.

As suggested by the terminology, structure of time and in-time structures are two
concepts borrowed from Xenakis (1963).  We find these concepts essential as they deal
with sets of physical dates not necessarily structured as a Euclidian space.

2.3 Phase diagram

Both sequences of this example may be represented together in a single array (the phase
diagram), the columns of which are labelled and ordered on symbolic dates.  (See Fig.3)

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14

_ _ a _ b c a _ _ NIL _ _ _ _

_ _ _ e _ - _ _ f _ g NIL _ _

Fig.3  A phase diagram

The phase diagram contains empty sound-objects “_” indicating the prolongation of the
preceding sound-object, if any.  These should not be confused with silences “-”.
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Using the information displayed in the diagram, S1 and S2 are properly notated:

S1  =  a _ b c a _ _ S2  =  e _ -_ _ f _ g

Here, we call symbolic duration of a sound-object the relative position of the next
non-empty sound-object or “NIL” marker.  For example, in S2 the symbolic durations of
objects “e”, “-”, “f” and “g” are two, three, two and one respectively.  In S1, there are
two consecutive occurrences of “a” with respective durations two and three.

If for example “a”, “b”, etc. would represent notes in conventional music notation,
assuming that “b” is a quarter note would imply that “e” is a half-note and “-” a dotted
half-note rest.

2.4 Smooth vs. striated time

Pierre Boulez (1963:107) introduced the notions of smooth time (“temps lisse”) and
striated time (“temps strié”) to characterize two typical situations in music performance.
Striated time is filled with (regular or irregular) pulse, whereas smooth time does not
imply any counting:  A particular case of striated time is of course a metronomic pulse.
Examples of smooth time are common outside Baroque music, e.g. melodic introductions
in Indian raga music.

In computer-generated music, these notions are bound to the structure of time (the Φ
mapping): in striated time, Φ is known in advance, whereas in smooth time it is
determined at the time of performance.  Therefore, a striated structure of time is a set of
physical dates defining reference streaks on which sound-objects should be positioned
(see §3) whereas a smooth structure of time is a set of dates determined by the sound-
objects themselves.

2.5 Out-time objects

Sound-objects have strictly positive symbolic durations.  In some cases it is useful to
dispose of “flat” objects with null durations which we call out-time objects.  These may
be defined from sound-objects whose actions are executed “simultaneously” or in a very
short sequence.  In the BP2 environment, a typical application of out-time objects is the
exchange of parameters or synchronization messages.

Given a sound-object labelled “a”, the corresponding out-time object is notated
“<<a>>”.  Using this convention, a string like

<<a>> b

represents a structure in which out-time object “<<a>>” starts at the same symbolic date
as sound-object “b”.

2.6 Tempo markers

Sound-object sequence “a b c d e f” may be notated “/1 a b c d”, where “/1” is an
explicit tempo marker.  If the same sequence is to be interpreted five times faster we may
notate it “/5 a b c d e f”.  This notation was already used in Bol Processor BP1 to
indicate bol density:  North Indian drummers and dancers designate by dogun, tigun,
etc., bol densities of two,three, etc, bols per matra (beat).
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Using explicit tempo markers makes it possible to modify tempo within a single
sequence.  For instance, in sequence

/2 a b c d e f   /3  g h i j k l m n o

“a” … “f” will be interpreted at bol density 2 (two sound-objects per beat), then “g” to “o”
will be interpreted at bol density 3.  (This may also be viewed as a tempo acceleration of
3/2.)  The same expression may also be notated:

/6 a_ _ b_ _ c_ _ d_ _ e_ _ f_ _ g_ h_ i_ j_ k_ l_ m_ n_ o_

Silences may be notated with hyphens or integer numbers.  The following notations are
strictly equivalent:

/2 a b - - c d  /5  e - - - - f g h
/2 a b  - _  c d  /5  e  - _ _ _  f g h

/2 a b  2  c d  /5  e  4  f g h

Rational numbers may also be used to indicate fractional silences, e.g.

/1   a b     /2   c d e f    4/3    g h

in which “a” and  “b” are interpreted at bol density one, “c”, “d”, “e”, “f”, “g” and “h” at
bol density two, while sequences “cdef” and “gh” are separated with a silence of duration
4/3.  Since the “4/3” silence occurs at bol density two, its actual symbolic duration is
4/3 x 1/2 = 2/3.  Here, BP2 will expand the representation as follows:

/6  a _ _ _ _ _  b _ _ _ _ _  c _ _  d _ _  e _ _  f _ _  -  -  -  -  g _ _  h _ _

where the “4/3” silence appears as “- - - -” (or “- _ _ _”, or “4” equivalently).

2.7 Polymetric expressions

Suppose that we wish to superimpose two sequences A and B defined by rules:

A —> a b c
A —> d e f g
B —> h i

in which “a”, “b”, … “i” are labels of sound-objects.  Alternate definitions of “A” indicate
that it may contain either three or four objects.  To start with, we do not know how to
interpret the exact superimposition of two sequences: combining “abc” and “hi” may for
example yield the following phase diagrams:

      a b c    a b c    a _ b _ c _    a _ b c      etc...

      h i _    _ h i    h _ _ i _ _    h i _ _

      (1)       (2)        (3)           (4)

Prolongational symbols “_” could even be replaced with silences “-”.  However, since
silences do not explicitly appear in the grammar, we may postulate that creating them is
not a valid choice.  Further we discard interpretations (1) and (4) in which equal symbolic
durations are not maintained within the same string “h i”.  Finally, it is reasonable to
expect a synchronization of both the start and clip points of the synchronized sequences.
Therefore there is no reason to start “a” before “h” as suggested by interpretation (2).

Finally, the most intuitively appealing interpretation (in the absence of any additional
information) is the one shown in (3).  A notation of superimpositions is now introduced:
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{A,B} (equivalently, {B,A}) is the superimposition of sequences “A” and “B”.  We call
“{A,B}” a polymetric expression whose arguments are “A” and “B”.

Using this notation, a grammar yielding all acceptable superimpositions of “A” and “B”
would be:

S —> /1 {A1,B1}
S —> /1 {A2,B2}
A1 —> a _ b _ c _ B1 —> h _ _ i _ _
A2 —> d e f g B2 —> h _ i _

Once a string like “/1 {d e f g, h _ i _}” has been produced, it is necessary to check that
it contains equally many terminal symbols in both arguments, failing to which the phase
diagram cannot be constructed.

Evidently it is cumbersome to be forced to give two possible versions of “B”, the more
so because they point to identical ratios of symbolic durations: “B2” is similar to “B1” in
every respect.  Ideally, the following grammar should be used:

S —> /1 {A,B}
A —> a b c
A —> d e f g
B —> h i

expecting that there will be a method for interpreting an incomplete polymetric
expression like

/1 {a b c, h i}

as

/2 {a _ b _ c _ , h _ _ i _ _ }

i.e. a complete polymetric expression.  Note that the tempo marker now indicates bol
density two because durations have been stretched.  Thus, for instance, the symbolic
duration of “b” remains one beat.  A compact representation of this complete expression
makes use of explicit tempo markers in each argument, i.e.:

{/3 a b c , /2 h  i}

showing the classical “three-in-two” polyrhythm, along with the information that tempo
should be divided by a time scale factor of three so that actual durations will be the ones
we expect.

Interpreting polymetric expressions is the task of a fast algorithm implemented in Bol
Processor BP2 (Bel 1991-1992).  Since the algorithm makes use of arithmetic operators
such as LCM (lowest common multiple) altogether with rewrite procedures it may be
classified a symbolic-numeric method. Thanks to recursivity it is possible to interpret
nested expressions such as

{i {a b, c d e}, j k}

yielding

{/6 i  {/6 a b, /9 c d e}, /4 j k}

(in which the time scale factor is six).

If some arguments contain explicit tempo markers indicating a compulsory bol density,
the algorithm will try to satisfy all constraints so that, in the end, arguments of polymetric
expressions have identical symbolic durations.  In some cases there is no solution;
therefore it is preferable (and always possible) to avoid writing explicit tempo markers in
sequences or in polymetric structures, as we will now show.
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Polymetric representation of a sequence

Introducing a string of silences as the first argument of a polymetric expression is a good
method for suppressing explicit tempo markers in a sequence.  For instance,

a b c _  /3 d _ e

may be notated

a b c _  /3 {- - -, d _ e}

which is equivalent to:

a b c _ /3 {3, d _ e}
a b c _ {3/3, d _ e}
a b c _ {1, d _ e}

The advantage of the last notation is that the same expression may be used at different
tempos.  For instance, when it needs to be performed four times faster we just write

/4  a b c _ {1, d _ e}

rather than

/4  a b c _  /12 d _ e

which forces us to recalculate the second tempo marker.  Polymetric representation,
therefore, make it possible to build very complex musical structures by way of simple
rewriting rules (formal grammars), given that the computation of symbolic durations
and the matching of superimposed sequences is ultimately taken care of by a unique
and efficient polymetric interpretation algorithm.

Other features relative to polymetric expressions (along with typical examples in
conventional music notation) may be found in (Bel 1991-1992).

3. The time setting of sound-objects

Informally, instantiating a sound-object means dispatching to the sound processor all
messages defined in its prototype.  A naive interpretation of sequences of sound-objects
would be to arrange all corresponding time intervals in a strictly sequential way.  Duthen
and Stroppa (1990) have suggested a more general approach starting from the assumption
that any sound-object may possess one or several time points playing a particular role,
e.g. a climax.  These points are called time pivots.  Further they suggest to construct
sound structures using a set of synchronization rules.  Their approach is attractive but it is
hard to implement if the formalism of synchronization rules remains too general.
Therefore we retained a simplified version of Stroppa’s idea, assigning each object one
single pivot.

Let us for instance consider a complete polymetric structure {S1,S2,S3} derived as

{a _ b c d _ e , a _ f _ g h _ , j i _ a _ i _ }

yielding the phase diagram shown Fig.4.

a _ b c d _ e NIL

a _ f _ g h _ NIL

j i _ a _ i _ NIL

Fig.4  A phase diagram of {a _ b c d _ e , a _ f _ g h _ , j i _ a _ i _ }
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The definition of each sound-object contains the relative location of its pivot and metrical
properties allowing the calculation of its “time-scale ratio” — informally, a factor
adjusting the duration of the sound-object to the current speed of performance.

The following is a graphic representation of a possible instance of this polymetric
structure, as displayed by BP2:

Physical time

S1

S2

S3

a

b c

d

e

f

g

ha

j ai i

Fig.5  A structure of sound-objects

Here, the structure of time is an irregular pulsation represented with vertical lines (time
streaks).  The time-span interval of each sound-object is shown as a rectangle with
arbitrary vertical width and position.  These positions have been chosen to separate
objects on the graphic.  It is clear, for example, that “c”, “f”, “g” and “a” have
overlapping time-span intervals between the third and fourth streaks.  Lengths of
rectangles represent the physical durations of sound-objects.  Out-time objects, if any,
would appear as vertical segments.

Vertical arrows indicate time pivots.  As shown with object “e”, the pivot is not
necessarily a time point within the time-span interval of the sound-object.

This graphic represents the default positioning of objects with their pivots located
exactly on time streaks.  Although it is reasonable that instances of “c”, “f” and “a” are
overlapping between the third and fourth streaks since they belong to distinct sequences
performed simultaneously, it may not be acceptable that “f” overlaps “g” in a single
sequence S2; the same with “d” and “e” in sequence S1.  It may also not be acceptable that
the time-span intervals of “j” and “i” are disjoint in sequence S3 while no silence is shown
in the symbolic representation.

How could one deal with a constraint such as <<the end of sound-object “f” may not
overlap another sound-object in the same sequence>> ?  If object “g” is relocatable
then it may be delayed (shifted to the right) until the constraint is satisfied.  We call this a
local drift of the object.  Yet the end of “g” will also overlap the beginning of “h”.
Assume that this too is not acceptable and “h” is not relocatable.  We should then look for
another solution, for example truncate the beginning of “h”.  If this and other solutions are
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not acceptable then we may try to shift “f” to the left or to truncate its end.  In the first case
it might also become necessary to shift or truncate “a”…

So far we suggested constraint propagation within one single sequence.  In the time-
setting algorithm the three sequences are taken in order S1, S2, S3.  Suppose that the
default positioning of objects in S1 satisfies all constraints but no solution has been found
to avoid the overlapping of “f” and “g” in S2.  A new option is to envisage a global drift
to the right of all objects following “f” in S2.  The global drift is notated ∆ on Fig.6.  All
time streaks following the third one are delayed (see dotted vertical lines).

Physical time

S1

S2

S3

a

b c

d

e

f

g

ha

j ai i

∆

Fig.6  A solution using global drift

This solution is called “Break tempo” because its effect is similar to the the organum in
conventional music notation.  Although the global drift increases the delay between the
third and fourth streaks, the physical durations of sound objects are not changed because
their time-scale ratios have been calculated beforehand.

Now the positioning of objects in S2 is acceptable, but it might have become
unacceptable in S1: there may be a property of “b” or “c” saying that their time-span
intervals cannot be disjoint, so that “c” could be shifted to the left, etc.  Evidently,
whenever a global drift is decided the algorithm must start again from the first sequence.

The process of locating — i.e. instantiating — sound-objects, as illustrated in this
example, is the task of the time-setting algorithm imbedded in BP2.  If no global drift is
created, the time complexity of the time-setting algorithm is O(nmax.imax3), where nmax
is the number of sequences and imax the maximum length of a sequence.  In the worst
case, the time complexity is O(nmax2.imax3).  The algorithm is described in great detail
in (Bel 1991-1992).
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4. Conclusion

Work with Bol Processor BP1 and BP2 has been beneficial in finding a workable
compromise between general formal language models, whose mathematical properties are
well established although they often bear little musical relevance, and ad hoc
representations fulfilling the requirements of only particular musical tasks.

Polymetric structure interpretation and constraint-based time-setting of sound objects
contribute to compensate the rigidity of the timing of computer-generated musical pieces,
as the synchronization and accurate timings of concurrent musical processes are handled
by the computer on the basis of (possibly incomplete) information on structures and
sound-objects.

References

Bel, Bernard, 1990
Acquisition et représentation de connaissances en musique.  PhD dissertation,
Université Aix-Marseille III.

1991
Two algorithms for the instanciation of structures of musical objects.  Internal
report GRTC 458.  Groupe Représentation et Traitement des Connaissances, CNRS,
Marseille.

1992
Symbolic and sonic representations of time-object structures.  In (M. Balaban, K.
Ebcioglu and O. Laske, eds.) Understanding Music With AI.  Menlo Park: AAAI
Press: 64-109.

Bel, Bernard & Jim Kippen, 1992
Bol Processor grammars.  In (M. Balaban, K. Ebcioglu and O. Laske, eds.)
Understanding Music With AI.  Menlo Park: AAAI Press: 366-400.

Blacking, John, 1974
Ethnomusicology as a key subject in the social sciences. In Memoriam Antonio Jorge
Dias, 3 (1974), Lisbon (Portugal): 71-93.

Boulez, Pierre, 1963
Penser la musique aujourd’hui. Paris: Gonthier.

Duthen, Jacques & Mario Stroppa, 1990
Une représentation de structures temporelles par synchronisation de pivots.  In (B.
Vecchione & B. Bel, eds.) Le fait musical — Sciences, Technologies, Pratiques.
Marseille: Colloque CRSM-MIM “Musique et Assistance Informatique”.

Kippen, Jim, 1988
The Tabla of Lucknow: A Cultural Analysis of a Musical Tradition.  Cambridge
(UK): Cambridge University Press.

—  13  —



Kippen, Jim & Bernard Bel, 1989a
Can a computer help resolve the problem of ethnographic description?
Anthropological Quarterly, 62, 3: 131-144.

1989b
The identification and modelling of a percussion ‘language’, and the emergence of
musical concepts in a machine-learning experimental set-up.  Computers and the
Humanities, 23,3: 199-214.

1992
Modelling music with grammars: formal language representation in the Bol Processor.
In (A. Marsden and A. Pople, eds.) Computer Representations and Models in
Music.  London: Academic Press: 207-238.

Vuza, Dan Tudor, 1988
Sur le Rythme Périodique.  In (M. Boroda, ed.) Quantitative Linguistics.
Musikometrika, 37, 1: 83-126.

Xenakis, Iannis, 1963
Musiques formelles.  Paris: La Revue Musicale.
Augmented translation, 1971: Formalized music.  Bloomington: Indiana University
Press.

—  14  —


