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SEMIPARAMETRIC FREQUENCY ESTIMATION FROM IRREGULARLY

SAMPLED OBSERVATIONS

C. LÉVY-LEDUC, E. MOULINES, AND F. ROUEFF

GET/Télécom Paris, CNRS LTCI

Abstract: We consider the problem of estimating the period of an unknown

periodic function observed in additive noise sampled at irregularly spaced time

instants in a semiparametric setting. This problem has been tackled in Hall,

Reimann and Rice (2000), but the proposed estimator requires a preliminary

estimator of the period whose rate of convergence is assumed to be closed to

optimality. In this work, we introduce a novel estimator based on the cumu-

lated Lomb-Scargle periodogram; this estimator does not rely on a preliminary

estimator and is able to solve the ambiguities - e.g. pitch halving or doubling-

which is inherent to the frequency estimation problem. We establish that this

estimator converges at the parametric rate, is an asymptotically Gaussian es-

timator of the period and provides an explicit expression of the asymptotic

variance. A limited Monte-Carlo experiment is presented on both synthetic

data and variable stars data to support our claims.

Key words and phrases: Period estimation; Frequency estimation; irregular

sampling; semiparametric estimation; cumulated Lomb-Scargle periodogram.

1. Introduction

The problem of estimating the frequency of a periodic function corrupted by additive noise

is ubiquitous and has attracted a lot of research efforts in the last three decades. Up to

now, most of these contributions have been devoted to regularly sampled observations; see

e.g. Quinn and Hannan (2001) and the references therein. In many applications however, the

observations are sampled at irregularly spaced time instants: examples occur in different fields,

including among others biological rhythm research from free-living animals, see Ruf (1999),

unevenly spaced gene expression time-series analysis, see Glynn, Chen and Mushegian (2006),

or the analysis of brightness of periodic stars, see Hall, Reimann and Rice (2000), Thiebaut

and Roques (2005). In the latter case, for example, irregular observations come from missing

observations due to poor weather conditions (a star can be observed on most nights but not

all nights), and because of the variability (sometimes intentional) of the observation times.
1
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In the sequel, we consider the following model:

Yj = s?(Xj) + εj , j = 1, 2, . . . , (1)

where s? is an unknown (real-valued) periodic function on R+ with least period T?, {Xk} are

the sampling instants and {εk} is an additive noise. Our goal is to construct a consistent, rate

optimal and easily computable estimator of the frequency f? = 1/T? based on the observations

{(Xi, Yi)}i=1,...,n in a semiparametric setting, where s? belongs to some function space. To our

best knowledge, the only attempt to rigorously derive such semiparametric estimator is due

to Hall, Reimann and Rice (2000), who propose to use the least-squares criterion defined by

S(f) =
∑n

k=1 (Yk − ŝ(Xk|f))2 where ŝ(Xk|f) is a nonparametric kernel estimate of s?, given

a frequency f . This estimator has been shown to converge at the parametric rate and to

attain a semiparametric lower-bound which is the same if the shape of the periodic function

is unknown as if it where known. A serious limitation of the proposed estimator stems from

the fact that the consistency is obtained under the assumption that a preliminary estimator

of the period is known, whose rate of convergence is already closed to be optimal (see Hall,

Reimann and Rice (2000)[condition (c), p. 554]).

Our objective in this work is to construct an estimator attaining the optimal parametric

rate, without assuming the existence of a preliminary estimator. The estimator considered in

our work is based on the cumulated Lomb-Scargle periodogram, which is defined as

Λn(f) =
1

n2

Kn∑

k=1

∣∣∣∣∣∣

n∑

j=1

Yj e−2ikπfXj

∣∣∣∣∣∣

2

, (2)

where Kn denotes the number of cumulated harmonics, assumed to be slowly increasing with

n. Our procedure might be seen as an extension of the algorithm by Quinn and Thomson

(1991) where the periodogram is replaced by the Lomb-Scargle periodogram to account for

irregular sampling time instants. Another difference stems from the fact that the estimator

is not the global maximizer of the function Λn(f), but rather an ”approximate” maximizer

in the neighborhood of multiple of the global maximizers, allowing to deal automatically

with the inherent ambiguity of the frequency estimation problem (such a procedure has been

introduced by Golubev (1988) in a frequency estimation problem from continuous observa-

tions). This estimator is computationally easier to implement than the estimator proposed by

Hall, Reimann and Rice (2000) because the Lomb-Scargle periodogram can be very efficiently

computed using Press, Teukolsky, Vetterling and Flannery (1992), p. 581. In addition, this

estimator does not rely on a preliminary estimator of the period. We show that this estima-

tor is rate optimal (i.e. attains the parametric rate); we also establish that the estimator is

asymptotically normal and determine an expression of the asymptotic variance.
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The paper is organized as follows. After relating Λn(f) to the log-likelihood in a semi-

parametric framework, we propose a frequency estimator based on maximizing Λn(f) and

show that it is consistent, rate optimal and asymptotically Gaussian; see Section 2. We then

present some numerical experiments in Section 3. The remainder of the paper is devoted to

auxiliary results and technical proofs used for showing the main results. A functional central

limit theorem for periodic functions of random walks is presented in Section 4. Technical

lemmas are given in Sections 5, 6 and Appendix A.

2. Main results

Define the Fourier coefficients of a locally integrable T?-periodic function s by

ck(s) =
1

T?

∫ T?

0
s(t) e−2ikπt/T?dt, k ∈ Z so that s(t) =

∑

p∈Z

cp(s)e
2iπpt/T? . (3)

Recall that the least period T? (or equivalently f? = 1/T?, the associated frequency) of s?

is here the parameter of interest. Consider the least-squares criterion based on observations

{(Xi, Yi)}i=1,...,n,

Ln(f, c) =

n∑

j=1

(
Yj −

Kn∑

k=0

ck e2ikπfXj

)2

, c = [c−Kn , . . . , cKn ]T (4)

where {Kn} is the number of harmonics. For a given frequency f , the Fourier coefficients

c̃n(f) = [c̃−Kn , . . . , c̃Kn ] which minimize (4) solve the system of equations Gn(f)c̃n(f) =

nĉn(f), where Gn(f) = [Gn,k,l(f)]−Kn≤k,l≤Kn is the Gram matrix with coefficients Gn,k,l(f) =
∑n

j=1 e−2i(k−l)πfXj and ĉn(f) = [ĉ−Kn(f), . . . , ĉKn(f)] with

ĉl(f) =
1

n

n∑

j=1

Yje
−2ilπfXj . (5)

An estimator for the frequency f can then be obtained by minimizing the residual sum of

squares

f 7→ Ln(f, {c̃k(f)}) =
n∑

j=1

Y 2
j − n2ĉT

n (f)G−1
n (f)ĉn(f) . (6)

Note that computing c̃n(f) is numerically cumbersome when n is large since it requires to

solve a system of 2Kn + 1 equations for each value of the frequency f where the function

Ln(f, {c̃k(f)}) should be evaluated. In Lemma 4, we shall prove that asymptotically in n the

Gram matrix Gn(f) ≈ nId2Kn+1, where Idp denotes the p × p identity matrix; this suggests

to approximate Ln(f, {c̃k(f)}) by f 7→ ∑n
j=1 Y 2

j − n
∑

|k|≤Kn
|ĉk(f)|2. The minimization of

this quantity is equivalent to maximizing the cumulated periodogram Λn defined by (2).
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Let 0 < fmin < fmax and define f̃n as a maximizer of Λn,

Λn(f̃n) = Λ̃n, where Λ̃n = sup
f∈[fmin,fmax]

Λn(f) . (7)

Since the function s? is also (j/f?)-periodic for all j = 1, 2, . . . , the global maximum may be

associated to a sub-multiple of f?. To avoid this problem, we will look in the neighborhood

of multiples of the absolute maximizer f̃n for the existence of an approximate maximizer. For

this purpose, we consider the intervals

B̃n(j) = {f ∈ [fmin, fmax] : |f − jf̃n| ≤ r} with 0 < r < fmin/2 (8)

and define an estimator f̂n of f? by

f̂n ∈ Arg sup
f∈ eBn(Ĵn)

Λn(f) with Ĵn = max

{
j : sup

f∈ eBn(j)

Λn(f) ≥ (1 − κn)Λ̃n

}
, (9)

where {κn} is a sequence taking its values in the interval (0, 1) such that limn→∞ κn = 0. A

similar idea is used in Golubev (1988), but without the local maximization over the interval

B̃n(j) (in other words with r = 0). We introduce the following assumptions on the distribution

of the increment Vk = Xk − Xk−1 of the renewal process {Xk}.
(H1) s? is an unknown (real-valued) periodic function defined on R+ with least period T?,

defined as the smallest T such that s?(t + T ) = s?(t) for all t,

(H2) {Xj} are the observation time instants, modeled as a renewal process, that is, Xj =
∑j

k=1 Vk, where {Vk} is a an i.i.d sequence of non-negative random variables with finite

mean. In addition, for all ε > 0, sup|t|≥ε |Φ(t)| < 1, where Φ denotes the characteristic

function of V1,

Φ(t) = E[exp(itV1)] . (10)

(H3) {εj} are i.i.d. zero mean Gaussian random variables with (unknown) variance σ2
? > 0

and are independent from the random variables {Xj}.
(H4) The distribution of V1 has a non-zero absolutely continuous part with respect to the

Lebesgue measure.

Assumption (H2) is a Cramer’s type condition, which is weaker than (H4). Assumption (H4)

ensures that, for any constant c > 0, the process {〈c−1Xj〉, j ≥ 1}, where 〈x〉 denotes the

fractional part of x, is ergodic and converges to the uniform distribution on the interval [0, c].

We now prove that our estimator is consistent.

Theorem 1. Assume (H1) to (H3), and that f? ∈ (fmin, fmax), for some 0 < fmin < fmax.

Assume in addition that s? satisfies
∑

k∈Z

|ck(s?)| < +∞ . (11)
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Let {Kn} be a sequence of positive integers tending to infinity and {κn} be a (0, 1)-valued

sequence tending to zero such that

lim
n→+∞

Knn−1/2+β = 0 for some β > 0 , (12)

and

lim
n→+∞

κ−1
n {R(Kn)2 + KnR(nδ) + n−ε} = 0 for some δ > 0 and all ε > 0 , (13)

where

R(m) =
∑

|k|>m

|ck(s?)|, m ≥ 0 . (14)

Then f̂n defined by (7)– (9) is a consistent estimator of f?. Moreover, we have, for any α > 0,

f̂n = f? + op(n
−1+α) and P(Λ̇n(f̂n) = 0) → 1 as n → ∞ . (15)

If we assume in addition that E(V 2
1 ) is finite, then

n(f̂n − f?) → 0 a.s. (16)

Remark 1. Observe that (11) is a very mild assumption. Once it is satisfied, we have R(m) →
0 as m → ∞ and one may always construct sequences {Kn} and {κn} satisfying the required

conditions (12) and (13). Under the additional assumption that there exists ν > 0 such that

sup
m≥0

(1 + m)ν
∑

|k|≥m

|ck(s?)| < ∞ , (17)

one may for instance choose any {Kn} such that (log(n))1/(2ν) = o(Kn) and Kn = o(n1/2−β)

for some β > 0 and κn � 1/ log(n).

Proof of Theorem 1. Using (1), we split Λn defined in (2) into three terms: Λn(f) = Dn(f)+

ξn(f) + ζn(f) where

Dn(f) =
1

n2

Kn∑

k=1

∣∣∣∣∣∣

n∑

j=1

s?(Xj) e−2ikπfXj

∣∣∣∣∣∣

2

, (18)

ξn(f) =
2

n2

Kn∑

k=1

n∑

j,j′=1

cos{2πkf(Xj − Xj′)} s?(Xj)εj′ , (19)

ζn(f) =
1

n2

Kn∑

k=1

∣∣∣∣∣∣

n∑

j=1

εj e−2ikπfXj

∣∣∣∣∣∣

2

. (20)

The proof relies on intermediate lemmas establishing uniform bounds of these quantities which

are postponed to Section 5 for convenience. In this proof we let α ∈ (0, 1) (chosen later) and

denote by {γn} the sequence

γn = n−1+α . (21)
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For any integer j and l, we denote by Bn(j, l) and Bc
n(j, l) the following sets

Bn(j, l) = {f ∈ [fmin, fmax], |f − jf?/l| ≤ γn} and

Bc
n(j, l) = {f ∈ [fmin, fmax], |f − jf?/l| > γn} (22)

and define the set Tn of near maximizers of Λn by Tn =
{

f ∈ [fmin, fmax], Λn(f) ≥ (1 − κn)Λ̃n

}
.

We first prove that Tn satisfies

lim
n→+∞

P

(
Tn ⊆

L⋃

l=1

Bn(1, l)

)
= 1, (23)

with

L = sup{l ≥ 1 : Bn(1, l) 6= ∅} ≤ f?/(fmin − γn) < f?/(2r) , (24)

where the second inequality holds for n large enough by (8). The limit in (23) can be

equivalently written as limn→+∞ P

(
supf∈

T
l Bc

n(1,l) Λn(f) ≥ (1 − κn)Λ̃n

)
= 0 and, for n large

enough so that Kn ≥ L, the probability in this display is less than P1 + P2 which are defined

as

P1 = P

(
sup

f∈
T

j,l Bc
n(j,l)

Λn(f) ≥ (1 − κn)Λ̃n

)
and P2 = P


 sup

f∈
S

′

j,l Bn(j,l)

Λn(f) ≥ (1 − κn)Λ̃n


 ,

where
⋂

j,l denotes the intersection over integers j ≥ 1 and l = 1, . . . ,Kn and
⋃′

j,l the union

over all j ≥ 2 and l = 1, . . . ,Kn such that j and l are relatively prime. Note that P1 is

bounded above by

P

(
sup

f∈
T

j,l Bc
n(j,l)

Dn(f) + 2 sup
f∈[fmin,fmax]

|ξn(f) + ζn(f)| ≥ (1 − κn)Dn(f?)

)
. (25)

By (12), applying Lemma 1, we get

sup
f∈[fmin,fmax]

|ξn(f) + ζn(f)| = op(n
−β/2) . (26)

We now apply Lemma 2. Using (12) again and choosing α small enough in (21), we have

Knγn → 0 and, since nγn → ∞ and Kn → ∞, Condition (50) holds. By (13) we have

KnR(nδ)2 → 0 and, by (12) and (21), taking mn = nδ and ε small enough in Lemma 2,

we obtain supf∈
T

j,l Bc
n(j,l) Dn(f) = op(1). The last two displays show that the left-hand side

of the inequality in (25) converges to zero in probability. Concerning its right-hand side

(1 − κn)Dn(f?), Relation (56) with j = l = 1 in Lemma 3 shows that, as n → ∞,

(1 − κn)Dn(f?)
p−→
∑

k≥1

|ck(s?)|2 > 0 . (27)
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Hence P1 → 0. In the same way, we have

P2 ≤ P


 sup

f∈
S

′

j,l Bn(j,l)

Dn(f) + 2 sup
f∈[fmin,fmax]

|ξn(f) + ζn(f)| ≥ (1 − κn)Dn(f?)


 .

To prove that P2 converges to zero, we use the following classical inequality (see Golubev

(1988) or Lévy-Leduc (2004, p. 49))

sup
j≥2

∞∑

k=1

|ckj(s?)|2 <

∞∑

k=1

|ck(s?)|2 , (28)

which directly follows from the fact that f? is the maximal frequency of s?. Now, we apply

Lemma 3. Using (12) , Condition (58) holds by choosing α small enough in (21). By (13) we

have KnR(nδ) → 0 and, by (12) and (21), taking mn = nδ and ε small enough in (57), we

obtain, using (28), P

(
supf∈

S
′

j,l Bn(j,l) Dn(f) ≥∑∞
k=1 |ck(s?)|2

)
→ 0 . Using (27), we get that

P2 → 0. This concludes the proof of (23). Let us now prove that

lim
n→+∞

P (f? ∈ Tn) = 1. (29)

This amounts to prove that limn→+∞ P

(
Λn(f?) < (1 − κn) supf∈[fmin,fmax] Λn(f)

)
= 0. Note

that the latter probability is less than

P

(
2 sup

f∈[fmin,fmax]
|ξn(f) + ζn(f)| > Dn(f?) − (1 − κn) sup

f∈[fmin,fmax]
Dn(f)

)
. (30)

Observe that the right-hand side of the inequality in (30) can be written as

Dn(f?) −
∞∑

k=1

|ck(s?)|2 − (1 − κn) sup
f∈[fmin,fmax]

(
Dn(f) −

∞∑

k=1

|ck(s?)|2
)

+ κn

∞∑

k=1

|ck(s?)|2 .

Relation (56) with j = l = 1 in Lemma 3 gives
∣∣∣∣∣Dn(f?) −

∞∑

k=1

|ck(s?)|2
∣∣∣∣∣ ≤

∣∣∣∣∣Dn(f?) −
Kn∑

k=1

|ck(s?)|2
∣∣∣∣∣+ R(Kn)2 = Op

(
Knn−1/2

)
+ R(Kn)2 ,

and Lemma 2 and Relation (57) with mn = nδ in Lemma 3 give

sup
fmin≤f≤fmax

[
Dn(f) −

∞∑

k=1

|ck(s?)|2
]

≤ sup
f∈

T
j,l Bc

n(j,l)
Dn(f) + sup

f∈
S

j,l Bn(j,l)

(
Dn(f) −

∞∑

k=1

|ck(s?)|2
)

= Op

(
KnR(nδ) + (Knnδ+1)ε{(nγn)−1 + (Kn/n)1/2} + K2

n/n
)

.

Choosing ε small enough so that (Knnδ+1)ε{(nγn)−1 +(Kn/n)1/2} = O(n−ε′) for some ε′ > 0,

and using the condition (13) on {κn}, and (26), we get that the probability in (30) converges
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to zero, and (29) is proved. We can now prove the consistency of f̂n and show (15). By

definition of Ĵn in (9), we have Ĵn ∈ {1, . . . , fmax/fmin} since B̃n(j) = ∅ for larger j’s. The

proof of (15) is presented in two steps. In the first step, we show that f̌n = Ĵnf̃n is a consistent

estimator of f?. Then in the second step, the consistency of f̂n is proved.

Step 1. Since f̃n belongs to Tn, (23) leads to the existence of 1 ≤ ln ≤ L defined in (24)

such that f̃n ∈ Bn(1, ln) with probability tending to 1. Thus, with probability tending to

one, |f? − lnf̃n| ≤ r. Using (29), we get that P(B̃n(ln) ∩ Tn 6= ∅) → 1 as n → ∞. Observing

that B̃n(ln)∩Tn 6= ∅ implies supf∈ eBn(ln) Λn(f) ≥ (1−κn)Λ̃n, we get Ĵn ≥ ln with probability

tending to 1. On the other hand, by definition of ln and f̌n, we have, with probability tending

to 1,

|f̌n − Ĵnf?/ln| ≤ Ĵnγn ≤ fmax

fmin
γn . (31)

Since, by definition, f̂n belongs to Tn, (23) implies P(f̂n ∈ ⋃l Bn(1, l)) → 1 as n → ∞ and

since
⋃

l Bn(1, l) ⊂ [fmin, f? + γn], we get f̌n ≤ f̂n + r ≤ f? + γn + r with probability tending

to 1. This bound, with (31), implies

Ĵn ≤ f̌nln/f? +
fmax

fminf?
γnln ≤ ln

{
(f? + γn + r)/f? +

fmax

fminf?
γn

}
.

Since ln ≤ L, (24) implies lnr/f? < 1/2, hence, with probability tending to one, Ĵn ≤ ln. The

converse inequality was shown previously implying, with (31), that f̌n = f? + op(1).

Step 2. By definition of f̌n and f̂n, we have f̂n ∈ Arg sup
f∈[fmin,fmax]: |f−f̌n|≤r

Λn(f). Since f̌n =

f? + op(1) and r < fmin/2 ≤ f?/2, we have with probability tending to 1, f̂n ≥ f?/2 + ε

for an arbitrarily small ε > 0, which implies f̂n /∈ ⋃l≥2 Bn(1, l). Moreover, by (23), since

f̂n ∈ Tn, f̂n ∈ ⋃l Bn(1, l) with probability tending to 1 finally leading to f̂n = f? + op(n
−1+α)

for any positive α. It remains to show the right-hand side of (15). Since Λn is continuously

differentiable, this follows from f? ∈ (fmin, fmax), f̌n = f? + op(1) and f̂n = f? + op(1). We

conclude this proof section by showing (16). We adapt the proof of consistency in Quinn and

Thomson (1991) to our random design context by first showing that, for any ε > 0,

sup
|t|≤n−1/2−ε

∣∣∣∣|ϕn,X(t)|2 − 1

n
Fn(µt)

∣∣∣∣ = op(1) , (32)

where µ = E[V1], Fn(x) = 1
n

∣∣∑n
k=1 eikt

∣∣2 is the Fejer kernel and ϕn,X the empirical charac-

teristic function of X1, . . . ,Xn,

ϕn,X(t) =
1

n

n∑

j=1

eitXj . (33)
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Indeed, using a standard Lipshitz argument and (H2) with the assumption E[V 2
1 ] < ∞, we

have

E

[
sup

|t|≤n−1/2−ε

∣∣∣∣|ϕn,X(t)|2 − 1

n
Fn(µt)

∣∣∣∣

]
≤ 2n−1/2−ε 1

n

n∑

k=1

E[|Xk − kµ|] ≤ 2
√

Var(V1)n
−ε ,

which gives (32). Now, by definition of f̂n and f̌n, on the event {|f? − f̌n| ≤ r} whose

probability tends to 1, we have 0 ≤ Λn(f̂n) − Λn(f?). Beside, we have, using (26),

Λn(f̂n)−Λn(f?) ≤ Dn(f̂n)−Dn(f?)+2 sup
f∈[fmin,fmax]

|ξn(f)+ ζn(f)| = Dn(f̂n)−Dn(f?)+ op(1)

and, since {f̂n ∈ Bn(1, 1)} has probability tending to one, Lemma 3 yields, for α small enough

in (21), Dn(f̂n)−Dn(f?) ≤
∑Kn

k=1 |ck(s?)|2[|ϕn,X{2πk(f?− f̂n)}|2−1]+op(1). Hence, since for

α small enough Knγn ≤ n−1/2−α/2, the last three displayed equations and (32) finally yield

that, 0 ≤∑Kn
k=1 |ck(s?)|2

[
1
nFn{2πµk(f? − f̂n)} − 1

]
+ op(1). The proof of (16) is concluded as

in Quinn and Thomson (1991) by observing that, for any c > 0, lim supn→∞ sup|t|>c/n
1
nFn(t) <

1. �

Theorem 2. Assume (H1) to (H4). Assume in addition that E[V 4
1 ] is finite, that s? satisfies

∑

k∈Z

|k|3|ck(s?)| < +∞ (34)

and that its maximal frequency f? belongs to (fmin, fmax), where 0 < fmin < fmax. Let {Kn}
and {κn} be sequences of positive integers tending to infinity and zero respectively such that

lim
n→+∞

Knn−ε = 0 and lim
n→+∞

κnnε = ∞ for all ε > 0 . (35)

Then the estimator f̂n defined by (7)– (9) satisfies the following asymptotic linearization:

n3/2(f̂n − f?) =
I−1
? µ

n3/2σ2
?f?

n∑

j=1

(
j − n

2

)
ṡ?(Xj) (εj + s?(Xj)) + op(1) , (36)

where µ = E(V1) and

I? =
µ2

12σ2
?f?

∫ 1/f?

0
ṡ2
?(t)dt . (37)

Moreover f̂n satisfies the following Central Limit Theorem

n3/2(f̂n − f?)
L−→ N (0, σ̌2), (38)

where

σ̌2 = I−1
?





1 +

∑

k 6=0

|ck(s?ṡ?)|2
(

1 − |Φ(2kπf?)|2
|1 − Φ(2kπf?)|2

)

σ2
?

∑
k∈Z

|ck(ṡ?)|2





, (39)
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with Φ, defined in (10), denotes the characteristic function of V1.

Remark 2. Let ‖ · ‖p denote the usual Lp norm on [0, 1/f?] for p ∈ [1,∞]. By the Parseval

theorem, the ratio inside the curly brackets in (39) is bounded above by

2 ‖s?ṡ?‖2
2

σ2
?‖ṡ?‖2

2

sup
k 6=0

1 − |Φ(2kπf?)|2
|1 − Φ(2kπf?)|2

≤ ‖s?‖2
∞

σ2
?

sup
k 6=0

1 − |Φ(2kπf?)|2
|1 − Φ(2kπf?)|2

. (40)

Assumption (H2) implies that supk 6=0 |1 − Φ(2kπf?)|2 > 0. On the other hand (34) implies

that ‖ṡ?‖2 and ‖s?‖∞ are both finite. Hence the bound (40) shows that the right-hand side

in (39) is well defined. Moreover, when the signal to noise ratio ‖s?‖2
∞/σ2

? tends to zero,

the asymptotic variance formula simplifies to σ̌2 = I−1
? . We will see in Section 2.1 that this

corresponds to the optimal asymptotic variance.

Remark 3. If the {Vk} are exponentially distributed, then

σ̌2 = I−1
?

(
1 +

‖s?ṡ?‖2
2

σ2
?‖ṡ?‖2

2

)
.

Proof of Theorem 2. We postpone the proof of (36) to Section 6 for convenience. Here we

prove that f̂n satisfies a Central Limit Theorem given by (38). Using (36), this amounts to

prove the convergence of

Sn =
I−1
? µ

n3/2σ2
?f?

n∑

j=1

(
j − n

2

)
ṡ?(Xj) (εj + s?(Xj))

to a Gaussian distribution N (0, σ̌2). Using (H3), we have that Sn
d
= I−1

? µ
σ2

?f?
(AnZ + Un) where

An = n−3/2
(∑n

j=1

(
j − n

2

)2
ṡ2
?(Xj)

)1/2
, Un = n−3/2

∑n
j=1 (j − n/2) (s?ṡ?)(Xj) and Z has

distribution N (0, σ2
?) and is independent from the Xj ’s. Therefore, using that

I? =
µ2

12σ2
?f2

?

c0(ṡ
2
?) , (41)

and since Z and Un are independent, (38) follows from the two assertions

An =

(
1

12
c0(ṡ

2
?)

)1/2

(1 + op(1)) ; (42)

I−1
? µ

σ2
?f?

Un
L−→ N


0,

∑
k 6=0 |ck(s?ṡ?)|2

(
1−|Φ(2kπf?)|2

|1−Φ(2kπf?)|2

)

I? σ2
?

∑
k∈Z

|ck(ṡ?)|2


 . (43)

We now prove (42) and (43) successively. Let us write

A2
n = n−3

n∑

j=1

(
j − n

2

)2 {
ṡ2
?(Xj) − E

(
ṡ2
?(Xj)

)}
+ n−3

n∑

j=1

(
j − n

2

)2
E
(
ṡ2
?(Xj)

)
.
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Observing that E(ṡ2
?(Xj)) = c0(ṡ

2
?) +

∑
p∈Z\{0} cp(ṡ

2
?)Φ

j(2pπf?), we get, using (H2), that the

second term in the right-hand side of the previous display has limit c0(ṡ
2
?)/12. Using (45) in

Theorem 3, we get that the first term tends to zero in probability. Hence (42) holds. Let

us now prove (43). To alleviate the notations, let us write g = s?ṡ? and remark that g thus

defined is (1/f?)-periodic and is such that c0(g) = 0 and
∑

k |ck(g)| < ∞. Let us write

1

n3/2

n∑

j=1

(
j − n

2

)
g(Xj) =

1

2n1/2

n∑

j=1

g(Xj) −
1

n3/2

n−1∑

k=1

k∑

j=1

g(Xj) .

Let sn(t) denote the following piecewise linear interpolation sn(t) =
∑[nt]

j=1 g(Xj) + (nt −
[nt])g(X[nt]+1), t ≥ 0. Then,

∫ 1
0 sn(t) dt = sn(1)/2 +

∑n−1
k=1

∑k
j=1 g(Xj) so that, with the last

display,

1

n3/2

n∑

j=1

(
j − n

2

)
g(Xj) =

1

2
√

n
sn(1) − 1√

n

∫ 1

0
sn(t)dt +

1

2n3/2
sn(1) .

The functional Central Limit Theorem in Theorem 3 yields (43), where the variance is com-

puted by using (41), c0(ṡ
2
?) =

∑
k∈Z

|ck(ṡ?)|2, and Var
(
B(1)/2 −

∫ 1
0 B(t) dt

)
= 1/12, with

{B(t), t ∈ [0, 1]} denoting the standard Brownian motion. This concludes the proof of Theo-

rem 2. �

2.1. Discussion. In Gassiat and Lévy-Leduc (2006), the local asymptotic normality (LAN)

of the semiparametric model (1) is established for regular sampling with decreasing sampling

periods. Their arguments can be extended to the irregular sampling scheme under Assump-

tions -(H3). More precisely, any estimator satisfying the asymptotic linearization

n3/2(f̄n − f?) =


 I−1

? µ

n3/2σ2
?f?

n∑

j=1

(
j − n

2

)
ṡ?(Xj)εj


 (1 + op(1)) , (44)

where I? is defined in (37), is an efficient semiparametric estimator of f? in the sense of

McNeney and Wellner (2000). As a byproduct of the proof of Theorem 2, one has that the

right hand-side of (44) is asymptotically normal with mean zero and variance I−1
? . Hence I−1

?

is the optimal asymptotic variance. In view of (36) and (38), we see that the linearization of

our estimator f̂n contains an extra term since εj in (44) is replaced by (εj + s?(Xj)) in (36).

This extra term leads to an additional term in the asymptotic variance (39), which highly

depends on the distribution of the Vk’s. Hence our estimator enjoys the optimal n−3/2 rate

but it is not efficient. The estimator proposed in Hall, Reimann and Rice (2000) is efficient

and thus, in theory, outperforms the estimator based on the cumulated periodogram. On the

other hand, our estimator is only based on the knowledge that the frequency lies in a fixed

compact interval on the positive half-line whereas, for the estimator in Hall, Reimann and
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Rice (2000), an interval containing the true frequency with size at op(n
−(3/2−1/12)) is required

(see p.554 after conditions (a)–(e)). Since our estimator is rate optimal, it can be used as a

preliminary estimator.

3. Numerical experiments

In this section, we apply the proposed estimator to periodic variable stars which are known

to emit light whose intensity, or brightness, changes over time in a smooth and periodic

manner. The estimation of the period is of direct scientific interest, for instance as an aid to

classifying stars into different categories for making inferences about stellar evolution. The

irregularity in the observation times comes from the fact that a star might be observed on

most nights but not at the same time each night.

We benchmark our estimator against different methods proposed in the literature to esti-

mate frequency of periodic functions from irregularly sampled data. We compare the least-

squares method (see (6)) using different number of harmonics K = 1, 3, 6, the Hall, Reimann

and Rice (2000) estimator based on the Friedman supersmoother estimator (a crossvali-

dated variable span local smoother) of the shape of the function; we have also included

the Lafler and Kinman (1965) estimator. To analyze the behavior of these algorithms, we

follow Hall, Reimann and Rice (2000); we generate synthetic observations corresponding

to model (1) where the underlying deterministic function s? is obtained by smoothing ob-

servations from a Cepheid variable star. The time instants are generated using a Pareto

distribution whose parameters are fitted to observations times taken from the MACHO data-

base (http://www.stat.berkeley.edu/users/rice/UBCWorkshop). This distribution captures the

heavy tails in the inter-arrivals {Vk}. The number of observations is set to 321. The additive

noise is i.i.d. Gaussian with standard deviations equal to 0.25 and 0.5, respectively, (the

signal to noise ratios are equal to 0 dB and -6 dB). Typical realizations of the light curves

with period 3.9936 days are shown in Figure 1 (the times are transformed modulo a period

of 3.9936 days so that approximately 80 periods are overlaid).

Estimates of the frequency were computed on a grid ranging from 0.1 to 0.6 cycles per day

(the fundamental frequency is equal to 0.2504 cycles per day so the range includes both a

multiple and a sub-multiple of the fundamental frequency). For the cumulated periodogram,

we used K = 1, 3, 6 and κ = 0.75. The results of 100 Monte-Carlo experiments are summarized

in Table 1. We display the percentage of large errors (frequency halving or doubling), the

biases, the standardized biases and the mean-squared errors (large errors are eliminated when

computing these quantities). The lower bounds for the variances of the frequency estimates

are 1.87×10−8 and 4.68×10−9 for the high and low noise cases respectively. The asymptotic

variances of the cumulated periodogram estimator are 2.15×10−8 and 4.86×10−9 in the high
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Figure 1. Left: Deterministic signal, Right: noisy observations with σ? = 0.5.

and low noise cases respectively. The estimator with the smallest mean-squared error is the

least-squares estimator (6) with K = 3 harmonics. The mean-squared error of the cumulated

periodogram estimator is only slightly larger. Note that the cumulated periodogram estimator

displays significantly lower number of large errors and appears to be a reasonably accurate

preliminary estimator.

σ? = 0.25 σ? = 0.5

Bias Bias/SE MSE Large errors Bias Bias/SE MSE Large errors

Method ×10−5 ×10−8 in % ×10−5 ×10−8 in %

LS1 1.7 0.15 1.3 0 1.9 0.07 6.8 1

CP1 1.5 0.12 2.1 0 1.5 0.07 7.2 1

LS3 1.5 0.22 0.5 0 0.6 0.04 2.8 5

CP3 1.4 0.16 0.8 0 2.1 0.10 4.2 2

LS6 0.8 0.11 0.6 37 1.6 0.07 4.4 37

CP6 1.6 0.15 1.1 7 2.5 0.11 5.1 8

LK -0.6 -0.03 4.1 31 261 0.14 3.2 × 104 39

SM 87 -0.05 2.7 × 104 7 1247 0.30 1.6 × 105 15

Table 1. Biases, standardized biases, Mean Squared Errors (MSE) of the fre-

quency estimates and percentage of large errors obtained for different meth-

ods when the inter-arrival times have a Pareto distribution: Least-squares

(LS1,LS3,LS6), Cumulated Periodogram (CP1,CP3,CP6) with K = 1, 3, 6,

Lafler-Kinman (LK), Supersmoother (SM)
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4. Some limit results for additive functionals of a renewal process

Theorem 3. Assume (H2) and (H4). Let g be a (1/f?)-periodic real-valued function such that
∫ 1/f?

0 |g(t)| dt < ∞. Assume that the Fourier coefficients of g defined by (3) satisfy c0(g) = 0

and
∑

k∈Z\{0} |ck(g)| < ∞ then for any non-negative integer k

1

nk+1

n∑

j=1

jkg(Xj) = Op(n
−1/2) . (45)

Denote by sn(t) the piecewise linear interpolation

sn(t) =

[nt]∑

k=1

g(Xk) + (nt − [nt])g(X[nt]+1), t ≥ 0 ,

where [x] denotes the integer part of x. Then,

γ2
g =

∑

k∈Z\{0}

|ck(g)|2 1 − |Φ(2πkf?)|2

|1 − Φ(2πkf?)|2
(46)

is positive and finite and, as n → ∞, (nγ2
g)−1/2sn(t) ⇒ B(t) , where ⇒ denotes the weak

convergence in the space of continuous [0, 1] → R functions endowed with the uniform norm

and B(t) is the standard Brownian motion on t ∈ [0, 1].

Proof. Without loss of generality we set f? = 1. Define the Markov chain {Yk}k≥0, valued

in [0, 1) and started at x ∈ [0, 1] by Y0 = x and Yk+1 = Yk + Vk+1 − [Yk + Vk+1], k ≥ 0.

Observe that, with the initial value x = 0, we have g(Yk) = g(Xk) for all k ≥ 1. Let us show

that this Markov Chain is positive Harris and that its invariant probability is the uniform

distribution on [0, 1]. We first prove that this chain is uniformly Doeblin. By 4, there exists a

non-negative and bounded function h such that for all Borel set A, P(V ∈ A) ≥
∫
A h(t) dt. It

follows that, for any k ≥ 1, P(Xk ∈ A) ≥
∫
A h∗k(t) dt, where h∗k = h ∗ · · · ∗h (k times) with ∗

denoting the convolution. Observe that, since h is non-negative, bounded and integrable, h∗2

is non-negative and continuous. It follows that there exists 0 ≤ a < b and δ > 0 such that
∫
t∈[a,b] h

∗2(t) ≥ δ. Hence, for k large enough, there exists a non-negative integer l and ε > 0

such that h∗(2k)(t) = (h∗2)∗k(t) ≥ ε for all t ∈ [l, l + 1]. Hence, for all x ∈ [0, 1) and all Borel

set A ⊂ [0, 1],

Px(Y2k ∈ A) ≥ Px(Y2k ∈ A,X2k ∈ [l, l + 1))

which is the uniform Doeblin condition. This implies that Y is a uniformly geometrically

ergodic Markov chain; let us compute its invariant probability distribution, denoted by π.

For all x ∈ [0, 1] and l ∈ Z, l 6= 0, we have

Ex[exp(2iπlYn)] = exp(2iπx) (Φ(2πl))n → 0 ,
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where we used (H2) which is implied by (H4). Hence, for all l ∈ Z, l 6= 0,
∫ 1
t=0 exp(2iπlt)π(dt) =

0, which implies that π is the uniform distribution on [0, 1]. Define

g̃(x) =
∑

k∈Z\{0}

ck(g)(1 − Φ(2πk))−1e2iπkx .

By (H2), (1−Φ(2πk))−1 is bounded uniformly on k ∈ Z\{0}. Hence γg is positive and finite.

Moreover,
∑

k∈Z\{0} |ck(g)(1 − Φ(2πk))−1| < ∞ and we compute

Ex[g̃(Y1)] =
∑

k∈Z\{0}

ck(g)
Φ(2πk)

(1 − Φ(2πk))
exp(2iπkx).

This yields that g̃ is the solution of the Poisson equation g̃(x)−Ex[g̃(Y1)] = g(x)−
∫ 1
0 g(t)dt.

We now prove (45). Note that, since π(g) = 0,

n−(k+1)
n∑

j=1

jkg(Xj) = n−(k+1)
n∑

j=1

jk (g̃(Xj) − P g̃(Xj))

= n−(k+1)
n∑

j=1

jk (g̃(Xj) − P g̃(Xj−1)) + n−(k+1)
n∑

j=1

jk (P g̃(Xj−1) − P g̃(Xj)) .

Since g̃ is bounded, the variance of the first term is O(n−1) as n → ∞. Integrating by parts

yields, using that g̃ is bounded,

n−(k+1)
n∑

j=1

jk (P g̃(Xj−1) − P g̃(Xj))

= n−(k+1)P g̃(X0) − n−1P g̃(Xn) + n−(k+1)
n∑

j=1

[
(j + 1)k − jk

]
P g̃(Xj) = Op(n

−1) .

To prove (46) we compute, by the Parseval Theorem,

∫ 1

0

{
g̃2(x) − (Ex[g̃(Y1)])

2
}

dx

=
∑

k∈Z\{0}

{∣∣ck(g)(1 − Φ(2πk))−1
∣∣2 −

∣∣ck(g)Φ(2πk)(1 − Φ(2πk))−1
∣∣2
}

= γ2
g ,

The end of the proof follows from the functional central limit theorem Meyn and Tweedie

(1993, Theorem 17.4.4). �

5. Uniform estimates of the cumulated periodogram

Lemma 1. Assume (H2)-(H3) and that s? is bounded. Define ξn(f) and ζn(f) by (19)

and (20) where (Kn) is a sequence tending to infinity at most with a polynomial rate. Then,
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for any 0 < fmin < fmax, δ > 0 and q = 0, 1, . . . ,

sup
f∈[fmin,fmax]

∣∣∣ξ(q)
n (f) + ζ(q)

n (f)
∣∣∣ = op(K

q+1
n nq−1/2+δ) , (47)

where, for any function h, h(q) denotes the q-th derivative of h.

Proof. By (19) and (20),

ξ(q)
n (f) = 2

(2π)q

n2

Kn∑

k=1

kqLq(X, kf)T ε , ζ(q)
n (f) =

(2π)q

n2

Kn∑

k=1

kqεT Γq(X, kf)ε , (48)

where ε = [ε1, . . . , εn]T , Lq(X, f) =
[∑n

j=1(Xj − Xj′)
q cos(q)

{
2πf(Xj − Xj′)

}
s?(Xj)

]
1≤j′≤n

and Γq(X, f) =
[
iq(Xl − Xj)

qe2iπ(Xl−Xj)f
]
1≤l,j≤n

. Hence,

sup
f∈[fmin,fmax]

∣∣∣ξ(q)
n (f) + ζ(q)

n (f)
∣∣∣ ≤ C n−2 Kq+1

n sup
0<f≤Knfmax

∣∣2LT
q (X, f)ε + εT Γq(X, f)ε

∣∣ . (49)

Note that Tr[Γq(X, f)] = 0 for q ≥ 1, Tr[Γq(X, f)] = n for q = 0 and that the spectral radius

of the matrix Γq(X, f) is at most supj=1,...,n

∑n
l=1 |Xl − Xj |q ≤ nXq

n. For any hermitian

matrix Λ having all its eigenvalues less than 1/4, E
[
exp(ZT ΛZ)

]
≤ exp(Tr(Λ) + 2Tr(Λ2)).

Therefore, for any λ > 0, on the event
{
λσ? 2nXq

n ≤ 1/8
}
,

E

[
eλ(2Lq(X,f)T ε+εT Γq(X,f)ε)

∣∣∣X
]
≤ C ′ exp

{
Cλ2

(
Lq(X, f)T Lq(X, f) + Tr(Γ2

q(X, f))
)}

≤ C ′ exp
{
Cλ2n3X2q

n

}
,

where we have used LT
q (X, f)Lq(X, f) ≤ Cn3X2q

n and Tr[Γ2
q(X, f)] ≤ Cn2X2q

n . Using (H3),

we similarly get that E
[
|Lq+1(X, f)T ε|2

∣∣X
]
≤ CLT

q+1(X, f)Lq+1(X, f) ≤ Cn3X
2(q+1)
n and

E
[
|εT Γq+1(X, f)ε|2

∣∣X
]
≤ CTr[Γ2

q+1(X, f)] ≤ C n2X
2(q+1)
n . Applying Lemma 6, we get that,

for all positive numbers λ and R, on the event {λσ? 2nXq
n ≤ 1/8},

P

[
sup

0<f≤Knfmax

∣∣2Lq(X, f)T ε + εT Γq(X, f)ε
∣∣ ≥ R

∣∣∣∣∣X
]
≤

C ′ e−λR+Cλ2n3X2q
n

(
1 + C Kn λn3/2 Xq+1

n

)
.

Let δ > 0. Applying this inequality with λ = n−3/2X−q
n and R = nδ+3/2Xq

n, we get

P

[
sup

0<f≤Knfmax

∣∣2Lq(X, f)T ε + εT Γq(X, f)ε
∣∣ ≥ nδ+3/2Xq

n

∣∣∣∣∣X
]
≤ C exp(−nδ) (1 + Kn Xn) .
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Now, using (49),

P

(
sup

f∈[fmin,fmax]

∣∣∣ξ(q)
n (f) + ζ(q)

n (f)
∣∣∣ ≥ nq−1/2+2δKq+1

n

)

≤ P

(
sup

0<f≤Knfmax

∣∣2LX(f)T ε + εT ΓX(f)ε
∣∣ ≥ nδ+3/2Xq

n

)
+ P

(
Xq

n ≥ nq+δ
)

≤ C exp(−nδ) (1 + Kn n) + n−δ/q ,

which concludes the proof. �

Lemma 2. Assume (H1)–(H2) and that s? satisfies (11). Define Dn(f) by (18), with a

sequence (Kn) tending to infinity. Then, for any ε > 0, as n tends to infinity,

sup
f∈

T
j,l Bc

n(j,l)
Dn(f) = Op

({
KnR(mn)2 +

{Kn n mn}ε

nγn

})
,

where (mn) is a sequence of positive integers, R is defined by (14),
⋂

j,l is the intersection

over integers j ≥ 1, l = 1, . . . ,Kn and Bc
n(j, l) is defined by (22) with (γn) satisfying

Knγn → 0 and nγn → ∞ . (50)

Proof. Inserting the Fourier expansion (3) of s? in (18) and using the definition of ϕn,X in (33)

and of R(m) in (14), we get

Dn(f) ≤ 2
Kn∑

k=1

∣∣∣∣∣∣

∑

|p|≤m

cp(s?)ϕn,X {2π(pf? − kf)}

∣∣∣∣∣∣

2

+ 2KnR(m)2

≤ 4

Kn∑

k=1

∣∣∣∣∣∣

∑

|p|≤m

cp(s?)E [ϕn,X {2π(pf? − kf)}]

∣∣∣∣∣∣

2

+ 4D̃n,m(f) + 2KnR(m)2 , (51)

where we defined

D̃n,m(f) =

Kn∑

k=1

∣∣∣∣∣∣

∑

|p|≤m

cp(s?) (ϕn,X {2π(pf? − kf)} − E [ϕn,X {2π(pf? − kf)}])

∣∣∣∣∣∣

2

. (52)

For all positive integers j and l ≤ Kn, and f ∈ An =
⋂

j′,l′ B
c
n(j′, l′), 2π|jf? − lf | ≥ 2πlγn.

Thus, using (77) with k = 0 in Lemma 4, (11), and limn→∞ nγn = ∞, we get, for all f ∈ An,

and n large enough,

Kn∑

k=1

∣∣∣∣∣∣

∑

|p|≤m

cp(s?)E [ϕn,X {2π(pf? − kf)}]

∣∣∣∣∣∣

2

≤ C

n2

Kn∑

k=1

1

k2γ2
n

= O
(
n−2γ−2

n

)
. (53)

Consider now D̃n,m. For ρ > 0 and q = 1, . . . , Q(ρ) = [ρ−1(fmax − fmin)], define Iq =

[fmin + (q − 1)ρ, fmin + qρ] ∩ An. Observe that u 7→ ϕn,X(u) is a Lipschitz function with
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Lipshitz norm less than n−1
∑n

j=1 Xj and bounded by 1. It follows that f 7→ D̃n,m(f) is a

Lipschitz function with Lipshitz norm less than

8π

(
∑

p

|cp(s?)|
)2 Kn∑

k=1

kn−1
n∑

j=1

(Xj + E[Xj ]) ≤ C





K2
n

n

n∑

j=1

Xj + nK2
n



 .

Thus, for any q = 1, . . . , Q(ρ) such that Iq is non-empty, and any fq ∈ Iq, supf∈Iq
D̃n,m(f) ≤

D̃n,m(fq) + C ρ
{
K2

nn−1
∑n

j=1 Xj + nK2
n

}
, which implies

sup
f∈An

D̃n,m(f) ≤ sup
q=1,...,Q(ρ)

D̃n,m(fq) + Op

(
ρnK2

n

)
, (54)

where, by convention, D̃n,m(fq) = 0 if Iq is empty. Since by (H2), inft∈R |1 − Φ(t)| /(1∧ |t|) >

0, and for n large enough, Knγn ≤ 1, Lemma 5 shows that, for any f ∈ An, 2π|pf? − kf | ≥
2πkγn, and y > 0,

P (|ϕn,X{2π(pf? − kf)} − E[ϕn,X{2π(pf? − kf)}]| ≥ y) ≤ 4e−Cny2(1∧kγn) ≤ 4e−Cny2kγn .

Using this bound with the definition of D̃n,m(f) in (52), we get, for all x > 0 and f ∈ An,

P

(
sup

q=1,...,Q(ρ)
D̃n,m(fq) ≥ x

)
≤ Q(ρ) sup

f∈An

P

(
D̃n,m(f) ≥ x

)
≤ 4Q(ρ)

Kn∑

k=1

∑

|p|≤m

e−Cnxβkα2
pkγn ,

where βk, αp, k = 1, . . . ,Kn, |p| ≤ m are positive weights such that
∑

k βk = 1 and
∑

p αp|cp| =

1. With βk = k−1/(
∑

k≤Kn
k−1) ≥ 2k−1/ log(Kn) for n large enough, and αp =

(∑
p |cp|

)−1
≥

C, we get

P

(
sup

q=1,...,Q(ρ)
D̃n,m(fq) ≥ x

)
≤ 4Q(ρ)Kn(2m + 1)e−Cnxγn/ log(Kn) . (55)

Let δ > 0. Defining ρn = (n−2γ−1
n K−2

n log(Kn)) and x = (Q(ρn)Knmn)δ log(Kn)/(nγn),

implying Q(ρn) → ∞ and Q(ρn)Knmn → ∞, we obtain

sup
f∈An

D̃n,mn(f) = op

(
{n2γnK3

nmn}δ log(Kn){nγn}−1
)

.

For any ε > 0, we set δ > 0 small enough such that {n2K2
nmn}δ log(Kn) = O({Kn n mn}ε).

The previous bound, with (50), (51), (53) and (54) yields the result. �

Lemma 3. Assume (H1)–(H2) and that s? satisfies (11). Define Dn(f) by (18), with a

sequence (Kn) tending to infinity. Then, as n tends to infinity, for all relatively prime integers

j and l,

Dn(jf?/l) =

[Kn/l]∑

k=1

|ckj(s?)|2 + Op

(
Kn l1/2 n−1/2

)
. (56)
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Moreover, for any ε > 0,

sup
f∈

S
j,l Bn(j,l)

∣∣∣∣∣∣
Dn(f) −

[Kn/l]∑

k=1

|ckj(s?)ϕn,X {2π(kjf? − klf)} |2
∣∣∣∣∣∣

= Op

(
KnR(mn) + K2

nn−1 + (Kn n mn)εK1/2
n n−1/2

)
, (57)

where (mn) is a sequence of positive integers, R is defined by (14),
⋃

j,l is the union over

j ≥ 1, 1 ≤ l ≤ Kn, Bn(j, l) is defined by (22) with (γn) satisfying

γnK2
n → 0 . (58)

Proof. Let j and l ≤ Kn be two relatively prime integers. In the following, C denotes a

positive constant independent of j, l and f that may change upon each appearance. Inserting

the Fourier expansion (3) of s? in (18), the leading term in Dn(f) for f close to jf?/l will be

given by the indices k and p such that k/l and p/j are equal to the same integer, say q. Thus

we split Dn(f) into

Dn(f) =

[Kn/l]∑

q=1

|cqj(s?)ϕn,X {2π(qjf? − qlf)}|2 + An(f) , (59)

where

An(f) =
∑

k,p,p′

′
cp(s?)cp′(s?)ϕn,X{2π(pf? − kf)}ϕn,X{2π(p′f? − kf)}

with
∑′

k,p,p′ denoting the sum over indices k = 1, . . . ,Kn and p, p′ ∈ Z such that, for any

integer q, we have k 6= ql, p 6= jq or p′ 6= jq. It follows from this definition and from (11),

since |ϕn,X | ≤ 1, that

|An(f)| ≤ C
∑

k,p

′|cp(s?)ϕn,X{2π(pf? − kf)}| , (60)

where
∑′

k,p denotes the sum over indices k = 1, . . . ,Kn and p ∈ Z such that, for any integer

q, we have k 6= ql or p 6= jq. Using that j and l are relatively prime, if for any integer q,

k 6= ql or p 6= jq, then |pl − kj| ≥ 1, which implies, by (78) with k = 0 in Lemma 4,

E [|ϕn,X {2π(pf? − kf)}|] ≤ E

[
|ϕn,X {2π(pf? − kf)}|2

]1/2
≤ C (n−1l)1/2 .

Hence, using (11) and this bound in (60), Relation (59) yields (56). We now proceed in

bounding An(f) uniformly for f ∈ ⋃j,l Bn(j, l). We use the same line of reasoning as for

bounding Dn(f) in Lemma 2. First we split the sum in p appearing in (60) and introduce

the centering term E[ϕn,X{2π(pf? − kf)}] so that

|An(f)| ≤ C


An,m(f) +

∑

k,p

′ |cp(s?) E[ϕn,X{2π(pf? − kf)}]| + KnR(m)


 , (61)
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where

An,m(f) =
∑

k,p

′′|cp(s?)(ϕn,X{2π(pf? − kf)} − E[ϕn,X{2π(pf? − kf)}])| ,

with
∑′′

k,p denoting the sum over indices k = 1, . . . ,Kn and p = 0,±1, . . . ,±m such that

|pl − kj| ≥ 1. Using (77) with k = 0 in Lemma 4 and (11), we have
∑

k,p

′ |cp(s?) E[ϕn,X{2π(pf? − kf)}]| ≤ C l Knn−1 . (62)

As for obtaining (54), we cover [fmin, fmax] with Q intervals of size ρ = (fmax − fmin)/Q, and

obtain

sup
f∈

S
j,l Bn(j,l)

An,m(f) ≤ sup
q=1,...,Q

An,m(fq) + Op

(
ρnK2

n

)
,

where either An,m(fq) = 0 by convention, or fq ∈ ⋃j,l Bn(j, l), implying for all indices k and

p in the summation term
∑′′

k,p, that there exists integers j and l ≤ Kn such that

|pf? − kfq| ≥ |pf? − kjf?/l| − γnk ≥ f?/l − γnKn ≥ f?/Kn − γnKn ≥ C K−1
n ,

for n large enough, by (58). Now, we apply the deviation estimate in Lemma 5, so that, as

in (55), we have

P

(
sup

q=1,...,Q
An,m(fq) > x

)
≤ 4QKn(2m + 1) e−Cnx2K−1

n .

Let δ > 0. Setting Q = [K
3/2
n n3/2] and x = (QKnmn)δK

1/2
n n−1/2 so that Q → ∞ and

QKnmn → ∞ as n → ∞, we finally obtain

sup
f∈

S
j,l Bn(j,l)

An,m(f) = Op

(
(QKnmn)δK1/2

n n−1/2
)

.

For any ε > 0, we set δ > 0 such that (QKnmn)δ = O((Kn n mn)ε). Applying this bound

in (61) and using (62), Relation (59) yields (57). �

6. Linearization of the estimator f̂n

In this section we suppose that the conditions of Theorem 2 hold and we show (36). A

Taylor expansion of Λ̇n(f) gives

Λ̇n(f̂n) = Λ̇n(f?) + (f̂n − f?)Λ̈n(f ′
n),

where f ′
n is random and lies between f̂n and f?. We prove hereafter that

Λ̇n(f?) =

n∑

j=1

(
Xj

n
− µ

2

)
ṡ?(Xj)

f?
(εj + s?(Xj)) + op(

√
n), (63)

Λ̈n(f ′
n) = −n2σ2

?I? + op(n
2). (64)
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By (35) the conditions of Theorem 1 are met so that (15) and (16) hold. The last three

displayed equations thus yield

n3/2(f̂n − f?) =
I−1
?

n3/2σ2
?f?

n∑

j=1

(
Xj −

nµ

2

)
ṡ?(Xj) (εj + s?(Xj)) + op(1) ,

and Relation (36) then follows from

n−3/2
n∑

j=1

(Xj − jµ) ṡ?(Xj)εj = op(1) and n−3/2
n∑

j=1

(Xj − jµ) ṡ?(Xj)s?(Xj) = op(1) . (65)

The rest of this section provides the proofs of (63), (64) and (65).

Proof of equation (63). We use that Λ̇n(f?) = ξ̇n(f?) + ζ̇n(f?) + Ḋn(f?) so that (63) follows

from

ξ̇n(f?) =
1

f?

n∑

j=1

ṡ?(Xj)

(
Xj

n
− µ

2

)
εj + op(

√
n) , (66)

ζ̇n(f?) = op(
√

n) , (67)

Ḋn(f?) =
1

f?

n∑

j=1

(
Xj

n
− µ

2

)
ṡ?(Xj)s?(Xj) + op(

√
n) . (68)

Consider ξ̇n(f?). Differentiating (19), we obtain ξ̇n(f?) = n−1
∑n

j=1 An(j)εj where An(j) =

n−1
∑n

j′=1

∑
|k|≤Kn

2iπk(Xj − Xj′)e
2iπk(Xj−Xj′ )f?s?(Xj′). Inserting the Fourier expansion (3)

of s?(Xj′) and using the definition of ϕn,X in (33), we obtain for any j = 1, . . . , n, An(j) =
∑

|k|≤Kn
e2iπkXjf?

∑
p∈Z

cp(s?)(2iπk) {Xj ϕn,X [2π(p − k)f?] + iϕ̇n,X [2π(p − k)f?]} . In the se-

quel, Xn = n−1
∑n

j=1 Xj and ‖Y ‖2 = E(|Y |2)1/2 is the classical L2-norm. By Minkowski in-

equality, ξ̇n(f?)−(nf?)
−1
∑n

j=1 ṡ?(Xj) (Xj − nµ/2) εj = Op

(
n−1

∑3
k=1

{∑n
j=1 ‖An,k(j)‖2

2

}1/2
)

,

where

An,1(j) = −f−1
? ṡ?(Xj)(Xn − nµ/2) ,

An,2(j) = −
∑

|k|>Kn

(2iπk)ck(s?)e
2iπkf?Xj (Xj − Xn) ,

An,3(j) =
∑

|k|≤Kn

∑

p 6=k

(2iπk)cp(s?)e
2iπkXjf? (Xj ϕn,X [2π(p − k)f?] + iϕ̇n,X [2π(p − k)f?]) .

Note that for all j = 1, . . . , n, ‖An,1(j)‖2
2 ≤ (

∑
p∈Z

|k||ck(s?)|)2E{(Xn − nµ/2)2} = O(n)

and n−1(
∑n

j=1 ‖An,2(j)‖2
2)

1/2 ≤ Cn1/2(
∑

|k|≥Kn
|k||ck(s?)|) = o(

√
n), using (34). Using

Minkowski inequality, we obtain, for all j = 1, . . . , n,

‖An,3(j)‖2 ≤ 2π
∑

|k|≤Kn

∑

p 6=k

|k||cp(s?)| (‖Xjϕn,X{2π(p − k)f?}‖2 + ‖ϕ̇n,X{2π(p − k)f?}‖2) .
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Using that |ϕn,X | ≤ 1, Lemma 4 which gives E[|ϕn,X{2π(p − k)f?}|2] = O(n−1) uniformly

in p 6= k, we obtain ‖Xjϕn,X{2π(p − k)f?}‖2 ≤ ‖Xj − jµ‖2 + jµn−1/2 = O(jn−1/2 +

j1/2). By Lemma 4, ‖ϕ̇n,X{2π(p − k)f?}‖2 = O(n1/2) uniformly in p 6= k leading thus to

n−1(
∑n

j=1 ‖An,3(j)‖2
2)

1/2 = O(K2
n) = o(

√
n) by (35). This concludes the proof of (66).

We now prove (67). Using (48) with q = 1, since, for any hermitian matrix Γ, E[(εT Γε)2] ≤
2σ?4Tr(Γ2), we get

E[(ζ̇n(f?))
2] = Var(ζ̇n(f?)) ≤ 8π2 σ?4

n4
Kn

Kn∑

k=1

k2
E[Tr(Γ2

X(kf?))] = O
(
K4

n

)
= o(n)

by (35). Hence (67). Let us now prove (68). Using (18), we get

Ḋn(f?) =

Kn∑

k=1

∑

p,q∈Z

cp(s?)cq(s?)(−2πk)
{

ϕ̇n,X [2π(p − k)f?] ϕn,X [2π(q − k)f?]

+ϕn,X [2π(p − k)f?] ϕ̇n,X [2π(q − k)f?]
}

. (69)

If p 6= k and q 6= k, by using Lemma 4, there exists a constant C > 0, such that E(|ϕ̇n,X [2π(p−
k)f?] ϕn,X [2π(q − k)f?]|) ≤ ‖ϕ̇n,X [2π(p − k)f?]‖2 ‖ϕn,X [2π(q − k)f?]‖2 ≤ C. Using (35) and
∑

p |cp(s?)| < ∞, we get that the term
∑

k

∑
p 6=k,q 6=k in the right-hand side of (69) is op(

√
n).

Now, if p = q = k, the term in the curly brackets is equal to zero. Hence (69) can be rewritten

as Ḋn(f?) =
∑Kn

k=1 Dn,k(f?) + op(
√

n) where

Dn,k(f?) =
∑

q∈Z

ck(s?)cq(s?)(−2πk)
{

ϕ̇n,X(0) ϕn,X [2π(q − k)f?] + ϕ̇n,X [2π(q − k)f?]
}

+
∑

p∈Z

cp(s?)ck(s?)(−2πk)
{

ϕ̇n,X [2π(p − k)f?] + ϕn,X [2π(p − k)f?]ϕ̇n,X(0)
}

.

We will check that
∑

k>Kn
Dn,k(f?) = op(

√
n). Using the Fourier expansion of s? and ṡ?,

we obtain after some algebra, Ḋn(f?) = (nf?)
−1
∑n

j=1

(
Xj − Xn

)
ṡ?(Xj)s?(Xj) + op(

√
n).

This yields (68) by Slutsky’s Lemma. Indeed, µ/2 −∑n
l=1 Xl/n

2 = op(1) and, by Theorem

3, n−1/2
∑n

j=1(s?ṡ?)(Xj) = Op(1), thus we have
(
µ/2 − n−2

∑n
l=1 Xl

)∑n
j=1 ṡ?(Xj)s?(Xj) =

op(
√

n). To conclude the proof of (63), we have to prove that
∑

k>Kn
Dn,k(f?) = op(

√
n). By

Minknowski inequality,
∥∥∑

k>Kn
Dn,k(f?)

∥∥
2
≤ 2π

∑
k>Kn

∑
q 6=k |k||ck(s?)||cq(s?)|

(‖ϕ̇n,X(0)ϕn,X [2π(q − k)f?]‖2+‖ϕ̇n,X [2π(q−k)f?]‖2). Using that |ϕn,X | ≤ 1 and ‖ϕn,X [2π(q−
k)f?]‖2 = O(n−1/2) by Lemma 4 uniformly in q 6= k, we get ‖ϕ̇n,X(0)ϕn,X [2π(q − k)f?]‖2 ≤
‖Xn − (n + 1)µ/2‖2 + (n + 1)µ/2‖ϕn,X [2π(q − k)f?]‖2 = O(

√
n). By (34) and Lemma 4, we

obtain
∥∥∑

k>Kn
Dn,k(f?)

∥∥
2

= o(
√

n) . �
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Proof of Equation (64). Using that Λ̈n = D̈n + ξ̈n + ζ̈n, applying Lemma 1 with q = 2 and

using (16), the bound (64) is a consequence of the two following estimates, proved below,

D̈n(f?) = −n2σ2
?I?(1 + op(1)) , (70)

sup
f :|f−f?|≤ρn/n

|D̈n(f?) − D̈n(f)| = op(n
2) , (71)

for any decreasing sequence (ρn) tending to zero. We now prove (70). Using (18), we obtain

D̈n(f) = 4π2
Kn∑

k=1

∑

p,q∈Z

cp(s?)cq(s?)k
2
{

ϕ̈n,X [2π(pf? − kf)]ϕn,X [2π(qf? − kf)]

+2ϕ̇n,X [2π(pf? − kf)]ϕ̇n,X [2π(qf? − kf)] + ϕn,X [2π(pf? − kf)]ϕ̈n,X [2π(qf? − kf)]
}

. (72)

For f = f?, since ϕn,X(0) = 1, ϕ̇n,X(0) = i/n
∑n

j=1 Xj and ϕ̈n,X(0) = −1/n
∑n

j=1 X2
j , we get

1

n2
D̈n(f?) =

(
4π2

Kn∑

k=1

|ck(s?)|2k2

)
− 2

n3

n∑

j=1

X2
j +

2

n4




n∑

j=1

Xj




2
+ Gn(f?) , (73)

where Gn(f?) =
4π2

n2

Kn∑

k=1

∑

(p,q)6=(k,k)

cp(s?)cq(s?)k
2
{
ϕ̈n,X [2π(p − k)f?]ϕn,X [2π(q − k)f?]

+2ϕ̇n,X [2π(p − k)f?]ϕ̇n,X [2π(q − k)f?] + ϕn,X [2π(p − k)f?]ϕ̈n,X [2π(q − k)f?]
}

.

As n tends to infinity, the term between parentheses in (73) tends to 1/(2f?)
∫ 1/f?

0 ṡ2
?(t) dt

and the term between curly brackets converges to −2µ2/3 + µ2/2 in probability, and hence,

using (37), their product converges to −σ2
?I? in probability. We conclude the proof of (70) by

showing that Gn(f?) = op(1). We split the summmation
∑

p,q in the definition of Gn(f?) into

three terms
∑

p 6=k,q 6=k +
∑

p=k,q 6=k +
∑

p 6=k,q=k leading to Gn(f?) =
∑3

i=l Gn,l(f?). Observe

that, setting C = 2π
∑

p |cp(s?)|,

E[|Gn,1|] ≤ C2 K3
nn−2 inf

|t|>2πf?

{E[|ϕ̈n,X(t)ϕn,X(t)|] + E[|ϕ̇n,X(t)|2]} .

Using that E[|ϕ̈n,X(t)ϕn,X(t)|]2 ≤ E[|ϕ̈n,X(t)|2]E[|ϕn,X(t)|2], Lemma 4 yields Gn,1 = op(1).

Note that

E[|Gn,2 + Gn,3|] ≤
8π2

n2

Kn∑

k=1

k2|ck(s?)|
∑

q 6=k

|cq|
{

E
[
|ϕ̈n,X(0)|2

]1/2
E
[
|ϕn,X [2π(q − k)f?]|2

]1/2

+2E
[
|ϕ̇n,X(0)|2

]1/2
E
[
|ϕ̇n,X [2π(q − k)f?]|2

]1/2
+ E

[
|ϕ̈n,X [2π(q − k)f?]|2

]1/2
}

= O(n−1/2),
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by using that E

[
n−2

(∑n
j=1 Xj

)2
]

= O(n2), E

[
n−2

(∑n
j=1 X2

j

)2
]

= O(n4) and Lemma 4.

We now prove (71). In the expression of D̈n(f) given by the right-hand side of (72), we

separate the summation
∑

p,q into three terms
∑

p=k,q +
∑

p 6=k,q=k +
∑

p 6=k,q 6=k resulting into

D̈n(f) = D̈n,1(f) + D̈n,2(f) + D̈n,3(f) . (74)

Using that
∑

k |ck(s?)| |k|3 and
∑

p |cp(s?)| are finite, and that ϕ̈n,Xϕn,X+ϕ̇n,X ϕ̇n,X+ϕn,X ϕ̈n,X

is Lipschitz with Lipshitz constant at most n−1
∑n

j=1 X3
j + n−2

∑n
j=1 Xj

∑n
j=1 X2

j = Op(n
3),

one easily gets that

sup
f :|f−f?|≤ρn/n

∣∣∣D̈n,1(f) + D̈n,2(f) − D̈n,1(f?) − D̈n,2(f?)
∣∣∣ = Op(ρnn2) = op(n

2) . (75)

Let (fl)1≤l≤Ln be a regular grid with mesh δn covering [f? − ρn/n, f? + ρn/n]. Then,

sup
f :|f−f?|≤ρn/n

∣∣∣D̈n,3(f) − D̈n,3(f?)
∣∣∣

≤ sup
l=1,...,Ln

∣∣∣D̈n,3(fl) − D̈n,3(f?)
∣∣∣+ sup

l=1,...,Ln

sup
f∈[fl,fl+1]

∣∣∣D̈n,3(f) − D̈n,3(fl)
∣∣∣ . (76)

Using the same argument as above with
∑

p |cp(s?)| < ∞ and
∑Kn

k=1 k3 = O(K4
n), we get

that supl=1,...,Ln
supf∈[fl,fl+1]

∣∣∣D̈n,3(f) − D̈n,3(fl)
∣∣∣ = Op

(
K4

nδnn3
)

. Since Kn = o(n−1), there

exists N such that, for any n ≥ N , any f such that |f − f?| ≤ 1/n and any p ∈ Z and k =

1, . . . ,Kn such that p 6= k, we have |pf?−kf | ≥ f?/2. Then proceeding as for bounding Gn(f?)

above, we have, for any n ≥ N and any f such that |f − f?| ≤ 1/n, E

[∣∣∣D̈n,3(f)
∣∣∣
]
≤ C K3

n n ,

where C is some positive constant. From this, we obtain supl=1,...,Ln

∣∣∣D̈n,3(fl) − D̈n,3(f?)
∣∣∣ =

Op(LnK3
n n) , so that, for δn = n−3/2, implying Ln = [ρn/(nδn)] = o(n1/2), (76) finally yields

supf :|f−f?|≤ρn/n

∣∣∣D̈n,3(f) − D̈n,3(f?)
∣∣∣ = Op

(
K4

nn3/2
)

, which, with (75) and (74), gives (71).

�

Proof of equation (65). The left-hand side of (65) follows from (H2) and (H3) by computing

the variance and observing that ṡ? is uniformly bounded. Let us now prove the right-hand

side of (65). Define

Hn =
1

n3/2

n∑

j=1

(Xj − jµ)(s?ṡ?)(Xj) =
∑

p 6=0

cp(s?ṡ?)


 1

n3/2

n∑

j=1

(Xj − jµ)e2ipπf?Xj


 .
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By Cauchy-Schwarz inequality, setting γ =
∑

p 6=0 |cp(s?ṡ?)|, we get

‖Hn‖2
2 ≤ γ

∑

p 6=0

|cp(s?ṡ?)|

∥∥∥∥∥∥
n−3/2

n∑

j=1

(Xj − jµ)e2ipπf?Xj

∥∥∥∥∥∥

2

2

≤ γ2

n3

n∑

j=1

‖Xj − jµ‖2
2

+
2γ

n3
Re




∑

p 6=0

∑

1≤j<k≤n

|cp(s?ṡ?)|E
[
(Xj − jµ)(Xk − kµ)e2ipπf?(Xk−Xj)

]


 .

The first term in the last right-hand side is O(n−1). For the second term, we write Xk −kµ =

Xj − jµ +
∑k

`=j+1(V` − µ) and, using (H2), we obtain

‖Hn‖2
2 ≤ O(n−1) +

2C

n3
Re




∑

p 6=0

∑

1≤j<k≤n

|cp(s?ṡ?)|E
[
(Xj − jµ)2e2ipπf?

Pk
`=j+1

V`

]


 .

Since, by (H2) and (H3),

sup
p 6=0

∣∣∣E
[
(Xj − jµ)2e2ipπf?

Pk
`=j+1 V`

]∣∣∣ = E
[
(Xj − jµ)2

]
sup
p 6=0

|Φ(2pπf?)|k−j = O(jδk−j) ,

where δ ∈ (0, 1), and since
∑

p |cp(s?ṡ?)| < ∞, we finally get

‖Hn‖2
2 = O(n−1) + O


n−3

∑

1≤j<k≤n

jδk−j


 = O(n−1) ,

which achieves the proof of (65). �

Appendix A. Technical lemmas

The following Lemma provides upper bounds for the moments of ϕn,X defined in (33).

Lemma 4. Let (H2) hold. Then, for any non-negative integer k, there exists a positive

constant C such that for all t ∈ R,
∣∣∣E[ϕ

(k)
n,X(t)]

∣∣∣ ≤ C max
1≤l≤k

E[V l
1 ]nk−1(n ∧ |t|−1) ≤ C (1 + E(V k

1 ))nk−1(n ∧ |t|−1) , (77)

E

[∣∣∣ϕ(k)
n,X(t)

∣∣∣
2
]
≤ E(V 2k

1 )n2k−1 + C(1 + E(V k
1 ))n2k−1(n ∧ |t|−1) . (78)

Proof. In order to prove (77), we suppose that E[V k
1 ] is finite. Then by (33) and (H2), we

may write, for all t ∈ R,

E[ϕ
(k)
n,X(t)] = n−1 dk

dtk

n∑

j=1

Φj(t) = n−1 dk

dtk

{
Φ(t)

1 − Φn(t)

1 − Φ(t)

}
.

By (H2), there exists some constant C > 0 such that the following inequality holds:

|1 − Φ(t)|−1 ≤ C (1 + |t|−1), t ∈ R .
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Standard computations yield, for all j = 0, . . . , k,

|Φ(j)(t)| ≤ E[V j
1 ] and

∣∣∣∣
dj

dtj
Φn(t)

∣∣∣∣ ≤ C nj max
0≤l≤j

E[V l
1 ], t ∈ R

for some constant C > 0 only depending on k. The three last displays yield

∣∣∣E[ϕ
(k)
n,X(t)]

∣∣∣ ≤ C max
1≤l≤k

E[V l
1 ]

k∑

j=0

nj−1(1 + |t|j−k−1) .

If |t| ≥ n−1, then
∑k

j=0 nj−1(1 + |t|j−k−1) ≤ Cnk−1|t|−1. If |t| < n−1, then
∑k

j=0 nj−1(1 +

|t|j−k−1) > Cnk. Using that,
∣∣∣E
[
ϕ

(k)
n,X(t)

]∣∣∣ ≤ n−1
∑n

j=1 E(Xk
j ) ≤ nk, for all t in R, we

get (77).

Now, we prove (78) when E[V 2k
1 ] is finite. We have, for all t ∈ R,

E

[∣∣∣ϕ(k)
n,X(t)

∣∣∣
2
]

= n−2




n∑

j=1

E(X2k
j ) + 2Re



E




∑

1≤j′<j≤n

Xk
j Xk

j′e
it(Xj−Xj′ )









 .

Writing, Xj = Xj′ + (Vj′+1 + · · · + Vj), we obtain using (H2) and (77) that

n−2
E




∑

1≤j′<j≤n

Xk
j Xk

j′e
it(Xj−Xj′ )


 ≤ C(1 + E(V k

1 ))n2k−1(n ∧ |t|−1) ,

where C is a positive constant depending only on k. Note also that n−2
∑n

j=1 E(X2k
j ) ≤

n2k−1
E(V 2k

1 ). The last two inequalities provide (78). �

Lemma 5. Under Assumption (H2), we have, for all x > 0 and t ∈ R,

P (|ϕn,X(t) − E(ϕn,X(t))| ≥ x) ≤ 4 exp

(
−nx2 |1 − Φ(t)|

16(2 +
√

2)

)
, (79)

where Φ is the characteristic function of V defined in (10).

Proof. Note that
∏j

k=1 eitVk−Φj(t) =
∑j

q=1 Φj−q(t)Πq(t) where Πq(t) =
∏q

k=1 eitVk−Φ(t)
∏q−1

k=1 eitVk .

Thus,

n (ϕn,X(t) − E [ϕn,X(t)]) =

n∑

j=1

[(
j∏

k=1

eitVk

)
− Φj(t)

]
=

n∑

j=1

j∑

q=1

Φj−q(t)Πq(t) =

n∑

q=1

αn,q(t)Πq(t)

where αn,q(t) =
∑n

j=q Φj−q(t) = (1 −Φ(t))−1(1−Φn−q+1(t)), the last equality being valid as

soon as Φ(t) 6= 1. Let Fq denotes the σ-field generated by V1, . . . , Vq. Note that {αn,q(t)Πq(t), q ≥ 1}
is a martingale difference adapted to the filtration (Fq)q≥1 and

|αn,q(t)Πq(t)| ≤ 4|1−Φ(t)|−1 and E
Fq−1

[
|αn,q(t)Πq(t)|2

]
≤ 4(1 − |Φ(t)|2)

|1 − Φ(t)|2 ≤ 8|1−Φ(t)|−1 ,

where E
Fq denotes the conditional expectation given Fq. The proof then follows from Bern-

stein inequality for martingale (see Steiger (1969) and Freedman (1975)). �
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For completeness, we state the following result, due to Golubev (1988).

Lemma 6. Let L be a stochastic process defined on an interval I ⊆ R. Then, for all λ,R > 0,

P

(
sup
τ∈I

L(τ) > R

)
≤ e−λR sup

τ∈I

(√
E
(
e2λL(τ)

))
(

1 + λ

∫

τ∈I

√
E

(∣∣∣L̇(τ)
∣∣∣
2
)

dτ

)
.

References

Freedman, D. A. (1975). On tail probabilities for martingales. Annals of probability, 3

100–118.
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Lévy-Leduc, C. (2004). Estimation semi-paramétrique de la fréquence de fonctions
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