
HAL Id: hal-00134078
https://hal.science/hal-00134078v1

Preprint submitted on 28 Feb 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toll Based Measures for Dynamical Graphs
Jérémie Bourdon, Damien Eveillard

To cite this version:

Jérémie Bourdon, Damien Eveillard. Toll Based Measures for Dynamical Graphs. 2007. �hal-00134078�

https://hal.science/hal-00134078v1
https://hal.archives-ouvertes.fr


ha
l-

00
13

40
78

, v
er

si
on

 1
 -

 2
8 

Fe
b 

20
07

Toll Based Measures for Dynamical Graphs

Jérémie Bourdon and Damien Eveillard

28th February 2007

Abstract

Biological networks are one of the most studied object in computational biology. Several

methods have been developed for studying qualitative properties of biological networks. Last

decade had seen the improvement of molecular techniques that make quantitative analyses

reachable. One of the major biological modelling goals is therefore to deal with the quantitative

aspect of biological graphs. We propose a probabilistic model that suits with this quantitative

aspects. Our model combines graph with several dynamical sources. It emphazises various

asymptotic statistical properties that might be useful for giving biological insights.

Keywords: average-case analysis; Biological networks; Markov chains; Dynamical sources.

1 Introduction

Biology is concerned with the study of biological functions that change chemical components into
another. The biological system that provides such transformations produces both biological matter
and energy. Genetic and biochemical investigations during the last decade have changed our under-
standing of biological transformation processes. Today, molecular techniques allow the description
of complex networks of interacting macromolecules that are responsible of theses phenomenological
transformations. Understanding biological molecular network is therefore one of the major goal of
the modern biology. Systems biology uses computational approaches in this purpose (see [10] for
overview). In this context, our aim is studying the dynamic of molecular interaction networks.

Until now, precise and quantitative informations on reaction mechanisms have been roughly
available for most networks of interest. Therefore, based on different formalisms, various studies
have focused on the qualitative modelling of dynamical networks [7]. Furthermore, because biolog-
ical knowledge is incomplete, qualitative modelling has appeared as an appropriate framework for
reasoning on the biological network and refining the graph whenever additional biological knowledge
becomes available. By now novel methods in biological data acquisition introduce the ability of high
throughput measurements that efficiently map out a network of interacting macromolecules. It thus
gives various quantitative insights of biological systems. One of the major biological modelling goals
is therefore to deal with the quantitative aspect of dynamical networks with a special emphasis on
the quantitative reasoning that naturally follows the qualitative reasoning. We propose here a novel
probabilistic model that suits this quantitative aim. We consider the cost of each macromolecular
interaction for emphasizing the major quantitative pathways among others qualitative.

Formerly, we study the typical behavior of the cost on a pathway that pass through the biological
graph. These costs are sums of elementary (fixed) toll costs on the edges taken by paths. This
measure on a graph G with r vertices can be exactly described by a r×r real matrix whose element
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(i, j) is the toll cost of the edge (i, j). Later, this matrix is denoted by C(G). We aim at studying
random costs variables, it is thus necessary to ensure that they are not degenerated. A toll cost
matrix C(G) is said to be non degenerated if for all strictly positive integer n, there exists at least
two paths of length n in graph G whose measures differ.

When a path is taken at random over some probabilistic model, the total cost itself is a real
random variable. A simple probabilistic framework for generating random paths on a graph is to
weight properly the edges of the graph by some fixed probabilities. This model is a classical Markov
chain model. In their book [8], Meyn et al. provides a general review of classical results on paths
in Markov chains.

Here, we define a more general probabilistic framework that in some sense extends Markov
chains. The edges of the graph are weighted by some dynamical sources, a general model presented
in the context of pattern matching in [3, 4, 5, 11].

Dynamical sources describe non-Markovian processes, where the dependency on past history is
unbounded, and as such, they reach a high level of generality. A probabilistic dynamical source
is defined by two objects: (i) symbolic mechanism and (ii) density. The mechanism, related to
symbolic dynamics, associates an infinite word M(x) to a real number x ∈ [0, 1], and generalizes
numeration systems. Once the mechanism has been fixed, the density on the [0, 1] interval can
vary. This induces different probabilistic behaviours for sources of words. Later, we establish a
correspondence between paths and words over an appropriate alphabet.

Therefore, a dynamical graph is defined by the combination of a graph and several dynamical
sources. Like this, one dynamical source is associated with each vertex of the original graph.

In this context, it is proved that the total cost of a path in the dynamical graph follows asymp-
totically a gaussian law.

Definition 1. [Asymptotic gaussian law.] Consider a cost R defined on a set R and its restriction
Rn to the subset Rn of size n. The cost R asymptotically follows a gaussian law as n → +∞ if
there exist three sequences an, bn, rn, with rn → 0, for which

Pr

[

(u, v) ∈ Rn

∣

∣

Rn(u, v) − an√
bn

≤ y

]

=
1√
2π

∫ y

−∞

e−t2/2 dt + O(r[Rn]) .

The sequence rn defines the speed of convergence, denoted also by r[Rn]. The expectation E[Rn]
and the variance V[Rn] satisfy E[Rn] ∼ an, V[Rn] ∼ bn. The triple (E[Rn], V[Rn], r[Rn]) is a
characteristic triple for the gaussian law of R.

Main Theorem. Let G = (G,D) be a nice1 dynamical graph and C(G) be a non degenerated toll
cost matrix on graph G.
The total cost of a path of length n in the dynamical graph G, denoted by Cn(G), follows an
asymptotic gaussian law as n → +∞ with a characteristic triple given by r[Cn(G)] = O(1/

√
n)

E[Cn(G)] = γG · n + γ′
G + O(µn

G) and V[Cn(G)] = νG · n + ν′
G + O(µn

G)

The constants γG and νG are expressible with the pression Λ(t) of the operator T(et) defined in
(3.2), namely γG = Λ′(0), νG = Λ′′(0), while µG < 1 is any real number strictly larger than the
subdominant eigenvalue of T.

Such a definition leads to formulate various tools.

1The word “nice” is defined in Def. 4, Section 4.1, the word “primitive” in Section 4.1
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2 Various tools

We propose a probabilistic model for paths that compose a randomized graph. We relate the
study of basic parameters of these paths with formal generating functions. It defines the dynamical
sources model and provides major properties for their related generating operators.

2.1 Probabilistic model and generating functions

Let G = (V, E) an oriented, strongly connected graph with r vertices V = {1, . . . , r}. A path of
length n in the graph in a n-uple W = w1 → w2 → . . . → wn, where wi ∈ V for all i ∈ {1, . . . , n}
and (wi, wi+1) ∈ E is an edge for all i ∈ {1, . . . , n − 1}. We denote by Wn(G) the subset of V n

composed by all possible paths of length n in graph G and by W⋆(G) the subset of V ⋆ composed
by all possible paths of any length in graph G.

We focus on graphs that are strongly connected (i.e., for all pairs of vertices (i, j), there exists
a path that links i to j. This technical request is crucial since it ensures that the transition matrix
of the graph is primitive and Wn(G) as well.

Random paths are drawn according to an induced probability on W⋆(G). In the sequel, we
denote by pW the probability that a random (infinite) path begins with the (finite) path W (of
length n).

Now, a measure on these paths is a function c : W⋆(G) → R whose restriction Cn to Wn(G) is
a real random variable. Our aim is to analyze its probabilistic behavior as n → +∞, when c is a
measure that can be described by toll cost values on edges (i.e., each edge contributes by a fixed
value to the total measure). Our main tool is the moment generating function of Cn, defined as

E [exp(tCn)] :=
∑

W∈Wn(G)

pW · exp[tc(W )], (2.1)

and the major issue is showing that it behaves as a “quasi-power”. Then, Hwang’s quasi-power
theorem [6] is used to conclude to an asymptotic Gaussian law.

Theorem 1 (Hwang) Let Yn be a sequence of variables whose moment generating functions sat-
isfies when n → +∞ E [exp(tYn)] = [exp(nU(t) + V (t))] · [1 + O(Wn)], Wn → ∞, with a uniform
error term on the complex closed disk D(t0) := {|t| ≤ t0}, t0 > 0. Suppose that U(t) and V (t) are
analytic in D(t0) and U(t) satisfies U ′′(0) 6= 0. Then, Yn follows an asymptotic gaussian law, with
a characteristic triple given by

E [Yn] = U ′(0) · n + V ′(0) + O(Wn), V[Yn] = U ′′(0) · n + V ′′(0) + O(Wn),

r[Yn] = O (max(1/
√

n, Wn)) .

2.2 Bivariate generating functions

The so–called probability generating function Fc(z, u) relative to parameter c is defined as

Fc(z, u) =
∑

W∈W⋆(G)

pW · uc(W ) · z|W |, (2.2)
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where |W | denotes the length of the path W , the variables z and u respectively mark the length of
the path and the parameter c(W ). Remark that the moment generating function of parameter Cn

is closely related to Fc(z, u) via the relation

E [exp(tCn)] = [zn]Fc(z, et) (2.3)

where the notation [zn]G(z) denotes the coefficient of zn in G(z). We now express the generating
function Fc(z, u) in a form that simplify the coefficient extraction.

2.3 Transition matrix and generating functions

The transition matrix T := (Ti,j) of the graph G (with r vertices) is the r× r matrix which element
of index (i, j) equals 1 iff (i, j) is an edge of G (and 0 otherwise). Thus, T n is a {0, 1} matrix that
indicates if there exists at most one path in the graph from one state to another.

Focussing on the paths, it is convenient to deal with a marked version of the transition matrix
T := (Ti,j) such that: Ti,j = ei,j if Ti,j = 1 and Ti,j = 0 otherwise. In the sequel, Σ = Σ(G) :=
{ei,j|(i, j) ∈ E} refers to the set of all possible edges, and Σi := {ei,j , (i, j) ∈ E} refers to the edges
that leave vertex i. Notice that a path in G corresponds to a string over Σ⋆. The matrix T plays a
fundamental role. Indeed, the component (i, j) of the matrix T n is the set formed by all the paths
of length n which allow to reach state j from state i. In addition, the component (i, j) of the matrix
T ⋆ is the set formed by all possible paths that allow to reach state j from state i using an arbitrary
number of steps. Finally, the set Wn(G) of all possible paths of length n is expressed formally by

Wn(G) = 1 · T n · t1, W⋆(G) = 1 · T ⋆ · t1, (2.4)

where 1 := (1, . . . , 1) is the r length vector of 1.

We now present the probabilistic model for path generation. This model is based on dynamical
systems. Probabilities of passing through an edge are “generated” by operators, and the main gen-
erating function can be generated itself by operators. Furthermore, unions and Cartesian products
of sets translate into sums and compositions of the associated operators. This allows to define a
matrix generating operator related to a graph and its associated probabilistic model.

2.4 Dynamical sources

We first recall the definition of a dynamical system (of the interval) (See [11, 5] for details).

Definition 2. A dynamical system D = (I,S) is defined by four elements:
(a) a finite alphabet A,
(b) a topological partition of I :=]0, 1[ with disjoint open intervals Im, m ∈ A,
(c) an encoding mapping σ which is constant and equal to m on each Im,
(d) a shift mapping S whose restriction to Im is a bijection of class C2 from Im to Jm := S(Im).

The local inverse of S|Im
is denoted by hm.

Such a dynamical system can be viewed as a “dynamical source”, since, on an input x of I, it outputs
the word M(x) formed by the sequence of symbols σSj(x), i.e., M(x) := (σx, σSx, σS2x, . . .).
The branches of Sk, and also its inverse branches, are then indexed by Ak, and, for any w =
m1 . . . mk ∈ Ak, the mapping hw := hm1 ◦ hm2 ◦ · · · ◦ hmk

is a C2 bijection from Jw onto Iw. It is
possible that the word w cannot be produced by the source: this means that Jw is empty, and the
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inverse branch hw does not exist. All the words that begin with the same prefix w correspond to
real numbers x that belong to the same interval Iw.

Such sources may possess a high degree of correlations, due to the geometry of the branches [i.e., the
respective positions of intervals Im and Jℓ := S(Iℓ)] and also to the shape of branches [See [5] for
more details]. For instance, classical sources correspond to dynamical systems with affine branches,
for which the derivatives are constant. In other words, the probability of emitting a symbol m is
closely related to the shape of branches.

2.5 Probabilities and generating operators

When the interval I is endowed with some density g, this induces a probabilistic model on AN,
and the probability pw that a word begins with prefix w is the measure of the interval Iw. Such a
probability pw is easily generated by an operator G[w], defined as

G[w][f ](x) = |h′
w(x)| f ◦ hw(x)1IJw

(x), (2.5)

since one has pw =

∫

Iw

g(x)dx =

∫

Jw

|h′
w(x)|g ◦ hw(x)dx =

∫ 1

0

G[w][g](x)dx. (2.6)

The operator G[w] is called the generating operator of the prefix w. The generating operator L
relative to a collection L of words is defined as the sum of all the generating operators relative to
the words of L, namely L :=

∑

w∈L G[w], and the generating operator G of the alphabet A

G :=
∑

m∈A

G[m]. (2.7)

plays a fundamental role here, since it is the density transformer of the dynamical system; it
describes the evolution of densities on I under iterations of S: if X is a random variable with
density g, then SX has density G[g].
For two prefixes w, w′, the relation pw.w′ = pwpw′ is no longer true when the source has some
memory, and is replaced by the following composition property

G[w.w′] = G[w′] ◦ G[w], (2.8)

so that unions and Cartesian products of collections of words translate into sums and compositions
of the associated generating operators. Remark just that, due to (2.8), the generating operator of
L ×M is M ◦ L.

3 Dynamical graph

We construct a probabilistic model for paths by combining both information of the graph and
information of several dynamical systems. This provides the so-called dynamical graph.

A dynamical graph G is defined by a pair (G,D) where G = (V, E) is an oriented strongly
connected graph with r vertices (V = {1, . . . , r}) and D = (D1, . . . ,Dr) is a sequence of r dynamical
sources. The dynamical source Di corresponds to the vertex i. It is defined by the alphabet
Σi := {ei,j, (i, j) ∈ E} and describes the probability of leaving the vertex i. Indeed, previously we
suggested that the dynamics of Di are properly represented by generating operators Gi,[e], e is any
symbol/edge of Σi. Thus, if at a time, we are in vertex i with some density g that corresponds
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to all the previous edges traversed by the path before i, the probability of taking the edge (i, j) is
given by

pj|i,g =

∫ 1

0

Gi,[ei,j ][g](t)dt.

Remark. When all the dynamical systems Di are simple Bernoulli sources, the dynamical graph
is a Markov chain (of order 1). In this case, if there exists an edge from vertex i to vertex j, the
probability of taking the edge (i, j) is the conditional probability pj|i. Thus, dynamical graphs
extend the Markov process model by introducing a high level of correlations between the different
edges taken by the path.

Here, we present two distinct tools dedicated to dynamical graphs. The first is a matrix gener-
ating operator. The second is the (flat) generating operator of a (mixed) dynamical source closely
related to the dynamical graph. These two objects are conjugated and share the same spectrum.

3.1 Matrix generating operator

We transform the transition matrix of a graph into a matrix generating operator that combines
both information from the graph and the different dynamical sources of vertices. We associate to
each element Tj,i of the marked matrix T , its generating operator Ti,j

Ti,j := Gi,[ei,j ] (3.1)

T is a matrix generating operator which is related to tT , due to (2.8).
In order to represent properly the generating function of the parameter c, when c is a toll

based measure, we introduce some “perturbations” in the matrix operator. The perturbed matrix
operator T(u) is a matrix operator whose elements are

Ti,j(u) := uci,jTi,j , (3.2)

where ci,j is the toll cost of edge (i, j).Obviously, T(1) corresponds to the unperturbed version of
the matrix operator. Thanks to (2.4) and (2.6), we express Fc(z, u) by means of the perturbed
matrix operator T(u),

Fc(z, u) =

∫ 1

0

1 · (I − zT(u))−1 · t1[g](x)dx,

where g is an initial given density. The coefficient of zn in Fc(z, u) corresponds to the n-th power
of the matrix operator, consequently, the moment generating function of the cost Cn satisfies

E [exp(tCn)] =

∫ 1

0

1 · T(et)n · t1[g](x)dx. (3.3)

3.2 Mixed source

We build a source SG that combines both a transition matrix T of a dynamical graph G, and
the original sources D1, . . . ,Dr. The set of vertices of the underlying graph G is V := {1, . . . , r}
and the transition matrix T of G has order r. For all i, the source Di is defined by an interval

I(i) = [0, 1], an alphabet Σi, a topological partition (I(i)
m )m∈Σi

and a shift S(i) which local inverse

h
(i)
m := (S(i)

I(i)
m

)−1 maps J (i)
m :=]c

(i)
m , d

(i)
m [ on I(i)

m :=]a
(i)
m , b

(i)
m [.
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The source SG is defined with the interval IG = [0, r], the alphabet Σ :=
⋃r

i=1 Σi, a topological
partition (Im)m∈Σ and a shift function SG that maps IG on IG . Each local inverse hm maps Jm

on Im. More precisely, if m = ei,j ∈ Σi,

Im = I(i)
m + i − 1 :=]a(i)

m + i − 1, b(i)
m + i − 1[, Jm = J (i)

m + j − 1 :=]cm + j − 1, dm + j − 1[,

and hm(x) = hm(x− j−1)+ i−1. The density transformer G of the source SG defined, as in (2.7),
by

G[f ](x) :=
∑

m∈Σ

|h′
m(x)| · f ◦ hm(x) · 1IJm

(x), (3.4)

is conjugated to the matrix operator T defined in (3.1) via a mapping Ψ [namely G = Ψ−1 ◦T ◦Ψ]
which associates to g (defined on I) the vector t[g1, . . . , gr] where each gi is defined on I(i) by
gi(x) := g

[i−1,1]
(x + i).

4 Probabilistic behavior of toll based measures

For studying the parameter of interest, the major issue is to prove that both graph and dynamical
systems possess good properties. It is the same for the source SG associated to the dynamical graph
G = (G,D). As mentioned in [3], we consider dynamical automatons and extends the results to
dynamical graphs.

4.1 Nice sources and convenient sources.

Under general hypotheses, and on a convenient functional space, the density transformer admits
λ = 1 as an eigenvalue of largest modulus. Nevertheless, this is not a unique dominant eigenvalue
isolated from the remainder of the spectrum.

Definition 3. A dynamical source is said to be decomposable if the density transformer G [defined
in (2.7)] has a unique dominant eigenvalue (equal to 1) separated from the remainder of the spectrum
by a spectral gap, i.e., ρ := sup{|λ| ; λ ∈ SpG, λ 6= 1} < 1, when acting on a convenient Banach
space F .

Remarks. The terminology considers the dominant eigenfunction ϕ which is an invariant function

for G. Under the normalization condition
∫ 1

0 ϕ(t)dt = 1, this last object is unique too, and it
is also the (unique) stationary density. Due to the existence of the spectral gap, the operator G
decomposes into two parts, namely G = λP+N, where P is the projection of G onto the dominant
eigenspace generated by ϕ, and N, relative to the remainder of the spectrum, has a spectral radius
equal to ρ, which is strictly less than 1. The operator N describes the correlations of the source. A
decomposable dynamical source is ergodic and mixing with an exponential rate equal to ρ.

Most of the classical sources –memoryless sources, or primitive Markov chains– are easily proven
to be decomposable. We present sufficient conditions under which a general dynamical source is
proven to be decomposable, together with all its associated mixed sources SG [the proofs are omitted
here].

Definition 4. A dynamical source (on a finite alphabet) is said to be “nice” if it satisfies the two
conditions
(i) [Expansiveness] There exist two constants C, D with D > 1 for which one has, for any m ∈ Σ,
for any x ∈ Im, D < |S′(x)] < C.
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(ii) [Topologically mixing] For any pair of two nonempty open sets (V, W ), there exists n0 ≥ 1 such
that S−nV ∩ W 6= ∅ for all n ≥ n0.

Proposition 1. A nice dynamical system is decomposable, with respect to the space BV (I) of
functions with bounded variation, endowed with the norm ||f || := sup |f | + V (f) [Here, V (f) is
the total variation of f on I].

We consider now the mixed source SG . Note here that a transition matrix T is primitive if there ex-
ists a power of the matrix T whose coefficients are never the empty language. A strongly connected
graph produces a matrix T , primitive if and only if the gcds of the lengths of its cycles equals 1. If
it is not primitive, the gcd d of its cycle lengths is called the period, and T d is primitive.

Proposition 2. Let G = (G,D) be a dynamical graph. If D is a sequence of nice dynamical sources
and the transition matrix of G is primitive, the mixed source SG is nice too.

4.2 Proof of the main theorem.

The main theorem is then a consequence of all the previous facts. Indeed, thanks to Propositions 2
and 3 the density transformer G of the mixed source SG has dominant spectral properties, and by
conjugation and perturbation theory, this transmits to the quasi-inverses of marked operator T(u),
when u remains in a neighbourhood of 1. Finally, T(u) admits the decomposition

T(u)n = λ(u)n
P + N(u),

in a complex neighbourhood of u = 1. Then, with (3.3), the moment generating function of the
total cost Cn behaves as an approximate n-th power. We conclude by using Hwang’s quasi-power
Theorem [6] (See 2.1).

5 Examples of toll based measure schemes

We present here several measure schemes. They all consist in a sum of elementary (fixed) toll costs
on the edges taken by the path. Thus, a measure on a graph G with r vertices can be exactly
described by a r × r real matrix whose element (i, j) is the toll cost of the edge (i, j).

5.1 Counters on edges

Here, we want to have access to statistics on the number of times a given edge is taken. It is surely
the simplest measuring scheme. Nevertheless, it is quite important since it is the basis of all the
next measure schemes. It consists in marking a single transition (i, j) by a cost equal to 1. Thus
the toll cost matrix is a matrix of zeros except at the position (i, j).

5.2 Counters on vertices

In order to count the number of times we reach a given vertex, it is sufficient to consider all the
edges that point to this vertex. More formerly, the number of times a given vertex k is reached is
obtained by using a toll cost matrix such that ci,k = 1 if (i, k) ∈ E and equals 0 otherwise.

From an applicative point of view, it also proves useful to have some real toll costs for the edges
that point to a given vertex. This allows to reflect for instance the stoichiometry of a reaction
(represented by an edge) between products (represented by the vertices).
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5.3 Counters on pathways

The last measure scheme consists in counting particular pathways (here, a pathway is a possible
(finite) succession of several edges in the graph that does not contain any cycle). This kind of
statistic is useful to compare different pathways that link the same vertices in a graph.

This measure is done by duplicating all the vertices along the pathway. This new graph is called
G′. The copy is used to count the pathway of interest (by counting its last transition) which is
removed from the original graph (by removing its first transition). Finally, a copy of appropriate
edges (all the edges that leave a vertex of the path) ensures that two graphs G and G′ share the
same sets of paths (i.e., Wn(G′) = Wn(G) for all n and W⋆(G

′) = W⋆(G)).
More formerly, let P = i0 → i1 → · · · → ik be a pathway. We create a new graph G′ = (V ′, E′),

where V ′ = V ∪ {i′1, . . . , i′k} (here, i′j stands for the copy of vertex ij), and E′ expresses as E′ =
(E \ {(i0, i1)}) ∪ C1 ∪ C2, where

C1 = {(i0, i′1} ∪ {(i′j, i′j+1), j = 1 . . . k − 1},
corresponds to the path and

C2 =

k−1
⋃

j=1

∪{(i′j, ℓ), (ij , ℓ) ∈ E and ℓ 6= ij+1} ∪ {(i′k, ℓ), (ik, ℓ) ∈ E},

corresponds to the edges needed in order to keep the same sets of paths.
Now, for counting the number of times a given pathway C is taken, it is sufficient to count the

number of times transition (i′k−1, i
′
k) is taken.

Consider the following example in which we want to count pathway C = 1 → 2 → 3.
Original graph G

1

2

3

4

Modified graph G′

1

2

3

4

2’

3’

6 Numerical experiments

Here we give two different ways of using the results of this paper.
The first use is when all the parameter of the model (namely its underlying graph and the

probabilistic model of each transition) are fully determined. The model is then used as a simula-
tor and provides some theoretical evidences that may be confirmed later (typically by biological
experiments for biological networks).

The second application is a help in the modelling process. Here, the graph is known entirely but
the probabilistic model is just partially known. By adding some experimental observed knowledge
(an evaluation of a possible measure), it is possible to get some information on the unknown.

We provide some results when the probabilistic model is the simplest one, i.e., the probability
of taking one edge is fixed. We will consider a matrix of real numbers in the place of a matrix of
operators.
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6.1 Simulation

Consider the following graph, transition matrix operator T and cost matrix C (that marks the edge
(1, 2)

1

2

3

T =





0.4 0.2 0.4
0.7 0.2 0.1
0.2 0.7 0.1



 C =





0 1 0
0 0 0
0 0 0



 .

The dominant eigenvalue λ(u) of the marked matrix operator T(u) equals

λ(u) =
K(u)2/3 + 208 + 168u + 14K(u)1/3

60K(u)1/3
,

where K(u) = 20276 + 2448u + 12
√

2792481 + 537960u− 80688u2 − 32928u3. Thus λ′(1) = 0.0896
which indicates that the edge (1, 2) is taken approximately 8.9% of times in long paths in the graph.

6.2 Modelling

Consider now the following graph, with a transition matrix operator T partially known

1

2

3

T =





0 x 1 − x
y 0 1 − y
z 1 − z 0



 .

Nevertheless, it is observed that edge (1, 3) is taken in average between 30% and 40% of times
while edge (3, 1) is taken in average between 20% and 30% of times. The question is “does it give
any information for x, y and z ?”. Obviously, yes. This problem can be seen as a constraint problem
with 3 variables over the continuous domains Dx = Dy = Dz =]0, 1[ with some constraints that
are inequalities based on the observations. Eigenvalues λ(1,3)(u) and λ(3,1)(u) associated to the
observations express symbolically with x, y and z. One has the constraints

0.3 ≤ λ′
(1,3)(1) ≤ 0.4, 0.2 ≤ λ′

(3,1)(1) ≤ 0.3.

We discretize the three domains and keep only 100 regularly spaced values and then operate an
exhaustive determination of all possible graphs (among the 1003 possible ones) that satisfies the
first constraint, the second constraint and both the two constraints. This is represented by the
following 3D pictures.
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First constraint Second constraint Both
The graphs of interest correspond to the common part, a small part of the entire cube [0, 1]3.

7 Conclusion and perspectives

Our study illustrates toll based measure schemes in a large class of probabilistic model of graph.
It shows (i) wide generality on both measure and probabilistic model and (ii) entails theoretical
results on graphs that might be useful in various applications with a special emphasis on biological
networks application. Our quantitative analysis characterizes the major impact of other measure
scheme, such those related to the waiting time before taking a given transition. Note here that
they surely do not obey asymptotically to a Gaussian law. Behind these theoretical items, our
model rises various perspectives. One of them considers a multivariate framework where the study
concerns the asymptotic behavior of a vector of different measures. In this context, and for a vector
of toll based measure, the work of Bender, et al. [2, 1] might be particularly useful. Finally, for a
modeling purpose, the determination of n unknown parameters of the probabilistic model consist in
finding an appropriate part of the hypercube [0, 1]n. Here shows the importance to design efficient
methods that find good approximations of this part. The local search community develops several
methods such as tabu search or genetic algorithms that are still to be considered for investigating
graph properties.
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