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Equation of state of cubic boron nitride at high pressures and temperatures
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(Dated: February 27, 2007)

We report accurate measurements of the equation of state (EOS) of cubic boron nitride by x-ray
diffraction up to 160 GPa at 295 K and 80 GPa in the range 500-900 K. Experiments were performed
on single-crystals embedded in a quasi-hydrostatic pressure medium (helium or neon). Comparison
between the present EOS data at 295 K and literature allows us to critically review the recent
calibrations of the ruby standard. The full P -V -T data set can be represented by a Mie-Grüneisen
model, which enables us to extract all relevant thermodynamic parameters: bulk modulus and its
first pressure-derivative, thermal expansion coefficient, thermal Grüneisen parameter and its volume
dependence. This equation of state is used to determine the isothermal Grüneisen mode parameter
of the Raman TO band. A new formulation of the pressure scale based on this Raman mode, using
physically-constrained parameters, is deduced.

PACS numbers: 62.50.+p,61.10.Nz,65.40.De

I. INTRODUCTION

Cubic boron nitride (c-BN) is a material with remark-
able properties: extreme hardness, chemical inertness,
large band gap and high mechanical and thermal stabili-
ties. This makes it very attractive for a number of appli-
cations including abrasive or protective-coating material
and microelectronic devices. Knowing the properties of
c-BN under conditions of high pressure (P ) and temper-
ature (T ) is important for some of these applications. It
has also been recognized1,2 that c-BN could be a useful
pressure sensor in high pressure (HP)- high temperature
(HT) experiments in diamond anvil cells, based on its
intense Raman TO band (1054 cm−1 at ambient con-
ditions) which is well separated from the signal of the
anvils. This has recently motivated investigations of the
Raman spectra under extreme conditions of P and T 3,4,5.

As pointed out by Holzapfel6, the accurate determina-
tion of the equation of state (EOS) of solids with very
large bulk modulus is a stringent test for the ruby sen-
sor calibration, a matter which has been under intensive
debate recently6,7,8,9,10,11,12. For highly incompressible
solids like c-BN, experiments in the megabar range are
required in order to extract reliable values of the bulk
modulus B0 and its first pressure derivative B′

0. At am-
bient temperature, the equation of state has been so far
investigated up to 34 GPa in a He pressure medium1,
to 66 GPa in N2

13, and 120 GPa in methanol-ethanol14.
Although the maximum pressure in the latter study is
relatively high, the small number of measurements, their
limited accuracy, and the use of a pressure media prone to
nonhydrostatic stress above ∼ 20 GPa15 reflects in poorly
constrained and questionable values of B0 and B′

0.

There is to date no available EOS data at simultaneous
high pressure and temperature. By contrast, several the-
oretical studies16,17,18 have reported thermal properties
at ambient and high pressures. These works relied on the
assumption that c-BN can be treated as a quasi-harmonic

solid; this still needs to be validated by experiment.
We present here careful and accurate measurements of

the EOS up to 160 GPa at 295 K and up to 80 GPa
at high temperatures (500-900 K). We used helium or
neon (at high T) as pressure transmitting medium since
they are known to provide the closest approximation to
hydrostatic compression in the megabar range9,15. The
thermal expansion at ambient pressure has also been in-
vestigated to 950 K. We show that our data can be rep-
resented by a simple Mie-Grüneisen model. This allows
us to extract all the relevant thermodynamic parame-
ters. The EOS is then used to determine the isothermal
Grüneisen parameter of the Raman TO band. Accord-
ingly, the pressure-scale based on this Raman band is
reformulated using physical constraints.

This article is organized as follows: in section II, we
present the experimental procedure; section III is devoted
to the presentation of the room-temperature equation of
state; the thermal expansion at room pressure follows in
section IV; the presentation and analysis of P–V –T data
at simultaneous HP-HT are given in section V; in section
VI, the thermal dependence of the isothermal Grüneisen
parameter of the Raman TO band is investigated and
a new formulation of the Raman pressure scale is then
presented. Section VII finally gives concluding remarks.

II. EXPERIMENTAL PROCEDURE

The present experiments were conducted with single
crystals of c-BN of size ranging from 3 to 15 µm. These
were selected from a powder batch using their Raman sig-
nal as a criterium for good crystallinity: crystals which
presented intense Raman first-order TO and LO bands
with lorentzian shapes and small bandwidths (∼ 5 cm−1)
were selected. A few crystals were then loaded into the
experimental volume of a diamond anvil cell, along with
ruby and SrB4O7: Sm2+as pressure sensors. Care was
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taken in order to position the samples and the pressure
sensors within a few micron distance to each other and at
the center of the diamond culet. We used diamond anvils
with flat culets of 0.1 to 0.4 mm and rhenium gaskets. He-
lium was chosen as pressure transmitting medium for the
room temperature experiments above 50 GPa and neon
was used otherwise. In the P − T range of the present
experiments, these two pressure transmitting media are
known to provide the best approximation to hydrostatic
conditions9,15.

Membrane diamond anvil cells (MDAC) designed for
high-temperature operation were used. The cells could
be fitted as a whole inside a ring-shaped resistive heater.
To achieve temperatures above 800 K, a smaller, addi-
tional heater made of a resistive wire coiled around a
ceramic tube, is positioned around the anvil-gasket as-
sembly. The temperature of the heaters are regulated
within 1 K using commercial devices. An isolated, K-
type thermocouple is fixed by ceramic cement with its
head in contact with the diamond anvil, close to the gas-
ket. The ensemble is heated in air or in a Ar-H2(2%)
reducing atmosphere. Numerous previous experiments
have shown that the temperature measured by the ther-
mocouple is within 5 K of the sample temperature3,19,20.

Pressure was determined using the pressure shift of the
luminescence lines of ruby (at 295 K) or SrB4O7: Sm2+.
The pressures reported here are based on Holzapfel’s
2005 ruby scale11, hereafter denoted H2005. We
also compared the results obtained with other ruby
calibrations6,10,11,12,21 and, as discussed below, H2005
was found to provide excellent consistency between
present and literature data. The calibration of the
SrB4O7: Sm2+sensor22, initialy based on the ruby scale
from Ref. 21, was also modified to match the H2005 scale.
For the measurements above 100 GPa at 295 K, the ruby
signal was too weak, thus the pressure was determined
from the equation of state of 4He (Ref. 23, with proper
correction for the H2005 ruby scale). The volume of 4He
was calculated using the reflections present on the same
diffraction patterns as the c-BN sample and excellent
agreement between this pressure determination and that
from ruby was observed below 100 GPa.

Angular-dispersive x-ray diffraction experiments were
performed on beamline ID27 of the European Syn-
chrotron Radiation Facility (ESRF, Grenoble, France).
The monochromatic beam (λ = 0.3738 Å) was focused
to a ≈ 7 × 10 µm2 spot. Diffracted x-rays were collected
by a MAR345 image plate while the MDAC was continu-
ously rotated about the φ-axis by ±20◦. The images were
integrated using the fit2D program24. Between 6 and
9 single-crystal reflections could be observed depending
on the sample, with a resolution up to ≈ 0.83 Å. All of
them could be indexed in the zinc-blende structure (space
group F43m) reported for this material25. The lattice
parameter a was refined with the program UnitCell26,
using the measured d-spacings of all observed reflections.
The uncertainty on a was on average 5 × 10−4 Å.
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FIG. 1: (Color online) Volume per atom of c-BN as a func-
tion of pressure at 295 K. The open and solid circles are
present measurements on samples in a neon and helium pres-
sure medium respectively. The estimated error bars are within
the symbol sizes. Triangles: Ref. 14 (in methanol/ethanol);
dashed line: Ref. 1 (in helium); squares: Ref. 13 (in nitro-
gen). The solid line is the fit to the present data using the
Vinet equation27[V0 = 5.9062(6) Å3/at, B0 = 395(2) GPa,
B′

0 = 3.62(5)].

TABLE I: Comparison between values for the zero-pressure
isothermal bulk modulus B0 and its first pressure derivative
B′

0 obtained by fitting the present data at ambient temper-
ature to different EOS models: Vinet27, second-order Birch-
Murnaghan (BM)28 and Holzapfel’s AP2 form29. The zero-
pressure volume V0(295 K) was fixed to 5.9062 Å3/at.

Model Vinet BM AP2

B0, GPa 395(2) 396(2) 397(2)

B′

0 3.62(5) 3.54(5) 3.50(5)

III. THE ROOM-TEMPERATURE EQUATION

OF STATE

The volume per atom V of c-BN at 295 K (V = a3/8)
was measured up to 57.8 GPa in a neon pressure medium
and up to 162 GPa in a helium pressure medium. Ex-
cellent agreement is observed between the two data sets.
The results are gathered in Fig. 1 and Table IV. As ex-
pected, no phase transition was observed in this pressure
range.

To extract the values of the zero-pressure isothermal
bulk modulus B0 and its first-pressure derivative B′

0

from the present data, we considered three different phe-
nomenological models of equation of state: the Vinet
form27, the Birch-Murnaghan second-order form28 and
Holzapfel’s AP2 equation29. These relations were least-
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FIG. 2: (Color online) Comparison between experimental
data at 295 K from this work (circles), Ref. 14 (triangles),
Ref. 13 (squares) and Ref. 1 (dashed line). The fit to the
present data using the Vinet EOS27 is used as the reference.
The top graph shows the difference in pressure and the bottom
one, the difference in volume multiplied by a factor 100.

squares fitted to the data. The results are listed in Table I
and the fit using the Vinet equation27 is plotted in Fig. 1.
In the compression range probed here (0.77 ≤ V/V0 ≤ 1)
the three models fit equally well the data and give very
similar values for B0 (395(2) ÷ 397(2) GPa) and its first
pressure-derivative B′

0 (3.50(5)÷ 3.62(5)). Here as in all
the text, the number in parenthesis indicate the standard
deviation for the last digit of the fitting parameter; it
does not reflect its absolute uncertainty, which primarily
depends here on the one of the ruby standard. The vol-
ume and pressure difference between experimental data
and the Vinet fit is shown in Fig. 2. The volume V0 at
P = 0 and 295 K was taken as the measured value at
1 atm of 5.9062(6) Å3/at, corresponding to a lattice pa-
rameter a0 of 3.6152(2) Å. The latter values are identical,
within uncertainties, to previous reports1,14,30.

Figs. 1 and 2 also shows experimental data obtained
in previous studies1,14. For comparison with the present
work, the original pressure values have been rescaled onto
the H2005 scale. Aleksandrov et al.1 reported their mea-
surements up to 34 GPa in He in the form of a quadratic
fit of the compression factor ∆ρ/ρ0–where ρ is the den-
sity, vs. the relative shift of the ruby R1 line. Their
absolute volume values differ from ours by less than
2 × 10−2 Å3/at, corresponding to a maximum pressure
difference of 2 GPa. By contrast, systematic deviations
are observed between our measurements and those of
Solozhenko et al.

13 and Knittle et al.
14 above about 40

GPa, where their measured volume at a given pressure
is systematically higher than our. This is likely due, at
least in part, to the larger nonhydrostatic stresses pro-

TABLE II: Comparison between values of B0 (in GPa) and
B′

0 of c-BN and natural diamond (C) at 295 K obtained with
different ruby scales from the literature. B0 and B′

0 are deter-
mined by fitting the present data (c-BN) and Occelli et al.’s
data (C) to the Vinet model27. In all fits, the values of the
zero-pressure volume was fixed to 5.9062 Å3/at (c-BN) and
5.6733 Å3/at (C). χ2 indicates the goodness of fit.

c-BN Diamond

Ruby scale B0 B′

0 χ2 B0 B′

0 χ2

MXB198621 397(3) 2.75(6) 14.2 447(3) 3.00(7) 4.5

AGSY19891 394(3) 3.93(7) 21 440(3) 4.38(8) 6.4

H20036 390(2) 3.49(5) 12.1 435(2) 3.87(4) 1.5

DLM20049 395(3) 3.28(6) 16.8 440(3) 3.66(7) 4.6

H200511 395(2) 3.62(2) 12.8 443(3) 3.97(5) 1.5

CNSS200510 387(3) 3.64(7) 18.2 432(3) 4.05(7) 5.3

DO200712 398(2) 3.35(5) 13.6 444(2) 3.72(5) 2.6

duced by the N2 or methanol-ethanol pressure medium
used in Solozhenko et al.

13 and Knittle et al.
14 experi-

ments respecitvely.

As mentioned above, the values of B0 and B′

0 obtained
by fitting the EOS of highly incompressible solids like
c-BN and diamond are very sensitive to the chosen pres-
sure calibration for the ruby standard. As a matter of
fact, the first hint that the commonly used Mao et al.’s
1986 calibration21 (hereafter denoted as MXB1986) be-
comes increasingly wrong with pressure was given by the
measurements of the diamond EOS by Aleksandrov et

al.
1 to 40 GPa in 1989. More recently, the very accu-

rate measurements of the diamond EOS up to megabar
pressures by Occelli et al.

7 evidenced more firmly the dis-
crepancy between the value found for B′

0 using ultrasonic
techniques (4.0 ± 0.7), on one hand, and that obtained
from the EOS (3.0) when pressure is calculated with the
MXB1986 scale, on the other hand. Consequently, a re-
vision of the latter scale has been proposed by several
authors6,8,9,10,11,12, based on the diamond data and/or
those recently obtained for the EOS of several metals
that showed the same trend9.

In Table II we compare the B0 and B′

0 parameters ob-
tained by fitting the Vinet EOS to the present c-BN data
using the various ruby calibrations proposed in the liter-
ature. For comparison and consistency check, we also
show the results obtained with the diamond data of Oc-
celli et al.

7. To decide which ruby scale(s) seem(s) more
reasonable, we list in Table III the values of B0 and B′

0

determined by other means, whether experimental (ultra-
sonic or Brillouin scattering measurements) or theoreti-
cal. Unfortunately, there exists only one determination of
B′

0 for diamond using ultrasonic experiments under pres-
sure, which has a limited accuracy, and none has been
reported yet for c-BN. The largest source of compar-
ison comes thus from the numerous theoretical studies
based on first-principles (ab initio) techniques. Whereas
the bulk modulus and zero-pressure volume show large
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TABLE III: Literature data for the values of V0, B0 and B′

0 of c-BN and diamond (12C). V0 is in Å3/at and B0 in GPa.
The various abbreviations are: DFT: density functional theory, LDA: Local density approximation, GGA: generalized gradient
approximation, ZPE: zero-point energy, DG: Debye-Grüneisen model, LD: lattice dynamics, VMC: variational quantum Monte-
Carlo, DMC: diffusion quatum Monte-Carlo; ”static” stands for calculations of the static lattice.

c-BN 12C

Reference V0 B0 B′

0 Method Reference V0 B0 B′

0 Method

Ref. 31 400(20) Brillouin Ref. 32 442(5) 4.0(7) Ultrasound

Ref. 16 5.797 395 3.65 DFT+LDA (static) Ref. 33 444.8(8) Brillouin

5.884 387 3.66 DFT+LDA+ZPE (0 K) Ref. 34 5.497 473 3.5 DFT+LDA(static)

5.888 385 3.66 DFT+LDA+ZPE+DG(300 K) Ref. 8 5.510 465 3.63(3) DFT+LDA (static)

Ref. 18 5.745 391 DFT+LDA+LD (300 K) 5.697 433(2) 3.67(3) DFT+GGA (static)

Ref. 35 5.788 397 3.6 DFT+LDA (static) Ref. 36 5.529 454 3.65 DFT+LDA+ZPE+QHA(300 K)

Ref. 17 5.742 398 DFT+LDA (static) 5.722 422 3.72 DFT+GGA+ZPE+QHA (300 K)

Ref. 37 5.718 397 3.59 DFT+LDA (static) 5.604 472(4) 3.8(1) VMC+ZPE+QHA (300 K)

Ref. 14 5.954 368 3.6 DFT+LDA (static) 5.711 437(3) 3.7(1) DMC+ZPE+QHA (300 K)

Ref. 38 5.905 370 3.8 Tight-binding

variations among the various theoretical studies, the val-
ues for B′

0 appear much less dependent on the theoretical
approaches and approximations used in each of them, es-
pecially if we consider the most recent works. Indeed,
the two latest studies of diamond give values of B′

0 be-
tween 3.65 and 3.8(1), whether the density functional
theory (DFT), within LDA or GGA approximations, or
the quantum Monte-Carlo approach is used. Similarly,
all DFT-LDA calculations on c-BN give B′

0 = 3.6± 0.05,
irrespective of the considered pseudopotential. In the
case of c-BN also, there is a nice agreement between the
latest studies on the values of B0 which vary from 395
to 398 GPa, i.e in very good agreement with the Bril-
louin scattering experiment31 (400 ± 20 GPa). We see
from Table II that the ruby scales H2003, H2005 and
DO2007 are those giving the best consistency with avail-
able literature data, while providing the best fits based
on the least-squares χ2 criterium. The DLM2004 and
CNSS2005 calibrations give close results but a larger χ2,
which could be ascribed to the used functional form.
This also confirms that the MXB1986 scale becomes in-
creasingly wrong with pressure, underestimating it by
about 8.8% at 160 GPa. We note that H2003, H2005,
DLM2004, CNSS2005 and DO2007 scales agree within
3% at 160 GPa, which may be considered as the present
uncertainty of the ruby scale at this pressure. It is
now clear that independent experimental determination
of B′

0, such as given by sound-propagating experiments,
for both c-BN and diamond could help to better establish
the ruby scale in the megabar range.

IV. THERMAL EXPANSION AT AMBIENT

PRESSURE

We performed volume measurements at room pressure
as a function of temperature between 295 and 948 K. The
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FIG. 3: (Color online) Volume and thermal expansion co-
efficient as a function of temperature. The solid circles are
present data and triangles show measurements of Ref. 30. The
fit to both data sets using Eq. (1) is shown as the red line.
The blue dotted line represents the calculations of Albe16. In
the inset, the volume thermal coefficient α0 is represented.

results are plotted in Fig. 3 and reproduced in Table IV.
They are compared to those of Slack and Bertram30 be-
tween 77 and 1289 K. The two data sets agree within
error bars in the overlapping range, although we system-
atically find larger volume values at a given temperature
above 300 K. The calculations of Albe16 are also shown as
the dotted line in Fig. 3. They are based on the density
functional theory (DFT) within the local density approxi-
mation (LDA) for the static part, and a Debye-Grüneisen
model for the thermal part. The calculated volume fol-
lows very well the experimental data below 500 K but
increasingly overestimate them above this temperature.

Present and Slack and Bertram30 data were fitted to-
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TABLE IV: Experimental P − V −T data of c-BN obtained
in the present work. P is in GPa, a in Å, V in Å3/at and T
in K.

P T a V P T a V

0.0 295 3.6152 5.907 0.0 377 3.6158 5.909

1.5 295 3.6110 5.886 0.0 479 3.6174 5.917

4.5 295 3.6029 5.846 9.8 497 3.5879 5.773

7.4 295 3.5938 5.802 21.6 499 3.5555 5.618

9.3 295 3.5880 5.774 2.0 500 3.6110 5.886

11.1 295 3.5832 5.751 25.1 500 3.5465 5.576

12.7 295 3.5792 5.732 13.9 500 3.5760 5.716

13.0 295 3.5793 5.732 46.5 501 3.4983 5.352

13.5 295 3.5771 5.721 44.5 501 3.5024 5.370

15.4 295 3.5715 5.695 0.0 573 3.6181 5.920

17.8 295 3.5658 5.667 39.3 600 3.5145 5.426

19.9 295 3.5607 5.643 47.9 600 3.4965 5.343

21.4 295 3.5578 5.629 56.5 600 3.4791 5.264

22.3 295 3.5541 5.612 66.3 600 3.4609 5.182

24.4 295 3.5494 5.590 76.2 600 3.4458 5.114

25.0 295 3.5484 5.585 84.2 600 3.4264 5.028

26.0 295 3.5461 5.574 0.0 674 3.6201 5.930

28.6 295 3.5395 5.543 8.2 748 3.5962 5.814

38.6 295 3.5164 5.435 4.6 748 3.6069 5.866

42.7 295 3.5040 5.378 18.9 749 3.5653 5.665

48.2 295 3.4930 5.327 35.8 749 3.5243 5.472

51.9 295 3.4849 5.290 42.1 750 3.5095 5.403

53.1 295 3.4823 5.278 49.5 750 3.4938 5.331

57.8 295 3.4746 5.244 14.7 750 3.5789 5.730

66.6 295 3.4565 5.162 0.0 775 3.6216 5.938

77.3 295 3.4405 5.091 0.0 873 3.6233 5.946

87.0 295 3.4249 5.022 54.2 900 3.4841 5.287

95.7 295 3.4087 4.951 0.0 948 3.6246 5.952

101.6 295 3.3989 4.908

109.8 295 3.3860 4.853

119.3 295 3.3722 4.793

119.7 295 3.3721 4.793

124.3 295 3.3634 4.756

133.3 295 3.3525 4.710

139.7 295 3.3437 4.673

147.7 295 3.3334 4.630

154.5 295 3.3246 4.593

162.5 295 3.3147 4.553

gether using the second-order approximation to the zero-
pressure Grüneisen equation of state (see Ref. 39 and
references therein). In this approximation, the tempera-
ture dependence of the volume is given by:

V0(T ) = V0,0

[
1 +

Uth(T )

Q − bUth(T )

]
(1)

where Uth(T ) is the internal energy due to lattice vi-

brations, b = 1
2 (B′

0,0 − 1) and Q = (V0,0 B0,0)/γ̂. V0,0,
B0,0 and B′

0,0 are respectively the volume, bulk modulus
and its first derivative at zero pressure and temperature.
γ̂ is the thermobaric Grüneisen parameter defined by:

γ̂ = −(V/Uth)(∂Fth/∂V )T = (V/Uth)Pth (2)

where Fth(V, T ) is the thermal part of the Helmholtz
free energy and Pth = −(∂Fth/∂V )T . If γ̂ is inde-
pendent of T , which we assume here, then γ̂ = γth

where γth is the thermodynamic Grüneisen parameter
(γth = (V/Cv)(∂P/∂T )V with Cv the specific heat at
constant volume)39. Uth(T ) was evaluated within the
Debye model:

Uth(T ) = 9RT

(
Θ0

T

)3 ∫ Θ0/T

0

x3

exp(x) − 1
dx (3)

where R is the ideal gas constant and Θ0 the Debye
temperature at P = 0. For the latter, we used the
value of 1700 K estimated from the infrared spectrum
by Gielisse et al.

40, which is also in agreement with data
on specific heat18,41. B0,0 was fixed at 397 GPa, which
is obtained by adding to the value of B0(295 K) found
above (Vinet fit), the small correction (2 GPa) calcu-
lated by Albe16 between 0 and 300 K (Table III). B′

0,0

was fixed equal to B′

0 (295 K) = 3.62.
The fit of the V0(T ) data with Eq. (1) then gives V0,0 =

5.9026(4) Å3/at and γth0 =1.04(1) (γth0 = γth(P = 0)).
It is shown as the solid red line in Fig. 3. The tempera-
ture dependence of the thermal expansion coefficient α0,
calculated by differentiating Eq. (1), is plotted in the in-
set of the same figure. It is seen that Eq. (1) gives a
good reproduction of V0(T ) in the considered tempera-
ture range. We also note that the present value for γth0 is
close to the one obtained by Brillouin-zone integration of
the phonon dispersion curve (< γν >= 0.95) determined
by Kern et al.

17 using density functional theory.

V. HIGH PRESSURE AND TEMPERATURE

EQUATION OF STATE

High pressure and temperature measurements were
performed up to 80 GPa at 500, 600, 750 and 900 K,
with the results listed in Table IV. These are to our
knowledge the first reported data at simultaneous HP-
HT conditions. The P–V –T data set is represented in
Fig. 4(a).

This data set was least-squares fitted using a Mie-
Grüneisen model. In this model, the pressure is expressed
as the sum of a ”cold” (P0) and thermal (Pth) part, i.e.:

P (V, T ) = P0(V ) + Pth(V, T ) (4)

with Pth(V, T ) = 0 at 0 K. To represent P0(V ), a Vinet
equation27 is used, whereas the thermal part is written
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FIG. 4: (Color online) (a) Experimental volume of c-BN as a
function of pressure and temperature obtained in the present
work. Crosses show experimental data and the dashed-line
is the Vinet fit to the data at 295 K. (b) Difference be-
tween experimental pressures and predicted ones using the
Mie-Grüneisen model with the parameters given in Table V.

in the Debye-Grüneisen (quasi-harmonic) approximation,
using Eqs. (2-3). In this approximation, we have the
identity γth = γ̂ = γD, where γD = −∂ ln(Θ)/∂ ln(V )
is the Debye-Grüneisen parameter. The variation of
the Debye temperature Θ with volume is thus given by
that of γth. Here γth was allowed to vary with the
compression ratio according to the empirical relation
γth = γth0(V/V0,0)

q, where q was taken as constant42.
In the fit, the only varying parameter is q. All the others
(V0,0, B0,0, B′

0,0, γth0 and Θ0) were fixed to the values
determined as described above. The obtained value for q
is 4±1.5 and the whole parameter set is given in Table V.
Fig. 4(b) shows the difference between the experimental
pressures and the one predicted by the present model.
This difference is for most data points smaller than ±1
GPa and the rms deviation is 0.6 GPa. If we allow B0,0

and γth0 to vary in the fitting procedure, the resulting
values are identical to the starting ones within their stan-
dard deviations. The parameter set given in Table V can
thus be regarded as the best one for the Mie-Grüneisen

TABLE V: Parameters for the P–V –T equation of state
of c-BN based on a Mie-Grüneisen model, with a Vinet
equation27 for the static part and a Debye-Grüneisen model
for the thermal part [Eq. (4)].

V0,0,Å
3/at B0,0, GPa B′

0,0 Θ0, K γth0 q

5.9026(4) 397(2) 3.62(5) 1700 1.04(2) 4(1.5)
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FIG. 5: Variation of the thermal expansion coefficient with
temperature along several isobars, as deduced from the Mie-
Grüneisen EOS.

EOS based on the present data.

The value found for q is large compared to the typical
range for this parameter (0.8 < q < 2.2)42. This is to be
related to the rapid decrease of the thermal expansion
coefficient with pressure that is observed from present
data. Indeed, γth and α are related by the thermody-
namic relation α = (1/B)γthCV . In the quasi-harmonic
approximation, γth may be obtained by the Brillouin-
zone integration of the phonon mode Grüneisen param-
eters. A large reduction of α may thus indicate that the
Grüneisen parameters for the acoustic modes, which give
the dominant contribution, rapidly decrease with pres-
sure. As a matter of fact, the calculated γ for the trans-
verse acoustic branches at P = 0 are very low (∼ 0.25)
along some directions of the Brillouin zone, especially
near the zone boundaries17. In diamond, which presents
similar phonon dispersion curves, calculations show a de-
crease of these parameters with pressure, eventually lead-
ing to negative values of γ and α at ultra-high pressures
(P > 700 GPa)43. We also note that a similar phe-
nomenum is responsible for the negative thermal expan-
sion in Si at ambient pressure and low temperatures44.
To illustrate the decrease of α with pressure, we plot in
Fig. 5 its variation with temperature along several iso-
bars from 0 to 100 GPa as deduced from the present
Mie-Grüneisen EOS.
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VI. THE CONSTRAINED RAMAN PRESSURE

SCALE

A. Temperature dependence of the TO mode

Grüneisen parameter

The present construction of a P–V –T EOS enables us
to reanalyze our previous measurements3 of the Raman
TO mode at HP-HT. In particular, we are now able to
precisely determine the isothermal mode Grüneisen pa-
rameter γTO(T ) = −(∂ ln νTO/∂ lnV )T , where νTO is
the frequency of the TO mode. To do so, the sample
volume was calculated for each P–T conditions at which
νTO was measured (see Ref. 3) by inverting Eq. (4).

The results are reported in Fig. 6, where we plot the ex-
perimental values of ln(νTO) as a function of ln[V/V0(T )].
In the scanned pressure range (P < 21 GPa), and for each
of the five studied isotherms (300 < T < 723 K), these
two quantities appear to be linearly related. This tells
us that γTO(T ) is constant along each isotherm and may
then be directly determined by a linear regression of the
data, using the expression:

ln νTO(V, T ) = −γTO(T ) ln
V (P, T )

V0(T )
+ ln νTO

0 (T ) (5)

where νTO
0 (T ) = νTO(P = 0, T ). The fits to the latter

equation are shown as dotted lines in Fig. 6. The values of
γTO(T ) and νTO

0 (T ) so obtained are listed in Table VI. It
can be seen that, within error bars, γTO(T ) is constant in
this P–T range, with an average value of 1.257(5). This
value is slightly larger than that given by Aleksandrov et

al.
1 [1.188] and in good agreement with the theoretical

determination of Kern et al.
17 [1.2].

It can also be observed that νTO
0 (T ) follows V0(T ) in

a linear way in the probed T range. Extrapolating this
line to 0 K gives a value of νTO

0 at zero temperature of
1055.1(1) or 1054.6(2) cm−1, depending on whether the
fitted or experimental νTO

0 (T ) is used.

B. The high-temperature pressure scale

In Ref. 3 we recalled the various reasons that make
c-BN a good candidate for pressure measurement in a
DAC at high temperature. A pressure scale was given
based on the measurements of the TO mode frequency
(νTO) at high P–T . The form of this pressure scale de-
rives from the first-order Murnaghan EOS, and is ob-
tained by inverting the following equation for the P-T
dependance of νTO:

νTO(P, T ) = νTO
0 (T )

(
1 +

B′

0

B0(T )
P

)γT O/B′

0

(6)

In Ref. 3, B0(T ) and B′

0 were considered as fit param-
eters, taking for γTO the value reported by Ref. 1. We
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FIG. 6: (Color online) Frequencies of the TO Raman mode
as a function of V/V0(T ) on a logarithmic scale. The crosses
show experimental data3 and the dashed lines are linear fits.

TABLE VI: Isothermal mode Grüneisen parameter of the
Raman TO mode based on the Raman data reported in Ref. 3
and present P–V –T data. V0 is the volume at P = 0 obtained
by inverting Eq. (4). The value of νTO

0 ≡ νTO(P = 0, T )
predicted by the linear regression of the data [Eq. 5] is also
given and compared to the direct measurements. T is in K, V0

in Å3/at and νTO
0 in cm−1. The values at T = 0 are obtained

by linear regression of νTO
0 (T ) vs. V0(T ).

T V0 νTO
0 (fit) νTO

0 (exp.) γTO (fit)

300 5.9055 1054.0(1) 1053.93(10) 1.251(3)

373 5.9084 1052.9(2) 1052.43(20) 1.256(5)

473 5.9139 1050.8(2) 1050.17(13) 1.262(6)

573 5.9209 1048.3(1) 1048.17(27) 1.259(2)

673 5.9290 1045.1(1) 1045.45(13) 1.262(4)

723 5.9334 1043.6(1) 1043.91(41) 1.253(4)

0 5.9026 1055.1(1) 1054.6(2)

assumed then that γTO was independent of temperature,
which is confirmed by the present work. Our EOS allows
us to better constrain Eq. (6) by imposing physical con-
straints on the various parameters. Since this pressure
scale is to be used for high temperatures, we only con-
sider variations above 300 K. The variation of B0 with
temperature was deduced from our Mie-Grüneisen EOS
by fitting isotherms at 100 K intervals by a Vinet equa-
tion. A quadratic form is found suitable to represent the
behavior of B0 between 300 and 2000 K, with the follow-
ing expression:

B0(T > 300 K) = 396.5(5)− 0.0288(14) (T − 300) (7)

−6.84(77)10−6 (T − 300)2
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FIG. 7: (Color online) Comparison between the present pres-
sure scale [Eq. (8)] and the one given by Goncharov et al.
[Ref. 5, Eq. (2)].

The data for νTO(P, T ) was then fitted to Eq. (6), us-
ing Eq. (7) as the expression for B0(T ). Adding a tem-
perature dependence to B′

0 does not improve the fit, so we
kept it as constant. The value of γTO = 1.257 obtained
above was used. As in Ref. 3, νTO

0 (T ) was expressed as a
quadratic form, where the coefficients are allowed to vary
within the boundaries given by Ref. 45. We thus obtain
a revised pressure scale, reading as:

P = (B0(T )/3.62)

{[
νTO(P, T )

νTO
0 (T )

]2.876

− 1

}
(8)

with B0(T ) as in Eq. (7) and νTO
0 (T ) = 1058.4(5) −

0.0091(23)T − 1.54(22)× 10−5 T 2

Recently, Goncharov et al.
5 reported Raman measure-

ments up to 1750 K and 40 GPa in argon pressure
medium and proposed a pressure scale in a form simi-
lar to Eq. (8). The two scales are compared in Fig. 7 in
the pressure range 0-50 GPa at 300, 1000 and 1500 K.
The difference increases with pressure and temperature
and reaches ∼10% at 50 GPa and 1000 K. The fact that
the present scale is constrained by measured physical pa-
rameters gives us confidence that it can be safely used
in the 0-100 GPa and 300-1000 K range. P–V –T as well
as Raman data to higher T would be desirable to extend
the calibration.

VII. CONCLUSIONS

We have reported experimental P–V –T data on c-BN
from x-ray diffraction experiments in a resistively-heated
diamond anvil cell. Volume measurements extend to 160
GPa at 295 K and 80 GPa at 500-900 K. To our knowl-
edge, these are the first reported EOS data at simultane-
ous HP-HT conditions. By fitting the room-temperature
EOS to various EOS models, we extracted the values
of the bulk modulus [395(2) GPa] and its first-pressure
derivative [3.62(5)]. We have also examined the varia-
tion of these parameters with respect to the chosen cal-
ibration of the ruby standard, and showed that the one
recently proposed by Holzapfel11 (H2005) provides very
good consistency between static compression data and
ab initio predictions. Coupling the present information
with independent measurements of B′

0, such as obtained
by sound-propagating experiments, would be of great in-
terest to better constrain the ruby standard calibration in
the megabar range. A good description of our full data
set was obtained using a Mie-Grüneisen model, where
the thermal pressure originating from lattice vibrational
energy is calculated in the Debye approximation. We ob-
serve a rapid decrease of the thermal expansion coefficient
with pressure, which itself reflects on the strong variation
of the thermal Grüneisen parameter. The Mie-Grüneisen
EOS was then used to determine the mode Grüneisen pa-
rameter of the Raman TO mode, which was found to be
temperature independent in the range 300-723 K. A new
formulation of the Raman pressure scale was then de-
duced from the present results, which should hold in the
P -T range 0-100 GPa and 300-1000 K. Extension of this
work to higher temperatures would be valuable to better
constrain the thermal effects, and extend the calibration
of the Raman scale.
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