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NEW MINIMAX RATES FOR INVERSE PROBLEMS

Thomas Willer

Laboratoire de Probabilités et Modèles Aléatoires, Paris, France

Abstract: We consider inverse problems where one wishes to recover an unknown

function from the observation of a transformation of it by a linear operator, cor-

rupted by an additive white noise perturbation. We assume that the operator

admits a singular value decomposition where the eigenvalues decay in a polynomial

way, and where Jacobi polynomials appear as eigenfunctions. This includes, as an

application, the well known Wicksell’s problem. We determine the asymptotic rate

of the minimax risk for this model in a wide framework, considering (Lp)1<p<∞
losses, and Besov-like regularity spaces. We draw a comparison with the mini-

max rates of the deconvolution problem, which appears as a critical case of the

Jacobi-type rates. We also establish some new results on the needlets introduced

by Petrushev and Xu (2005) which appear as essential tools in this setting.

Key words and phrases: statistical inverse problems, minimax estimation, second-

generation wavelets.

1. Motivation

We consider the problem of recovering a function f from a blurred (by a

linear operator) and noisy version Y:

∀v ∈ V, Y(v) = (Kf, v)V + εξ(v),

where K is a linear operator between two Hilbert spaces: K : U 7→ V , ξ is a

V-white noise, and for H a Hilbert space and h1, h2 ∈ H, (h1, h2)H denotes the

scalar product in H between h1 and h2. We assume that f belongs to U =

L2([−1, 1], µ(x)dx), with µ(x) = (1 − x)α(1 + x)β, α, β > −1/2, and that K

admits a singular value decomposition (SVD), i.e. there exists an orthonormal

basis (called SVD basis) formed by the eigenfunctions of the self-adjoint operator

K∗K (where K∗ is the adjoint of K). Moreover we assume that this SVD basis

consists of the classical Jacobi polynomials of type (α,β) (see Szegő (1975)), and

that the corresponding sequence of eigenvalues tend to zero at a polynomial rate.

We will call such problems ”Jacobi-type inverse problems”.
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The main motivation of this article is to establish the asymptotic minimax

rates in a wide framework, considering Lp([−1, 1], µ) losses, for all 1 < p < ∞,

and a Besov like regularity space. We find rates which are new in the literature,

and we give applications and draw parallels among well known inverse problems

in practice, such as Wicksell’s corpuscule problem or the deconvolution problem.

1.1 Interest of the results for inverse problems theory

The most popular technique for the treatment of inverse problems is prob-

ably singular value decomposition estimation, where the unknown function is

expanded in the SVD basis, and the coefficients are estimated thanks to Y. Such

techniques are very attractive theoretically and can be shown to be asymptoti-

cally minimax in many situations (see e.g. Mathé and Pereverzev (2003), Cava-

lier and Tsybakov (2002), Cavalier, Golubev, Picard, and Tsybakov (2002), Tsy-

bakov (2000), Goldenshluger and Pereverzev (2003), Efromovich and Koltchinskii

(2001))). However there are limitations in the minimax framework, in particular

such estimators generally cannot estimate functions exhibiting inhomogeneous

regularity. To avoid this problem, several wavelets methods have been intro-

duced during the last decade (Donoho (1995) and Abramovich and Silverman

(1998)), which are minimax over wide sets of target functions, for example Besov

spaces. However such methods apply only to a category of inverse problems

where the operator is well adapted to the structure of first generation wavelets

(for example homogeneous operators).

Then the main interest of our results is to grapple with problems with a

polynomial structure, which cannot be analysed through the perspective of clas-

sical wavelets (which are more adapted to operators linked to Fourier analysis).

The main idea is to use new wavelets built upon polynomials (termed needlets,

and introduced by Petrushev and Xu (2005)), and new spaces, which appear

as an adaptation of the classical Besov spaces. Thanks to these new tools, we

derive the minimax rates of all the Jacobi-type inverse problems. So this paper

is closely linked to Kerkyacharian, Picard, Petrushev, and Willer (2006), where

an estimation procedure, called NeedVD and based on needlets, was developed

for several inverse problems, including Jacobi-type models. Here we prove that

NeedVD is nearly optimal, since the lower bounds established for the minimax

risk turn to match with the convergence rates of the procedure.

2



Note also that the results are established for all Lp([−1, 1], µ), whereas in

most other works only the case p = 2 is considered, except for the deconvolution

problem: this problem is well adapted to classical wavelet treatments (Pensky

and Vidakovic (1999), Fan and Koo (2002), Kalifa and Mallat (2003)) and min-

imax rates for Lp([0, 1], dx) losses and over Besov spaces were established in

Johnstone, Kerkyacharian, Picard, and Raimondo (2004) and Willer (2005). We

will draw a parallel between those rates and the ones obtained here: we exhibit

elbow effects, and we show that the rates in the deconvolution model appear as

a critical case of the rates in the Jacobi-type model. Moreover, we also give an

application of our results to Wicksell’s problem (Wicksell (1925)), which satisfies

the required assumptions on the operator. This problem concerns the recovery

of the density of the radii of spherical particles, when a sample of planar cuts is

given, and has many applications in medecine and in biology.

1.2 Mains tools used to establish the results

The principle of NeedVD is is to decompose the inverse problem in a needlet

frame. Such functions are adapted at the same time adapted to K (as they are

closely linked to the SVD basis of the problem, i.e. to Jacobi polynomials), and to

f (as they enable sparse representations of various functions, including spatially

inhomogeneous ones). In this paper our main concern is to lower bound the

minimax risk. However the same kind of problematic arises, as the problem is to

find a family of hypotheses {fλ, λ ∈ Λ} ⊂ U, representative of the difficulties of

estimation inside the regularity space considered for the risk. This means that

the functions fλ must be chosen such that:

• they are distant from one another in Lp(µ) norm,

• and in the same time the distributions of the associated processes Y are

close to one another (in a Kullback sense, for example).

A natural way to build such hypotheses is to use functions which enjoy lo-

calization properties, and whose images by K can be easily studied, and thus

here again needlets are an essential tool. The hypotheses are built as linear

combinations of such functions, with some parameters left free, which we ad-

just optimally with respect to the two constraints cited above. Then the Lp(µ)
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distance between the hypotheses yields the lower bound on the whole regularity

space. In this context several additional difficulties must be treated in compari-

son to classical-wavelet problems such as deconvolution, which stem from the non

orthogonality of the needlets and from the heterogeneity of their Lp(µ) norms.

Thus we will make a brief list of the properties of needlets, and we will establish

some new properties specific to the lower bound problem.

The paper is organized as follows. In section 2 we describe the model and

state the main result, in section 3 we describe the needlets and we give their basic

properties used to prove the main result. The fourth section gives the proofs of

the minimax rates and the fifth section gives the proofs of two preliminary results

on needlets from section 3.

2. Main result

2.1 Model and assumptions

We are interested in nonparametric inverse problems in white noise, with a

polynomial structure of the operator. We define this framework as follows. Let f

be an unknown function belonging to the Hilbert space U = L2([−1, 1], µ(x)dx),

with µ(x) = (1 − x)α(1 + x)β, α, β > −1/2. The estimation problem consists

in recovering a good approximation of the function f from the observation of the

random variable Y corresponding to a blurred and noisy version of f:

∀v ∈ V, Y(v) = (Kf, v)V + εξ(v). (1)

Blurring effect: Let I = [a, b] or I = [a, b[, with −∞ < a < b ≤ ∞, and

λ : I 7→ R∗
+ a continuous function. We set V = L2(I, λ(x)dx). Let K : U 7→ V be a

linear operator satisfying the two following conditions. First assume K∗K (where

K∗ denotes the adjoint of K) is diagonalizable, with a countable set of eigenvalues

(denoted (b2k)k∈N) which are strictly positive and decrease at a polynomial rate

for some ill posedness coefficient ν > 0 (for two positive sequences (uk) and

(vk), the notation uk � vk means that there exist 0 < c1 ≤ c2 < ∞ such that

c1vk ≤ uk ≤ c2vk):
∀k ∈ N∗, bk � k−ν.

Secondly, assume that the classical Jacobi polynomials normalized in U (we de-

note by Pk the polynomial of degree k) appear as an orthonormal basis of eigen-

4



functions of K∗K. So Pk is the polynomial of degree k such that
∫1

−1 PkPldµ = δk,l,

and:

∀k ∈ N, K∗KPk = b2kPk.

Noise effect: ε > 0 is deterministic, and ξ is a gaussian white noise on V , i.e.:

∀v,w ∈ V,

ξ(v) ∼ N (0, ‖v‖2V),

ξ(v), ξ(w) are independent if v ⊥ w.

2.2 Minimax rates

The aim of the paper is to establish the asymptotic minimax rates (when

ε → 0) for inverse problems described above, in a wide framework, i.e. for

numerous choices of functions f and of measures of estimation errors. For the

latter, we consider all Lp(µ) losses (for any 1 < p < +∞) defined by: ∀u ∈ U,

‖u‖Lp(µ) = [
∫1

−1 |u(x)|pdµ(x)]
1
p .

Concerning the target functions, we introduce spaces Bsπ,r(M) below, which

appear as an adaptation of the classical Besov spaces. Let (ψj,η)j≥0, η∈Zj
denote

the tight frame of needlets described in the next section. For any f ∈ U, we have

the following decomposition:

f =
∑
j≥0

∑
η∈Zj

βjηψjη, where βjη = (f, ψjη)U.

Then for π ≥ 1, s ≥ 1/π, r ≥ 1, M > 0 we define:

Bsπ,r(M) = {f ∈ U | ‖(2js(
∑
η∈Zj

|βj,η|
π‖ψj,η‖ππ)1/π)j≥−1‖lr ≤M}.

If ψj,η were a classical wavelet, then Bsπ,r would be exactly a Besov space. Details

on this notion can be found in Härdle, Kerkyacharian, Picard, and Tsybakov

(1998), we recall simply that they are very general regularity spaces including

as particular cases Sobolev and Holder spaces, and which can be described very

simply, thanks to any regular enough wavelet basis. They often appear in the

study of inverse problems, in particular when the operator displays links with

Fourier analysis (Donoho (1995)). However here Bsπ,r correspond to new spaces,

characterized by needlets, which appear as a natural alternative to Besov spaces

in the case of polynomial type inverse problems. Details on the space in this case

can be found in Narcowich, Petrushev, and Ward (2006).
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We are interested in the minimax risk defined by:

Rε(B
s
π,r(M),Lp(µ)) := inf

f̂
sup

f∈Bs
π,r(M)

Ef(‖f̂− f‖pLp(µ)),

where the infimum is taken over all σ(Y(t))t≥0−measurable estimators f̂. The

results of Kerkyacharian, Picard, Petrushev, and Willer (2006), concerning the

rates of convergence of the NeedVD estimator, give immediately an upper bound

for the risk. This is Theorem 1, where we recall that ν > 0 is a rate of decay of

the eigenvalues of the operator (bk � k−ν), and that α, β > −1
2 are parameters

characterizing U.

Theorem 1. For all 1 < p < ∞, π ≥ 1, r ≥ 1 and s > maxγ∈{α,β}{
1
2 − 2(γ +

1)(12 − 1
π) ∨ 2(γ+ 1)( 1π − 1

p) ∨ 0} there exists C > 0 such that:

Rε(B
s
π,r(M),Lp(µ)) ≤ C[log(1/ε)]p+1[ε

√
log(1/ε)]ζp,

where ζ = min{ζ(s), ζ(s, α), ζ(s, β)} with:

ζ(s) =
s

s+ ν+ 1
2

, ζ(s, γ) =
s− 2(1+ γ)( 1π − 1

p)

s+ ν+ 2(1+ γ)(12 − 1
π)
.

The main purpose of the paper is to prove that these rates coincide with

the rates of the minimax risk up to log factors. We will establish the following

theorem:

Theorem 2. For all 1 < p < ∞, π ≥ 1, r ≥ 1 and s ≥ 1/π there exists C > 0

such that:

Rε(B
s
π,r(M),Lp(µ)) ≥ Cεζp,

where ζ = min{ζ(s), ζ(s, α), ζ(s, β)} with:

ζ(s) =
s

s+ ν+ 1
2

, ζ(s, γ) =
s− 2(1+ γ)( 1π − 1

p)

s+ ν+ 2(1+ γ)(12 − 1
π)
.

Note that the exact logarithmic factors of the minimax risk are not estab-

lished yet. In this paper we have focused only on the main rate εζ, so our results

prove that NeedVD is ”quasi optimal” in the Jacobi-type models.
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2.3 Comparison with other inverse problems

In the literature on statistical inverse problems, there are few results in a

minimax framework as general as the one given above. Generally, only the L2

case is considered, and under the polynomial decay assumption of the eigenval-

ues the rate ζ = s
s+ν+1/2 (named ”regular” rate) appears frequently (see Cavalier

and Tsybakov (2002)). For more general Lp losses, only the case of deconvolu-

tion in a periodic setting (up to our knowledge) has been studied in Johnstone,

Kerkyacharian, Picard, and Raimondo (2004) and Willer (2005), and elbow ef-

fects appear, with a second rate named ”sparse”. It is interesting to draw a

parallel between such a problem, where classical wavelets are widely used tools,

and polynomial type problems, which require needlets.

For the deconvolution problem, minimax rates have been established for all

Lp([0, 1], dx) losses (1 < p < ∞) and over balls of a Besov space characterized

by parameters π ≥ 1, s ≥ 1/π, r ≥ 1 as above. Then the rates are given as in

Theorem 1 and 2 (up to the logarithmic factors) with ζ replaced by:

ζ = min{ζregular =
s

s+ ν+ 1/2
, ζsparse =

s− 1/π+ 1/p

s+ ν+ 1/2− 1/π
}.

Then the deconvolution setting appears as a critical case of the Jacobi setting,

if we set α = β = −1
2 . More generally if we set α = β > −1

2 we can draw

the cartography of the regular and sparse zones with respect to (p, π) (see figure

1), as was done in Härdle, Kerkyacharian, Picard, and Tsybakov (1998) in the

direct observation case. In the deconvolution case (i.e. the ”wavelet scenario”)

the separation between the zones is linear, whereas in the ”Jacobi scenario” the

critical case is more complicated. So in that scenario we find new rates, and note

that this novelty is not an artifact stemming from the weights on the space, since

in the Lebesgue case the rates for the Jacobi scenario (i.e. α = β = 0) do not

coincide with those of the wavelet scenario. Thus the origin of the differences

lies in the polynomial structure of the inverse problems, in opposition to the

”Fourier” structure of the problems usually treated by first generation wavelet

methods.

2.4 Application to the Wicksell’s problem

The Jacobi-type inverse models considered in this paper find applications in
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Figure 1: Cartography of the regular and sparse zones with respect to (p, π) in the deconvolution case

(left) and in the Jacobi case if α = β (right)

practice, in particular with the well known Wicksell’s problem (Wicksell (1925)),

which corresponds to the following situation. Suppose a population of spheres

is embedded in a medium. The spheres have radii that may be assumed to be

drawn independently from a density f. A random plane slice is taken through the

medium, and some spheres are intersected by it. They furnish circles, the radii of

which yield the points of observation Y1, . . . , Yn, as illustrated in Figure 2. The

unfolding problem is then to determine the density of the sphere radii from the

observed circle radii. This problem arises in medicine, where the spheres might

be tumors in an animal’s liver (Nychka, Wahba, Goldfarb, and Pugh (1984)), as

well as in numerous other contexts (biological, engineering, etc.) see for instance

Cruz-Orive (1983).

Figure 2: Wicksell’s problem: observation of radii of disks after a planar cut of spheres

In this article we consider this problem in the white noise framework (consid-

erations about the application to the density framework are made in Chapter 5 of

Willer (2006)). We use the singular value decomposition established in Johnstone
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and Silverman (1991), where the Wicksell’s problem corresponds to the follow-

ing operator: U∗ = L2([0, 1], µ∗(x)dx), µ∗(x) = (4x)−1, V = L2([0, 1[, λ(y)dy),

λ(y) = 4π−1(1− y2)1/2, and Kf(y) = π
4y(1− y2)−1/2

∫1
y(x

2 − y2)−1/2f(x)dµ∗(x).

In this case K∗K has the following eigenvalues and eigenfunctions:

bk =
π

16
(1+ k)−1/2,

ek(x) = 4(k+ 1)1/2x2P0,1k (2x2 − 1),

where P0,1k is the kth degree Jacobi polynomial of type (0, 1). Then we are (up

to changes in the variables) in the framework considered in this paper. Thus

Theorem 1 and 2 establish the rates for the minimax risk RWickε of the Wicksell

problem, considered in the framework of Johnstone and Silverman (1991), with

white noise perturbations. After taking into account the changes of variables

(hence the notation B̃ instead of B), and neglecting log(1/ε) factors, we have:

RWickε [B̃sπ,r(M),Lp([0, 1], x3−pdx)] � εζp, where:

ζ = min{
s

s+ 1
,
s− 2( 1π − 1

p)

s+ 3
2 − 2

π

,
s− 4( 1π − 1

p)

s+ 5
2 − 4

π

}.

Thus we find rates which are new in the literature, and we establish the quasi

optimality of the NeedVD estimator. However, of course, other formulations of

the Wicksell problem have been proposed, with some other results: a minimax

study can be found in Golubev and Levit (1998) for the estimation of the dis-

tribution function associated to f, and in Antoniadis, Fan, and Gijbels (2001)

convergence rates are established for the estimation of a probability distribution

function closely related to f.

3. Construction and properties of needlets

3.1 Construction of Jacobi needlets

In this section we recall briefly the construction of Jacobi needlets introduced

by Petrushev and Xu (2005), for more details we refer the reader to that paper.

We denote by (Pk) the classical Jacobi polynomials of type (α,β) normalized in

U = L2([−1, 1], µ) where dµ(x) � (1− x)α(1+ x)βdx; α,β > −1/2.

The first step of the contruction consists in a Littlewood-Paley decompo-

sition. Let a(.) be a C∞ function supported in [−2,−1
2 ] ∪ [12 , 2] such that
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∑
j≥0 a

2(x/2j) = 1, ∀|x| ≥ 1. Moreover we add the condition: a(x) > c > 0 for

3/4 ≤ x ≤ 7/4 (so as to use results established in Kerkyacharian, Picard, Petru-

shev, and Willer (2006)). Then we introduce the following family of functions,

which appear as the kernels of the operators performing the Littlewood-Paley

decomposition:

∀j ∈ N, Λj(x, y) =
∑
k∈N

a(k/2j)Pk(x)Pk(y).

The second step is a quadrature formula. For j ∈ N we set Zj = {ηk :

k = 1, 2, . . . , 2j}, where ηk = cos θj,k are the zeros of the Jacobi polynomial P2j

ordered so that η1 > η2 > · · · > η2j , and hence 0 < θj,1 < θj,2 < · · · < θj,2j < π.

It is well known that θj,k ∼ kπ
2j (cf Szegő (1975)). Let Πn denote the space of all

polynomials of degree inferior to n. Then the points of Zj serve as knots of the

Gaussian quadrature which is exact for all polynomials from Π2j+1−1, that is,∫
[−1,1]

Pdµ =
∑
ηk∈Zj

bj,ηk
P(ηk), ∀P ∈ Π2j+1−1,

where the coefficients bj,ηk
> 0 are the Christoffel numbers (Szegő (1975)) and

bj,ηk
� 2−jωα,β(2j;ηk) with ωα,β(2j; x) := (1−x+ 2−2j)α+1/2(1+x+ 2−2j)β+1/2.

We finally define the Jacobi needlets as

∀j ∈ N, k ∈ {1, . . . , 2j}, ψj,ηk
(x) =

√
bj,ηk

Λ2j(x, ηk).

In view of the support of a, the needlets depend on the Jacobi polynomials

in the following way: ψj,η(x) =
∑2j−1
l=2j−2+1 cj,η,lPl(x), with coefficients cj,η,l =

a(l/2j−1)Pl(η)
√
bj,η. Some examples of needlets are given in figure 3. Note

that setting α 6= β introduces some dissymmetry in the function, which presents

more variations in the interval corresponding to the highest parameter max(α,β).

3.2 Properties of Jacobi needlets

In this section we give a list of some useful results on the needlets established

in previous papers, and we give new properties of needlets that will be needed

to establish Theorem 2.

Wavelet-like properties: First of all, the needlets form a tight frame:

∀f ∈ H, f =
∑

j∈Nη∈Zj

〈f, ψj,η〉ψj,η and ‖f‖2 =
∑

j∈Nη∈Zj

|〈f, ψj,η〉|2.
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Figure 3: A Jacobi needlet of type (α,β) = (0, 0) (left) and (α,β) = (1, 0) (right)

Secondly each needlet ψj,ηk
is concentrated on a small interval centered on η, as

established in Petrushev and Xu (2005):

Theorem 3. For any l ≥ 1 there exists a constant Cl > 0 such that

|ψj,ηk
(cos θ)| ≤ Cl

1√
ωα,β(2j, cos θ)

2j/2

(1+ 2j|θ− πk
2j |)l

, 0 ≤ θ ≤ π.

This almost exponential concentration property implies wavelet-like inequalities

for the Lp norms of linear combinations of needlets. This is Theorem 4, estab-

lished in Kerkyacharian, Picard, Petrushev, and Willer (2006):

Theorem 4. Let 0 < p < ∞. Then there exists a constant Cp > 0 such that for

any collection of numbers {λk : k = 1, 2, . . . , 2j}, j ≥ 0,

‖
2j∑
k=1

λkψj,ηk
‖pLp(µ) ≤ Cp

2j∑
k=1

|λk|
p‖ψj,ηk

‖pLp(µ).

Differences with first generation wavelets: Needlets are not issued from a trans-

lation/dilatation scheme, hence major differences with classical wavelets. Let us

for example describe the needlets at a given resolution level j. First they are not

distributed uniformly on the interval, but around the ηks. Second they behave

quite differently depending on their locations η in the interval, which is reflected

in Theorem 3 by the variations of the function ωα,β(2j, .). This is illustrated

in figure 4: for a given resolution j, ”edge” needlets have different shapes than

”middle” needlets, and the Lp norms are not constant with respect to η (except

arguably for p = 2). More precisely concerning Lp norms, the following bounds
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have been established in Petrushev and Xu (2005) (for the upper bounds) and

in Kerkyacharian, Picard, Petrushev, and Willer (2006) (for the lower bounds).

They play in important role for the proofs of Theorem 1 and 2.

Theorem 5. ∀ 0 < p ≤ ∞,∀j ∈ N, we have up to scalars depending only on p:

∀ k = 1, . . . , 2j−1, ‖ψj,ηk
‖p �

(
2j(α+1)

kα+1/2

)1−2/p
,

∀ 2j−1 < k ≤ 2j, ‖ψj,ηk
‖p �

(
2j(β+1)

(1+ (2j − k))β+1/2

)1−2/p
.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−5

0

5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

Figure 4: For a given resolution j: some of the needlets ψj,ηk
(above), and the values of all the L3

norms (below) when ηk varies

Moreover unlike first generation wavelets, needlets do not form an orthonor-

mal basis, but only a redundant frame. This leads to some specific difficulties

for the study of the lower bound of the minimax risk. So we need to add, to

the previous list already used in Kerkyacharian, Picard, Petrushev, and Willer

(2006), two new results which are proved in the appendix.

First we need to upper bound the scalar products between needlets. This is

given by Lemma 1.

Lemma 1. We have:

1. ∀j, j ′, k, l such that |j ′ − j| ≥ 2, 〈ψj,ηk
, ψj ′,ηl

〉 = 0.
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2. ∀ζ > 0, ∃cζ such that ∀j, j ′, k, l with |j ′−j| ≤ 1: |〈ψj,ηk
, ψj ′,ηl

〉| ≤ cζ

(1+|k−2j−j ′ l|)ζ .

Secondly we need to lower bound the Lp norm of linear combinations of

needlets. Note that a result as general as the upper bound of Theorem 4 is

impossible. Indeed, for instance with the non null coefficients
√
bj,ηk

introduced

in the definition of the needlets, one can check that:
∑2j

k=1

√
bj,ηk

ψj,ηk
= 0.

However we establish the following result for needlets with a large enough distance

between the indexes of the η’s, in the case where p is an even integer:

Theorem 6. Let p ∈ 2N∗. Then there exists a constant cp > 0 and an integer np
such that for any collection of numbers {λk : k ∈ Ij}, j ≥ 0, where Ij ⊂ {1, 2, . . . , 2j}

and k, l ∈ Ij, k 6= l =⇒ |k− l| ≥ np,

‖
∑
k∈Ij

λkψj,ηk
‖pLp(µ) ≥ cp

∑
k∈Ij

|λk|
p‖ψj,ηk

‖pLp(µ).

4. Proof of the main result

4.1 Scheme of the proof

The proof of Theorem 2 requires well known methods for minimax lower

bounds, as available in Tsybakov (2004), combined with new tools (i.e. needlets).

We use Theorem 5.2 in Tsybakov (2004), which involves the Kullback-Leibler

divergence K(P,Q) between two probability measures P and Q, defined by:

K(P,Q) =

{ ∫
ln( dPdQ)dP, if P � Q;

+∞, otherwise.

Changing the notations, and replacing slightly the conditions so as to include the

case m = 1 (the result remains true using τ = 1/
√
m+ 1 instead of τ = 1/

√
m

in the proof), this theorem states that:

Theorem 7. Assume there exist m+ 1 functions f0, . . . , fm (with m ≥ 1) satis-

fying the three following conditions:

• Condition (i): for all i ∈ {0, 1, . . . ,m}, fi ∈ Bsπ,r(M),

• Condition (ii): for all i 6= j, ‖fi − fj‖pp ≥ 2δ for some δ > 0,
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• Condition (iii’): for all i ∈ {1, . . . ,m}, Pfi � Pf0 and 1
m

∑
i≥1K(Pfi , Pf0) ≤

θ log(M + 1), where 0 < θ < 1
8 and Pf denotes the probability distribution

of the process Y under the hypothesis f.

Then inf f̂ supf∈Bs
π,r(M) Pf(‖f̂ − f‖pp ≥ δ) ≥ π0, where π0 is a positive universal

constant.

We use this theorem by building several sets of hypotheses {fi, i = 0, 1, . . . ,m}

satisfying the three conditions. Then using Chebychev’s inequality we have:

inf
f̂

sup
f∈Bs

π,r(M)
Ef‖f̂− f‖pp ≥ π0δ.

With an appropriate choice of three sets {fi, i = 0, 1, . . . ,m} depending on the

level of noise ε, δ yields the three expected rates.

Let us precise condition (iii’) in model 1. Let I = [a, b] (the case I =

[a, b[ is similar). If we define the variables Ỹ(w) = Y(w(. − a)/
√
λ(.)) and

ξ̃(w) = ξ(w(. − a)/
√
λ(.)) for all w ∈ Ṽ = L2([0, b − a], dx) then model 1 is

equivalent to: Ỹ(w) = (Kf(.+ a)
√
λ(.+ a), w)

eV
+ εξ̃(w), which is equivalent to

the stochastic equation: ∀t ∈ [0, b−a], dỸt = Kf(.+a)
√
λ(.+ a)+εdWt where

(Wt)t≥0 denotes the standard Wiener process. Then using Girsanov’s formula,

or theorem 7.18 from Lipster and Shiryaev (1977), for all f, g ∈ U Pf is absolutely

continuous with respect to Pg, and under the hypothesis g the likelihood ratio

Λε(f, g) := dPf
dPg

(Y) is distributed as: logΛε(f, g) ∼ N (−1
2‖
K(f−g)
ε ‖2V , ‖

K(f−g)
ε ‖V).

Thus

K(Pf, Pg) = Ef ln(Λε(f, g)) = −Ef log(Λε(g, f)) =
1

2
‖K(f− g)

ε
‖2V .

Then condition (iii’) can be replaced by the sufficient condition (iii):

Condition (iii): f0 = 0 and for all i ∈ {1, . . . ,m}, ‖Kfi‖2V ≤ θ log(M + 1)ε2

where 0 < θ < 1
4 .
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4.2 Sparse cases

The sparse rates µ(α) and µ(β) are obtained respectively by applying The-

orem 7 to the following set of functions: {f0 = 0, f1 = γψj0,η1
}, and {f0 =

0, f1 = γψj1,η2j1
}, for some parameters γ, j0 and j1 chosen so as to satisfy condi-

tions (i) to (iii). We detail only the proof for µ(α) (the proof for µ(β) is similar).

Condition (i) is satisfied if uj := 2js(
∑
η∈Zj

|〈f1, ψj,η〉|π‖ψj,η‖ππ)1/π belongs to

lr(M), where f1 = γψj0,η1
. Using the first part of Lemma 1, uj = 0 whenever

|j− j0| ≥ 2. So in the sequel we assume that j ∈ {j0−1, j0, j0+1}, and the lr norm

of (uj) is bounded by a constant M (independent of γ > 0 and j0) if for instance

uj ≤ 3− 1
rM. We have: uπj = 2jπsγπ

∑
η∈Zj

|〈ψj0,η1
, ψj,η〉|π‖ψj,η‖ππ ≤ c(I1 + I2),

with, using the bound of Theorem 4:

I1 = 2j[πs+(π−2)(α+1)]γπ
2j−1∑
k=1

|〈ψj0,η1
, ψj,η〉|πk−(π−2)(α+1/2),

I2 = 2j[πs+(π−2)(β+1)]γπ
2j∑

k=2j−1+1

|〈ψj0,η1
, ψj,η〉|π(2j − k+ 1)−(π−2)(β+1/2).

Using the second part of Lemma 1, we have for any ζ: |〈ψj0,η1
, ψj,ηk

〉| ≤ c 1
kζ .

Thus choosing any ζ > −(π−2)(α+1/2)+1
π , we obtain: I1 ≤ c2j[πs+(π−2)(α+1)]γπ.

Moreover
∑2j−1

k=1
(2j−k+1)−(π−2)(β+1/2)

kζπ ≤ c2−ζπj2j[1−(π−2)(β+1/2)]+ , so for a large

enough ζ: I2 ≤ c2j(πs+(π−2)(β+1)−ζπ+[1−(π−2)(β+1/2)]+)γπ ≤ cI1. Thus we have for

all j ∈ {j0 − 1, j0, j0 + 1}: uπj ≤ c2j0[πs+(π−2)(α+1)]γπ, and condition (i) is satisfied

if, for a small enough c depending on M:

γ ≤ c2−j0[s+(1− 2
π

)(α+1)].

Condition (ii), using theorem 5, is fulfilled with: δ � γp2j0(p−2)(α+1).

Condition (iii) is satisfied if:
∫
I(
K(γψj0,η1

)(t)

ε )2dλ(t) ≤ C. We have ψj0,η(x) =∑2j−1
l=2j−2+1 cj,η,lPl(x), thus Kψj0,η(x) =

∑
blcj,η,lUl(x), and:

‖K(ψj0,η1
)‖2V =

∑
l

[blcj,η,l]
2 � 2−2νj0

∑
l

[cj,η,l]
2 = 2−2νj0‖ψj0,η1

‖2U ≤ C2−2νj0 .

So condition (iii) is satisfied if: γ2−νj0

ε ≤ c.
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In view of the three conditions, we set γ = cε2νj0 with a small enough c, and

2j0 � ε
− 1

s+ν+(1− 2
π )(α+1) . Then δ � ε

p[s+2( 1
p − 1

π )(α+1)]

s+ν+(1− 2
π )(α+1) gives the sparse lower bound.

4.3 Regular case

Letm be an integer such that 2m ≥ n2, where n2 is the integer from Theorem

6 in the case p = 2. For some parameters γ and j0 ≥ m + 1 chosen further, we

consider for ε ∈ {0, 1}2
j0−m−1

the 22
j0−m−1

functions:

fε = γ

2j0−m−1∑
k=1

εkk
δψj0,η2mk

,

for some δ satisfying: δ > max[1, α + 1/2, (1 − 2
π)(α + 1

2) − 1
π ]. We only keep

some of these functions. By Varshamov-Gilbert theorem (see for instance Tsy-

bakov (2004)), there exists a subset Ej0 = {ε0, . . . , εTj0 } of {0, 1}2
j0−m−1

and two

constants c > 0, ρ > 0 such that ∀0 ≤ u < v ≤ Tj0 :

2j0−m−1∑
k=1

|εuk − εvk| ≥ c2j0 , Tj0 ≥ exp(ρ2
j0) and fε0 = 0.

In the sequel we consider the set {fε, ε ∈ Ej0}.

Condition (i): for ε ∈ Ej0 , let uj := 2js(
∑
η∈Zj

|〈fε, ψj,η〉|π‖ψj,η‖ππ)1/π. Once

again uj = 0 whenever |j− j0| ≥ 2. Now let j ∈ {j0 − 1, j0, j0 + 1}. Then we have:

uπj ≤ c(I1 + I2), with:

I1 = 2j[πs+(π−2)(α+1)]γπ
2j−1∑
k=1

k−(π−2)(α+1/2)(

2j0−1∑
l=1

lδ|〈ψj0,ηl
, ψj,ηk

〉|)π,

I2 = 2j[πs+(π−2)(β+1)]γπ
2j∑

k=2j−1+1

(2j − k+ 1)−(π−2)(β+1/2)(

2j0−1∑
l=1

lδ|〈ψj0,ηl
, ψj,ηk

〉|)π.

Using Lemma 1 with some ζ given later, we have |〈ψj0,ηl
, ψj,ηk

〉| ≤ c 1
(1+|l−2j0−jk|)ζ .

Then, for x ∈ R, let bxc denote the largest integer smaller than x. We have:∑
l≤b2j0−jkc

lδ

(1+ |l− 2j0−jk|)ζ
≤ ckδ

∑
l≤b2j0−jkc

1

(1+ b2j0−jkc− l)ζ
≤ ckδ

∑
l≥1

1

lζ
≤ ckδ,
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for a large enough ζ. Moreover:∑
l≥b2j0−jkc+1

lδ

(1+ |l− 2j0−jk|)ζ
≤

∑
l≥b2j0−jkc+1

lδ

(l− b2j0−jkc)ζ
=

∑
l≥1

(l+ b2j0−jKc)δ

lζ

≤c
∑
l≥1

lδ + b2j0−jkcδ

lζ
≤ Ckδ,

for ζ large enough. To obtain the last line, we used the fact that δ ≥ 1. Thus∑2j0−1

l=1
lδ

(1+|l−2j0−jk|)ζ ≤ ckδ, and:

I1 ≤ c2j[πs+(π−2)(α+1)]γπ
2j−1∑
k=1

k−(π−2)(α+1/2)kδπ = c2j[s+δ+
1
2
]γ.

For I2 remark that for any k ∈ {2j−1 + 1, . . . , 2j} and any l ∈ {1, . . . , 2j0−1},

we have: | k
2j − l

2j0
| = k

2j − l
2j0

≥ |2
j−k
2j − l

2j0
|. So for such a k, as previously:∑2j0−1

l=1
lδ

(1+|l−2j0−jk|)ζ ≤
∑2j0−1

l=1
lδ

(1+|l−2j0−j(2j−k)|)ζ ≤ c(2j − k)δ, and:

I2 ≤ c2j[πs+(π−2)(β+1)]γπ
2j∑

k=2j−1+1

(2j−k+1)−(π−2)(β+1/2)(2j−k+1)δπ = c2j[s+δ+
1
2
]γ.

Finally we have uj ≤ c2j[s+δ+
1
2
]γ so fε belongs to Bsπ,r(M) if, with a small enough

c depending on M:

γ ≤ c2−j0[s+δ+ 1
2
].

Condition (ii): for all u, v ∈ Ej0 with u 6= v, fu − fv =
∑2j0−m−1

k=1 γ(εuk −

εvk)k
δψj0,η2mk

. So by Theorem 6 and Theorem 5, we have:

‖fu − fv‖2U ≥ cγ2
2j0−m−1∑
k=1

(εuk − εvk)
2k2δ = cγ2

∑
{k | εu

k 6=ε
v
k}

k2δ.

Let Nu,v denote the cardinal of the set {k ∈ {1, . . . , 2j0−m−1} | εuk 6= εvk}, then we

have Nu,v ≥ c2j0 and, since δ > 0:

‖fu − fv‖2U ≥ cγ2
Nu,v∑
k=1

k2δ = γ2Nu,v
1+2δ ≥ cγ22j0(1+2δ). (2)

Let us distinguish two cases. Suppose 2 < p < ∞ and let 1/p+ 1/q = 1. By (2)

and Hölder’s inequality we have:

c2j0(1+2δ) ≤ ‖fu − fv‖2L2(µ) ≤ ‖fu − fv‖Lp(µ)‖fu − fv‖Lq(µ).
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Using Theorem 4 and the fact that, under our assumptions, qδ−(q−2)(α+1/2) >

−1, we have:

‖fu − fv‖Lq(µ) ≤ cγ2
j

(q−2)
q

(α+1)
(

2j0−m−1∑
k=1

kqδ−(q−2)(α+1/2))1/q ≤ c ′γ2j0( 1
2
+δ),

therefore ‖fu − fv‖pLp(µ) ≥ cγ
p2j0p( 1

2
+δ).

Suppose now 1 < p < 2, we have using (2):

c2j0(1+2δ) ≤ ‖fu − fv‖2L2(µ) ≤ ‖fu − fv‖pLp(µ)‖fu − fv‖2−pL∞(µ).

From Theorem 3 we infer for all 0 ≤ θ ≤ π/2:

|ψj0,ηk
(cos θ)| ≤ C 2j0(1+α)

(1+ 2j0 |θ− kπ
2j0

|)l
1

(2j0θ+ 1)α+1/2
,

so for l large enough: |ψj0,ηk
(cos θ)| ≤ C2j0(1+α)

kα+1/2
1

(1+2j0 |θ− kπ

2j0
|)2

and, since δ−(α+

1/2) ≥ 0:

|fu(cos θ)−fv(cos θ)| ≤ cγ2j0(α+1)
2j0−m−1∑
k=1

kδ−(α+1/2) 1

(1+ 2j0 |θ− kπ
2j0

|)2
≤ c ′γ2j0( 1

2
+δ),

where in the last line we used the fact that for any θ,
∑2j0−m−1

k=1
1

(1+2j0 |θ− kπ

2j0
|)2

≤

c
∑+∞
l=1

1
l2

. Similarly the same bound holds for any π/2 ≤ θ ≤ π, thus we have:

‖fu − fv‖L∞(µ) ≤ c2j0( 1
2
+δ), and once again: ‖fu − fv‖pLp(µ) ≥ cγ

p2j0p( 1
2
+δ).

Condition (iii): we have
√
Tj0 ≥ exp(ρ22

j0), so (iii) is satisfied if for all εu ∈
Ej0 ,

∫
I(
K(fu)(t)

ε )2dλ(t) ≤ c2j0 for a small enough constant c. We have: fu =∑2j0−m−1

k=1 βj0,kψj0,η2mk
=

∑2j0−m−1

k=1

∑
l∈N βj0,kcj0,ηk,lPl(x), with βj0,k = γεukk

δ.

Thus:

‖K(fu)‖2L2(I,λ) =
∑
l

[

2j0−m−1∑
k=1

βj0,kblcj0,ηk,l]
2 � 2−2νj0

∑
l

[

2j0−m−1∑
k=1

βj0,kcj0,ηk,l]
2

= 2−2νj0‖
2j0−m−1∑
k=1

βj0,kψj0,η2mk
‖2L2(I,µ) ≤ c2

−2νj0

2j0−m−1∑
k=1

β2j0,k

≤ c2−2νj0γ2
2j0−m−1∑
k=1

k2δ = c2−2νj0γ22(2δ+1)j0 .
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So finally we need: 2−νj0γ2(δ+ 1
2

)j0

ε ≤ C2j0/2, i.e. 2(δ−ν)j0γ
ε ≤ C with a small

enough constant C.

In view of the three conditions, we set 2j0 � ε
− 1

s+ν+ 1
2 and γ � ε

s+δ+ 1
2

s+ν+ 1
2 , and

we obtain the lower bound: δ � ε
ps

s+ν+ 1
2 .

5. Appendix

Proof of Theorem 6. Let p ∈ 2N∗ and Ij ⊂ {1, 2, . . . , 2j}. We have the following

upper bound: ‖(
∑
k∈Ij λkψj,ηk

)‖pLp(µ) = A+ B, where:

A =
∑
k∈Ij

λ
p
k‖ψj,ηk

‖pLp(µ),

B =
∑

(pk)k∈Ij
∈Λ

p!
∏
k∈Ij λ

pk
k∏

k∈Ij pk!

∫1
−1

(
∏
k∈Ij

ψ
pk
j,ηk

(x))µ(x)dx,

and Λ = {(pk)k∈Ij | pk ∈ N,
∑
k∈Ij pk = p and ∃u 6= v such that pu >

0 and pv > 0}.

Let us introduce the functions ϕj,k(x) = 1√
ωα,β(2j,x)

2j/2

(1+2j| arccos x− πk

2j |)
2
s
, for some

0 < s < min{1, p
α∨β+1 }. For (pk)k∈Ij ∈ Λ, we use Theorem 3 with l = 2

s + 1 for

every ψj,ηk
, k ∈ Ij. There exists C such that:∏

k∈Ij

|ψj,ηk
(cos θ)|pk ≤ C

∏
k∈Ij

ϕj,k(cos θ)pk
∏
k∈Ij

1

(1+ 2j|θ− πk
2j |)pk

.

Let u, v ∈ Ij, u 6= v such that pu > 0 and pv > 0, and let ninf = mink,l∈Ij,k6=l |k−

l|. We have:∏
k∈Ij

(1+ 2j|θ−
πk

2j
|)pk ≥ (1+ 2j|θ−

πu

2j
|)(1+ 2j|θ−

πv

2j
|) ≥ c|u− v| ≥ cninf.

Thus we obtain:∑
(pk)k∈Ij

∈Λ

p!
∏
k∈Ij |λ

pk
k |∏

k∈Ij pk!

∏
k∈Ij

|ψj,ηk
|pk ≤ C

ninf

∑
(pk)k∈Ij

∈Λ

p!
∏
k∈Ij |λk|

pk∏
k∈Ij pk!

∏
k∈Ij

ϕ
pk
j,ηk

≤ C
(
∑
k∈Ij |λk|ϕj,ηk

)p

ninf
.
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Now let us proceed similarly to the sketch of the proof of theorem 4 available in

Kerkyacharian, Picard, Petrushev, and Willer (2006). Let us recall the two main

tools.

First, consider the maximal operator (Msf)(x) = supJ3x
(
1
|J|

∫
J |f(u)|sdu

)1/s
,

where the supremum is taken over all intervals J ⊂ [−1, 1] which contain x, s > 0,

and |J| denotes the length of J. Then one can infer the following bound from

the Fefferman-Stein maximal inequality (see Fefferman and Stein (1971) and

Andersen and John (1980/81)). If 0 < p, r < ∞ and 0 < s < min{p, r, p
α∨β+1 },

then for any sequence of functions (fk) on [−1, 1]∥∥∥(∑
k

(Msfk)
r
)1/r∥∥∥

Lp(µ)
≤ C

∥∥∥(∑
k

|fk|
r
)1/r∥∥∥

Lp(µ)
.

Secondly set η0 = 1, η2j+1 = −1 and θj,0 = 0, θj,2j+1 = π, respectively.

Denote Ik = [ηk+ηk+1

2 ,
ηk+ηk−1

2 ] and put Hk = hk1Ik with hk =
(

2j

ωα,β(2j;ηk)

)1/2
,

where 1Ik is the indicator function of Ik. Then ‖Hk‖Lp(µ) ∼ ‖ψj,ηk
‖Lp(µ), and one

shows in Kerkyacharian, Picard, Petrushev, and Willer (2006) that for any s > 0

ϕj,ηk
(x) ≤ c(MsHk)(x), x ∈ [−1, 1], ∀k = 1, 2, . . . , 2j, j ≥ 0.

We use these two results, with fk = Hk and r = 1. Noticing that the (Hk)

have disjoint supports, we obtain:

‖
2j∑
k=1

|λk|ϕj,ηk
‖pLp(µ) ≤C‖

2j∑
k=1

|λk|Hk‖pLp(µ) = C

2j∑
k=1

|λk|
p‖Hk‖pLp(µ)

≤C ′
2j∑
k=1

|λk|
p‖ψj,ηk

‖pLp(µ).

So finally there exists C > 0 such that |B| ≤ C A
ninf

, and if we impose the following

condition on Ij: ninf ≥ 2C, then we obtain |B| ≤ 1
2A, and thus:

‖(
∑
k∈Ij

λkψj,ηk
)‖pLp(µ) ≥

1

2

∑
k∈Ij

λ
p
k‖ψj,ηk

‖pLp(µ).
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Proof of Lemma 1. As indicated previously, the needlets are defined as: ψj,η =∑2j−1
l=2j−2+1 cj,η,lPl(x), with coefficients cj,η,l = a(l/2j−1)Pl(η)

√
bj,η. So if |j ′−j| ≥

2 then {2j−2 + 1, . . . , 2j − 1} ∩ {2j
′−2 + 1, . . . , 2j

′
− 1} = ∅, and 〈ψj,ηk

, ψj ′,ηl
〉 =

0, ∀(k, l).

For the second part of the lemma we use Theorem 3. For any δ there exists

cδ such that for all j, k:

|ψj,ηk
(cos θ)| ≤ cδ

1√
ωα,β(2j, cos θ)

2j/2

(1+ 2j|θ− πk
2j |)δ

, 0 ≤ θ ≤ π.

We recall thatωα,β(x) = (1−x)α(1+x)β, andωα,β(2j; x) = (1−x+2−2j)α+1/2(1+

x + 2−2j)β+1/2. For a given ζ > 0 and j, j ′, k, l such that |j ′ − j| ≤ 1, we use this

inequality for |ψj,ηk
| with δ = ζ + 2 and for |ψj ′,ηl

| with δ = ζ. Noticing that

ωα,β(2j, cos θ) � ωα,β(2j
′
, cos θ) we obtain:

|〈ψj,ηk
, ψj ′,ηl

〉| ≤ c2j
∫π
0

ωα,β(cos θ)
ωα,β(2j, cos θ)

sin θdθ
(1+ 2j|θ− πk

2j |)ζ+2(1+ 2j
′
|θ− πl

2j ′ |)
ζ

≤ c
Ij,k,α,β

(min0≤θ≤π fj,j ′,k,l(θ))ζ
,

with fj,j ′,k,l(θ) = (1 + 2j|θ − πk
2j |)(1 + 2j

′
|θ − πl

2j ′ |), 0 ≤ θ ≤ π, and Ij,k,α,β =

2j
∫π
0

ωα,β(cosθ)

ωα,β(2j,cosθ)
sinθdθ

(1+2j|θ− πk

2j |)2
.

First we have: min0≤θ≤π fj,j ′,k,l(θ) = min{fj,j ′,k,l(
πk
2j ), fj,j ′,k,l(

πl
2j ′ )} ≥ 1 +

π
2|j−j ′| |k−2j−j

′
l| ≥ c(1+ |k−2j−j

′
l|). Secondly let us divide Ij,k,α,β into two terms:

Ij,k,α,β = I1j,k,α,β + I2j,k,α,β, with:

I1j,k,α,β = 2j
∫ π

2

0

ωα,β(cos θ)
ωα,β(2j, cos θ)

sin θdθ
(1+ 2j|θ− πk

2j |)2
,

I2j,k,α,β = 2j
∫π

π
2

ωα,β(cos θ)
ωα,β(2j, cos θ)

sin θdθ
(1+ 2j|θ− πk

2j |)2

= 2j
∫ π

2

0

ωα,β(− cos θ)
ωα,β(2j,− cos θ)

sin θdθ
(1+ 2j|π− θ− πk

2j |)2

= 2j
∫ π

2

0

ωβ,α(cos θ)
ωβ,α(2j, cos θ)

sin θdθ

(1+ 2j|θ−
π(2j−k)
2j |)2

= I1j,2j−k,β,α.
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We have: sin θωα,β(cos θ) = sin θ(2 sin2(θ/2))α(2 cos2(θ/2))β ≤ c1θ2α+1, for all

0 ≤ θ ≤ π
2 , and:

ωα,β(2j; cos θ) = (2 sin2(θ/2) + 2−2j)α+1/2(2 cos2(θ/2) + 2−2j)β+1/2 ≥ c2θ2α+1.

Thus I1j,k,α,β ≤ c2j
∫ π

2
0

dθ
(1+2j|θ− πk

2j |)2
≤ c

∫ π2j

2
0

dθ
(1+|θ−πk|)2 ≤ C, since

∫+∞
−∞ dθ

(1+θ)2 is

finite, and the same goes for I2j,k,α,β.

Thus there exists C(α,β) > 0 such that for all (j, k): Ij,k,α,β ≤ C(α,β),

which completes the proof of the lemma.
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