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Abstract

The purpose of this paper is to investigate the numerical performances of the hard thresh-
olding procedure introduced by Kerkyacharian and Picard [17] for the non-parametric
regression model with random design. That construction adopts a new approach by us-
ing a wavelet basis warped with a function depending on the design, which enables to
estimate regression functions under mild assumptions on the design. We compare our
numerical properties to those obtained for other constructions based on hard wavelet
thresholding. The performances are evaluated on numerous simulated data sets covering
a broad variety of settings including known and unknown design density models, and
also on real data sets.
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1 Motivation

Suppose we observe data (Y1, X1), ..., (Yn, Xn) where (Yi)i=1,...,n is characterized by the
following equation:

Yi = f(Xi) + sεi, i = 1, ..., n, (1)

the εi’s are i.i.d centered standard normal variables, s is a fixed noise level, and the Xi’s
are i.i.d random variables representing the design points with density g. The aim is to
recover the unknown function f from the observations. To reach this aim, we propose to
focus our attention on reconstruction methods using wavelet analysis.

Wavelet thresholding algorithms are popular methods in curve estimation, as well as
in nonparametric estimation problems in general. Their advantages with respect to linear
procedures are well known: they provide adaptive estimators enjoying near minimax
properties in a wide variety of settings, whereas linear estimators can be far from optimal
in many situations as established in a series of paper by Donoho and Johnstone ([8], [9]),
and Donoho, Johnstone, Picard and Kerkyacharian ([10], [11], [12] and [13]).
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We will concentrate here on the regression problem with non equispaced samples
defined above. There exist numerous methods in this setting. Among them let us cite
Hall and Turlach [14], Antoniadis, Gregoire and Vial [2], Cai and Brown [4], and Maxim
[20]. Compared to standard algorithms, the thresholding is notably more complicated
because it has to incorporate the variations of the density of the design. As for general
minimax results, a study over various function spaces and for different risks can be found
in the books [18] and [26] for non-parametric estimation problems, including regression
with random design.

Recently a quite different algorithm was developed by Picard and Kerkyacharian in
[17]. The procedure stays very close to the equispaced Donoho and Johnstone’s Vis-
ushrink procedure, and thus is very simple in its form (preliminary estimators are no
longer needed) and in its implementation (the standard uniform threshold suffices). On
the other side, the projection is done on an unusual non-orthonormal basis, called warped
wavelet basis, so their analytic properties need to be studied to derive the performances
of the estimator. Such a basis can be defined as a usual wavelet basis composed with the
repartition function G(y) =

∫ y

0
g(t)dt. Some theoretical results, including maxiset prop-

erties (see [6] and [16]) were established in their paper. Another important advantage of
the warped basis estimator is that it is near optimal in the minimax sense over a large
class of function spaces for a wide variety of design densities, not necessarily bounded
above and below as generally required by other wavelet estimators. Basically, the condi-
tion on the design refers to the Muckenhoupt weights theory introduced in Muckenhoupt
[23].

The purpose of this paper is to provide numerical performances for the warped basis
procedure and to compare these results to those obtained for other wavelet procedures
based on the hard thresholding rules. In many constructions, the first step consists in
determining a function Y (x) of the form:

Y (x) =
∑

m

wm(x)Ym

where wm(x) is a sequence of functions suitably chosen. For instance, in Hall and Turlach
[14] the wm’s correspond to a polynomial which depends to the variable (Xi)i=1,...,n. In
Cai and Brown [4] (and in Maxim [20]), the wm’s corresponds to scale wavelets warped
with G. In Antoniadis, Grégoire and Vial [2], the random design is transformed into
equispaced data via a binning method and the wm’s are defined by scale wavelets. In a
second step, the function Y is expanded on a standard wavelet basis and a hard thresh-
olding algorithm is performed. In all the techniques described above, the thresholds have
similar forms and depend on the quantity supt

1
g(t)

, which corresponds to an upper bound
for the variance of the estimated wavelet coefficients. For the sake of conciseness, only
the construction developed by Cai and Brown [4] will be considered for the simulations
since it appears to be relatively representative of these kinds of methods.

In all the estimation procedures, the nature of the density g plays an important
role. First we consider the usual context of known and bounded design density g and
we investigate which characteristics of the design mainly affect the behaviour of each
estimator. Second we consider the context of unbalanced designs, and we propose an
adaptation of Cai and Brown’s procedure to allow vanishing densities (the minimax
properties of such a procedure are not established then, here we only provide a numerical
comparison). Third, we examine the case of unknown densities.
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The paper is organized as follows. Section 2 introduces basics on wavelets and the
main procedures. Section 3 gives a qualitative comparison of the estimators described
below, and section 4 presents the results of the simulation study. Lastly in Section 5 the
two procedures are applied to real data sets.

2 Estimation procedures

Let us briefly summarize the basics on wavelets that will be needed in the later sections.
Let φ and ψ be respectively a scaling function and a wavelet associated to a multiresolu-
tion analysis on R. With an appropriate treatment at the boundaries of these functions,
any f of L

2([0, 1]) can be expanded into a wavelet series as:

f(x) =
∑

j,k∈Λ

βj,kψj,k(x), βj,k =

∫ 1

0

f(t)ψj,k(t)dt, x ∈ [0, 1],

where Λ = {(j, k)| − 1 ≤ j ≤ ∞, 0 ≤ k ≤ 2j − 1}, ψj,k(.) = 2
j

2ψ(2j. − k), φj,k(.) =

2
j

2φ(2j.− k), and for convenience we have set ψ−1,k(.) = φ0,k(.). See Cohen, Daubechies
and Vial [5] and Meyer [22] for further details on wavelet bases on the unit interval [0, 1].
For wavelets on the line we refer the reader to Daubechies [7], the books of Meyer [21]
and Mallat [19].

2.1 The procedure of Kerkyacharian and Picard

Let us consider the regression problem described in (1). Let us recall that the function
G is defined by:

G(x) = P(X1 ≤ x) =

∫ x

0

g(t)dt, x ∈ [0, 1].

Kerkyacharian and Picard [17] propose a construction where the unknown function
is expanded on a warped basis instead of a regular wavelet basis. Proceeding in such a
way, the estimates of the coefficients become more natural. Let us briefly describe the
construction of this procedure.

In the case of known g, we consider the following estimator:

β̂†
j,k =

1

n

n
∑

i=1

Yiψj,k(G(Xi)),

for (j, k) in the set:

Λn = {(j, k)| − 1 ≤ j ≤ j1(n), 0 ≤ k ≤ 2j − 1},

where j1(n) is an integer such that 2j1(n) is of the order
√

n
ln(n)

, and we perform a hard

thresholding algorithm:

f̂ †(t) =
∑

j,k∈Λn

β̂†
j,k1



|β̂†
j,k

|≥κs

q

2 ln(n)
n

ffψj,k(G(t)), t ∈ [0, 1],

where κ is a large enough constant.

In the sequel, we will refer to this estimator as estimator 1.
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2.2 The construction of Cai and Brown

Estimator 1 will be compared to a wavelet thresholding procedure based on the construc-
tion of Cai and Brown ([4]) in the case where the density of the design g is known and
bounded from below. The construction consists in the following three steps:

1. Compute a preliminary estimator f̂ as if the data were equispaced by using the
scaling function at high resolution level j2(n) = log2(n):

f̂(t) =
1√
n

n
∑

i=1

Yiφj2,i(t).

2. Warp f̂ by the function G and compute the wavelet coefficients of the resulting
function:

β̂∗
j,k =

∫ 1

0

f̂(G(t))ψj,k(t)dt,

for (j, k) in the set:

Ωn = {(j, k)| − 1 ≤ j ≤ j2, 0 ≤ k ≤ 2j − 1}.

3. Perform a hard thresholding algorithm:

f̂ ∗(t) =
∑

j,k∈Ωn

β̂∗
j,k1



|β̂∗
j,k

|≥κsλ∗
j,k

q

2 ln(n)
n

ffψj,k(t), t ∈ [0, 1], (2)

where

λ∗j,k =

√

max
t∈Sj,k

1

g(t)
,

κ is a positive constant, Sj,k = [2−jk, 2−j(k +N)] and N is the length of the filter
associated to the wavelet.

In the sequel, we will refer to this estimator as estimator 2.

Comments. The choice of the threshold is linked to the variance of the β̂∗
j,k. Fol-

lowing the Subsection 3.3 of Cai and Brown [4], we have:

nV ar(β̂∗
j,k) =

n
∑

i=1

(
∫ 1

0

φj2,k(G(x))ψj,k(x)dx

)2

≤
∫

Sj,k

ψ2
j,k(t)

1

g(t)
dt = u2

j,k

and the threshold λ∗
j,k is chosen in such a way that:

u2
j,k ≤ (λ∗j,k)

2.

In practice uj,k is difficult to compute, that is why λ∗
j,k is used instead. In a second part

of the study we propose a slight modification of estimator 2, by adapting the thresholds
so as to allow constructions for vanishing densities too. Let us suppose that 1

g
belongs

to L
1([0, 1]) and consider the thresholding procedure (2) in which we remplace λ∗

j,k by
another bound of uj,k defined as:

λ̃j,k =

√

√

√

√2j

(

∫

Sj,k

1

g(t)
dt

)

.

In the sequel, we will refer to this estimator as estimator 2′.
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Remark 2.1. In the simulation study we will consider the case of unknown noise level
s. The thresholds are thus modified by replacing s by an estimator:

ŝ =

√

√

√

√

1

2(n− 2)

n
∑

i=2

(Y(i) − Y(i−1))2,

where each Y(i) refers to the value Yk such that Xk is the i-th higher coordinate of the
vector (Xj)1≤j≤n.

3 Preliminary comparison of the two estimators

3.1 Implementation

3.1.1 Thresholding algorithms

Obviously, estimator 2 (and 2′) is more difficult to implement than estimator 1. It requires
each coefficient to be compared to a specific value recalculated for each scale and shift
parameter. On the contrary, the thresholds of estimator 1 are simple, and approximations
of the coefficients can be computed very easily. Indeed if G is replaced by the empirical
distribution function Ĝn in the expression of β̂†

j,k one obtains the following coefficients:

β̂j,k =
1

n

n
∑

i=1

Yiψj,k(
i

n
),

which can be obtained directly by performing a wavelet decomposition of the vector Y .
These coefficients were used in the sequel for estimator 1 instead of coefficients β̂†

λ.

The differences are illustrated on figure 1: as a toy example, the wavelet coefficients
and the thresholds for a ’Sine’ regression function and a ’Sine’ design density (see their
representations further in this paper) were computed with 26 observations and using the
Haar basis. The figure represents the estimated detail coefficients and their thresholds
from the coarsest (j = 0) to the highest (j = 5) resolution level, for estimator 1 (top)
and estimator 2 (bottom). Estimator 1 needs constant thresholds, whatever the scale
and the shift parameter, whereas for estimator 2 the thresholds vary with respect to the
density g: the lower g on the interval [ k

2j ,
k+1
2j ], the higher the threshold.

3.1.2 The case of unknown densities

In the case where g is unknown, we replace G wherever it appears in the construction of
estimators 1 and 2 or 2′ by the empirical distribution function of the Xi’s:

Ĝn(x) =
1

n

n
∑

i=1

1{Xi≤x}.

Then adapting estimator 1 is quite easy: we only need to replace G in the warped
basis. In the Cai and Brown procedure: first we have to warp f̂j2 with Gn instead of G
in step 1 and secondly we have to replace the thresholds in step 3 by estimators, thus a
density estimator of g is also needed. Theorically many techniques are available, including
log spline (see Maxim ([20])), Kernel or wavelet methods (see the book of Härdle, Picard,
Kerkyacharian and Tsybakov ([15])). In the simulation study we used a method based
on binning and wavelet thresholding which will be detailed further.
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Figure 1: Coefficients (stems) and their corresponding thresholds (stairs) for estimator 1 (top), esti-
mator 2 (bottom) and each level of resolution (from left to right)
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Figure 2: Estimator 1 for the ’Doppler’ target (in dots) for three different values of κ (0.7, 1, 1.5)

3.2 Some examples of settings

Before a thorough study in a wide variety of settings, we investigate the behaviours of
the estimators in several particular models to highlight their main differences. In this
subsection we take:

• number of observations: n = 1024,

• root signal noise ratio: rsnr = 3,

• wavelet basis: Symlet of order 8.

First we investigate the choice of the constant κ for the thresholds of estimator 1.
There is no optimal constant suited to any setting, however choosing κ = 1 proves efficient
in general as can be seen on figure 2: for smaller κ there remains unfiltered noise and for
larger κ the first oscillations of the Doppler function are not recovered.

Let us now compare the two estimators. Predictably in most settings close to opti-
mal conditions, i.e for smooth densities close to the uniform, the two estimators behave
similarly. For example when the density is a sine function with relatively small ampli-
tude, both estimators behave well as can be seen on figure 3. Secondly, estimator 1
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Figure 3: The two estimators of the ’Wave’ target (in dots)
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Figure 4: The two estimators of the ’Angles’ target (in dots)

presents some defaults when the target function is much smoother than the density of
the design. Indeed in this case the warping deteriorates the regularity of the estimator
which is visually less pleasant than estimator 2, see for instance figure 4.

Beside that smoothness effect, interesting differences appear when the design is far
from uniform, i.e when the distribution of the design points in [0, 1] is very unbalanced.
Two deteriorations can then be noticed for estimator 2. First it does not capture as
many details of the target function as estimator 1 in the zones where the observations are
sparse (figure 5). Secondly it presents artifacts in the high density zones (figure 6). These
two problems have the same origin: the wide variations of g provoke disproportionate
thresholds, leaving some noise unfiltered when g is too high and on the contrary erasing
useful details when g is too low. This can be seen respectively at level 5 in figure 7 and
at level 9 in figure 8 where the thresholds associated to the two previous settings are
represented.

The simulation study presented in the next section enables to analyse these differ-
ences more thoroughly.
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Figure 5: The two estimators of the ’Wave’ target (in dots)
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Figure 6: The two estimators of the ’Sine’ target (in dots)
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Figure 7: Coefficients (stems) and their corresponding thresholds (stairs) associated to figure 5 for
estimator 1 (top), estimator 2 (bottom) and each level of resolution (from left to right)
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Figure 8: Coefficients (stems) and their corresponding thresholds (stairs) associated to figure 6 for
estimator 1 (top), estimator 2 (bottom) and each level of resolution (from left to right)

4 Simulation study

4.1 Description of the simulation

We compare the behaviour of the two estimators for different regression functions and
different densities of the design. For each one of these two factors, we used the functions
represented on figures 9 and 10. Most of the target functions are borrowed from Anto-
niadis et al. ([1]), where they are used to highlight differences between linear and non
linear estimators. We refer to their paper for the mathematical expressions. As for the
densities, there are two groups: the first and second ones are uniform or slightly varying,
whereas the next four ones are used to test if the estimators behave well in case of one
or numerous holes in the density, i.e of zones where one has hardly any observation of
the unknown function. The mathematical expressions are given in the appendix. Notice
that all these functions are bounded from below.

In addition the effects of n, of the root signal to noise ratio (denoted by rsnr) and of
the choice of the wavelet basis are examined. A series of results are given in the appendix
for samples with n ∈ {29, 210, 211, 212}, rsnr = 1 (high noise) or rsnr = 7 (small noise),
and the wavelet basis is the Symlet of order 8 or the Coiflet of order 3 (as in [1]).

The quality of each estimator was evaluated by computing approximations of the
mean integrated error (L1), the root mean integrated square error (RMSE) and the
maximum deviation (MXDV). The criterium MXDV reflects the amplitude of localized
errors in the estimation, whereas L1 reflects the mean quality of the estimation along
the whole domain of definition of the target function. These quantities were estimated
in the following way:

• L1 is computed as the average over 100 runs of 1
n

n
∑

i=1

|f( i
n
) − f̂( i

n
)|.

• RMSE is computed as the average over 100 runs of

√

1
n

n
∑

i=1

(f( i
n
) − f̂( i

n
))2.
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Figure 9: Target functions
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• MXDV is computed as the average over 100 runs of max
1≤i≤n

|f( i
n
) − f̂( i

n
)|.

In each run, the random variables X and ε were simulated independently of their values
in the other runs.

4.2 Results for known and bounded densities

Let us first focus on a setting with small sample n = 512, high noise rsnr = 1 and a
Symlet basis (figure 15). The performance of estimator 1 relatively to estimator 2 for
the three criteria is given in the first column of the figure. For densities close to the
uniform, the two estimators have similar performances, except that estimator 2 has a
better MXDV for the Sine and Heavisine target function and the Sine density design.

On the contrary differences appear for other densities. Especially considering the
L1 loss, estimator 1 is better for moderately complicated targets, such as Wave or Blip,
because it recovers details that estimator 2 ignores. This advantage is all the more
significant as the the hole is wide (’Hole2’ and ’Hole3’ densities). For more complicated
targets (Doppler or Blocks) neither estimator captures the details very well in high noise,
so their performances are equivalent.

For larger samples (figure 17) the advantage of estimator 1 in case of holes in the
design density grows more and more obvious. When n = 4096 estimator 2 is outperformed
whatever the rsnr, the design and the target (except Heavisine). This is particularly true
for ’Hole1’ and ’Holes’ densities, where the thresholding rule of estimator 2 is probably
inadapted.

In the small noise settings, the previous comparison remains valid but the advantage
of estimator 1 is generally less significant. Similarly replacing the Symlet by the Coiflet
basis does not change the advantage of estimator 1 over estimator 2, but this one tends
to be reduced in most settings. That may come from the fact that the Coiflet scaling
functions have better approximation properties than the Symlets, and thus the detail
coefficients and the thresholds play a minor role in both methods.

4.3 Results for known and vanishing densities

In this part the simulation study is performed with the same model parameters as before,
except for three densities, namely ’Hole1’ ’Hole2’ and ’Holes’, which are allowed to vanish
(the new expressions are given in the appendix). The constant κ of estimator 2′ was fitted
in practice such that the estimator behaves well whenever the design density is uniform,
as it was done for estimator 1.

The results are the following. For the first two densities of figure 10, estimator
2′ behaves in a similar way as estimator 1 and estimator 2. However for vanishing
densities, estimator 2′ corrects the main oversmoothing default of estimator 2. Indeed
the thresholding method is less rough than the one used in the previous section, so the
estimator behaves better now in some of the settings investigated earlier as can be seen
in figure 11.

Nevertheless the values of the quality criteria (see figures 18) show that estimator
1 generally remains better than estimator 2′, even if its advantage is much smaller for
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Figure 11: Estimators 1, 2 and 2
′ for the Wave target (in dots), n = 1024 and rsnr = 3

densities with narrow holes such as ’Hole1’ and ’Holes’ in the case of high noise (first
column of figures 18 versus first column of figure 17). So even with thresholds sharper
than before, estimator 2′ does not manage to recover the details of the target functions
as well as estimator 1, especially when the observations are sparse in a wide range of
abscisses (for ’Hole2’ and ’Hole3’ densities).

4.4 Results for unknown densities

In this context, a density estimator is necessary to implement estimator 2′. In Wavelab
a procedure is available, which consists first in computing an histogram Hn of the data:

Hn(x) =
1

n

n
∑

i=1

m
∑

j=1

(tj+1 − tj)
−11Tj

(x)1Tj
(Xi),

where t1, ..., tm is an equispaced sample of [0, 1], Ti = [ti, ti+1[ and m is a large integer.
Then a wavelet thresholding algorithm is performed on Hn.

A common choice for m is m = [n/l], where the width l of the steps can be seen as
a bandwidth parameter chosen according to the smoothness of the underlying density.
However a fixed l = 16 leads to reasonable estimators so this choice was adopted in the
sequel.

Predictably, the estimation errors in the density cause both estimators to deteriorate.
The warping makes estimator 1 unsmooth in domains where the observations are sparse,
and the thresholding generally leaves some noise unfiltered for estimator 2. For example
in figure 12 artifacts appear even though the density is relatively well estimated. Some
of them could have been erased, had the true thresholds been taken into account.

Analysing the three quality criteria for high noise (first column of figure 16), esti-
mator 1 is now clearly stronger than estimator 2 whatever the density, especially for the
maximum deviation. However for small noise the performances are close. Estimator 1 is
more robust with respect to the lack of knowledge of the design density.

Conclusion. The two procedures have similar performances for smooth and ho-
mogenous design densities. For vanishing densities, estimator 2′ is better than estimator
2 but both are generally outperformed by estimator 1, and this ranking is even clearer if
unknown densities are taken into account.
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Figure 12: Density estimator, noisy data and the two estimators for the Sine target (in dots)
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Figure 13: Ethanol data (dots) with estimator 1 (left) and estimator 2 (right)

5 Applications to real data sets

5.1 Ethanol data

We investigate the performance of the two wavelet thresholding procedures when applied
to the ethanol data introduced by Brinkman [3]. The data consists of 88 measurements
from an experiment where ethanol was burned in a one-cylinder automobile engine. The
concentration of the total amount of nitric oxide and nitrogen dionide (y-axis) is related
to the "equivalence ratio" (x-axis), a measure of the richness of the air ethanol mixture.
To fit the data to our model, the range of the x-axis variable is linearly shifted to [0, 1].

The two procedures considered here yield satisfactory results, compared to the nu-
merous other estimators applied to this dataset (eg [2]). As can be seen on figure 13,
estimator 1 seems slightly better than estimator 2 for x ∈ [0.7, 1], but globally both cap-
ture the variations in the data quite precisely. We can remark that estimator 1 is a bit
unsmooth because of the warping with Ĝn. If we wish to obtain a visually more pleasant
result, an alternative is to use a smoother estimator of G.

So as to quantify the performances of the the two procedures, we use a criterium
developed by Nason ([24]) adapted to the regression model with random design. This
approach consists in evaluating the following estimator of the mean square error:

M̂ = n−1

n
∑

i=1

(f̂−i(Xi) − Yi)
2
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Figure 14: Motorcycle data (dots) with estimator 1 with κ = 1 (left), κ = 1.06 (middle) and estimator
2 (right)

where f̂−i is each of our procedures contructed from all the data except the i-th obser-
vation (Yi, Xi). As in Nason [24], we compute the values of M̂ for various choices of the
wavelet basis and of the coarsest level j0. The results are similar to the ones obtained
in his paper. For example the performances of estimator 1 are given in table 1, the best
result being 103.9 versus 98 in Nason [24].

Sym7 Sym8 Sym9 Sym10

j0 = 4 156.8 145.1 119.0 127.8
j0 = 5 167.5 151.4 125.6 136.8
j0 = 6 140.8 139.0 103.9 126.8

Table 1: Values of M̂ (×1000) of estimator 1 for various choices of the wavelet basis and of the coarsest
level j0

5.2 Motorcycle acceleration data

Lastly we apply our procedures to the motorcycle acceleration data considered in Silver-
man [25]. These 133 observations are taken from a crash test and show the acceleration
of a motorcyclist’s head. The explanatory variable is time (rescaled to the unit interval)
and the dependent variable is the head acceleration (in g).

As can be seen on Figure 14, the data are heteroscedastic with an increasing variance
with respect to the time. If we apply blindly the two procedures, estimator 1 exhibits
a high frequency feature due to a large variance. This can be corrected by slightly
increasing the level of the threshold (i.e by setting κ = 1.06 instead of κ = 1). We can
notice that estimator 2 seems to be less precise than estimator 1.

6 Appendix

6.1 Target functions and densities

Target functions. The target functions in figure 9 have the following expressions:

• Sine: f(x) = 0.2 + 0.6 sin(πx),

• Step: f(x) = 0.2 + 0.6I{1/3 < x < 3/4},
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• Wave: f(x) = 0.5 + 0.2 cos(4πx) + 0.1 cos(24πx),

• Blip: f(x) = (0.32 + 0.6x + 0.3 exp(−100(x − 0.3)2)I{0 ≤ x ≤ 0.8} + (−0.28 +
0.6x+ 0.3 exp(−100(x− 1.3)2)I{0.8 < x ≤ 1},

• Angles: f(x) = (2x+0.5)I{0 ≤ x ≤ 0.15}+(−12(x−0.15)+0.8)I{0.15 < x ≤ 0.2}+
0.2I{0.2 < x ≤ 0.5}+(6(x−0.5)+0.2)I{0.5 < x ≤ 0.6}+(−10(x−0.6)+0.8)I{0.6 <
x ≤ 0.65}+(−0.5(x− 0.65)+0.3)I{0.65 < x ≤ 0.85}+(2(x− 0.85)+0.2)I{0.85 <
x ≤ 1},

• Blocks, Bumps, Heavisine and Doppler are Donoho and Johnstone’s functions (used
for example in [8]) vertically rescaled to [0.2, 0.8].

Densities. The design densities in figure 10 have the following expressions, up to a
normalisation constant:

• Constant: g(x) = 1,

• Sine: g(x) = 1 + 0.2 sin(4πx),

• Hole 1: g(x) � |x− 0.5|0.5 + 0.04 in section 3 and g(x) � |x− 0.5|0.5 in section 4,

• Hole 2: g(x) � |x− 0.5|0.9 + 0.03 in section 3 and g(x) � |x− 0.5|0.9 in section 4,

• Hole 3: g(x) � |x− 0.5|3 + 0.007,

• Holes: g(x) � | sin( 1
2|x−0.5|+0.1

)|0.5 +0.02 in section 3 and g(x) � | sin( 1
2|x−0.5|+0.1

)|0.5

in section 4.

6.2 Simulation results

Some of the simulation results are summarized here graphically. Each graph provides,
for a given quality criterium, the ratio of the value of the criterium for estimator 1 and
the sum of the two values of the criterium for estimator 1 and estimator 2 (or 2′). Thus
estimator 1 is better than estimator 2 whenever the ratio is below the value 0.5.

Each one of the six groups of nine successive columns refers to the nine target func-
tions and to one of the six densities in the following order: ’Constant’, ’Sine’, ’Hole1’,
’Hole2’, ’Hole3’ and ’Holes’.
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Figure 17: Estimator 1 versus estimator 2: ratios of L1 in the classical setting
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Figure 18: Estimator 1 versus estimator 2
′: ratios of L1 for known vanishing densities


