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Localized Modes in a Finite-Size Open Disordered Microwave Cavity

David Laurent, Olivier Legrand, Patrick Sebbah, Christian Vanneste, Fabrice Mortessagne∗

Laboratoire de Physique de la Matière Condensée, CNRS UMR 6622,

Université de Nice Sophia-Antipolis, 06108 Nice, France

We present measurements of the spatial intensity distribution of localized modes in a two-
dimensional open microwave cavity randomly filled with cylindrical dielectric scatterers. We show
that each of these modes displays a range of localization lengths and successfully relate the largest
value to the measured leakage rate at the boundary. These results constitute unambiguous signa-
tures of the existence of strongly localized electromagnetic modes in two-dimensionnal open random
media.

PACS numbers: 42.25.Dd, 72.15.Rn

In spite of two decades of intensive research, the ex-
perimental observation of strong localization of classi-
cal waves remains a tremendous challenge [1]. One of
the main difficulties lies in the fact that the signature
of localization is sought after through statistic measure-
ments of transmission. Indeed, the expected exponential
decrease of transmission could not be attributed unam-
biguously to localization rather than absorption [2]. In
contrast, transient analysis, as demonstrated by Weaver
in ultrasound measurements in a two-dimensional (2D)
disordered medium [3], allows to discriminate between
these two phenomena. A similar approach has been pro-
posed in disordered microwave systems by Genack who
demonstrated localization in the microwave regime using
variance of total transmission as a genuine probe to lo-
calization even in the presence of strong absorption [4].
More recently, G. Maret’s group have observed deviation
from diffusion in the time of flight distribution, which
cannot be explained by absorption but plead for a tran-
sition to strong localization of photons in three dimen-
sions [5]. Such signatures of localization in transmission
reflects the nature of the underlying quasimodes, which
are spatially localized inside the system. The increasing
contribution of such long-lived modes, as time progresses,
is responsible for the observed deviations from the regime
of purely diffusive transport [6]. Besides the fact that
their localized nature is not affected by absorption, ex-
hibiting the localized modes inside the random system
would be a direct demonstration of localization and the
key to the understanding of the mechanism underlying
the transition from a diffusive to a localized regime.

Observations of localized modes have been mostly re-
ported in 1D random systems [7] where localization is
readily achieved. In the marginal dimension of 2, local-
ization of bending waves in randomly loaded steel plates
[8] and spatial concentration of microwave field in mi-
crowave cavities [9] have been reported where the in-
fluence of the reflecting boundaries precludes the unam-
biguous attribution of the localization effect to the sole
presence of scatterers. The aim of this letter is to provide
an unequivocal observation of localized modes in an open
2D random system. Beyond the mere observation of such

modes, we put them under a test of robustness and suc-
cessfully confront them to numerical simulations and the-
oretical predictions concerning the relationship between
their spectral widths and the localization lengths.

All our results are obtained from transmission sig-
nals measured in a 2D microwave cavity operated at fre-
quencies ranging from 500MHz to 10GHz. The orig-
inal rectangular (76 × 47 cm) bare cavity is composed
of two copper plates sandwiching a copper rectangu-
lar frame of thickness 5mm. The quality of copper
is OFHC (Oxygen-Free-High-Conductivity) to reduce
ohmic losses. Due to its height of 5 mm (smaller than half
the smallest wavelength used), this cavity only admits
transverse magnetic two-dimensional modes of order 0.
Through one of the copper plates, a few antennas are in-
troduced, their optimal weak coupling being obtained by
fixing their penetration length inside the cavity at 2 mm.
The antennas are monopolar with SMA connectors and
their positions are displayed on Fig. 1. In transmission
measurements, only two antennas are used at a time, the
other ones being terminated by 50Ω loads so that all an-
tennas behave the same way regarding the losses they
imply. These antennas are linked to an HP 8720D vector
analyzer through flexible cables. The details about trans-
mission measurements are described in reference [10].

In order to mimic a truly open system, frames of mi-
crowave absorbing foams are inserted in the cavity, sur-
rounding an empty rectangular-shaped space. Two dif-
ferent layers of absorbers (ECCOSORBr LS-14 and LS-
16) are used with different electromagnetic impedances
(see Fig. 1), the inner layer having a relative impedance
of 0.89 and the outer 0.87 at 10GHz. Their thickness
is the overall thickness of the cavity and their respective
widths are determined to provide 20dB of attenuation
in the intensity reflected back to the empty space at fre-
quencies above 500MHz. As shown in Fig. 1, a disor-
dered medium is introduced in the empty space. It con-
sists of 196 cylindrical dielectric scatterers with a mea-
sured dielectric constant ǫ = 37, a radius of 3mm and
a height of 5 mm, the scattering region being a 25 cm ×

25 cm square. The scatterers have been chosen for their
particular low loss (quality factor Q = 7000 at 7 GHz)
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and their high index of refraction. In the frequency range
of interest, the possible excitation of transverse electric
waves inside the dielectric scatterers can be assumed to
be negligible. It is worth noting that our 2D system is
formally equivalent to the problem of a quantum particle
with positive energy above a disordered potential consist-
ing of negative circular wells embedded in a zero poten-
tial. To be more explicit, at a given frequency ω = ck, the
2D Helmholtz equation for the component φ of the elec-
tric field perpendicular to the plane of the cavity, can be
written in the form of the stationary Schrödinger equa-
tion

[

−∆ + (1 − n2(~r))k2
]

φ(~r) = k2 φ(~r) . (1)

Therefore, the well associated to a dielectric scatterer
should not be viewed as a confining well but rather as a
resonant scattering well.

c+

+

+d

a

b+

FIG. 1: Schematic view of the cavity: 196 scatterers located
in a central square region. For some measurements, the scat-
terers outside the dashed square are withdrawn. Two different
layers of microwave absorbers ensure a weak inward-reflection
of the field. The antennas (a, b, c, d) are shown through small
crosses.

The positions of the scatterers are determined at ran-
dom with a filling fraction of 8.9% and a minimal dis-
tance dmin between the centers of neighboring scatter-
ers. At the above given filling fraction, the values of
dmin range from 8mm to 19mm. The smallest value is
dictated by practical constraint, the largest corresponds
to the lattice parameter of a square array. We fixed
dmin = 11mm. Figure 1 displays a particular realization
of disorder using the above parameters. In Fig. 2, a typi-
cal transmission spectrum (between antennas a and b) is
shown. One can clearly identify a frequency range which
is reminiscent of the bandgap generally found in the case
of a periodic structure. Here the central frequency of the
observed gap is essentially related to the neighboring Mie
resonances [8, 11] (the Mie cross section of a single scat-
terer is shown superimposed to the measured spectrum
in Fig. 2). The width of the gap is controlled by dmin.

Using a diffusion based theory [12, 13, 14] we evaluated
the localization length ξtheory in two dimensions for our
system of scatterers within the independent scattering
approximation. It reads :

ξtheory = ℓ exp(πRe(keff )ℓ/2) (2)

where keff is the effective complex wave number and

ℓ = (2Im(keff ))
−1

is the mean free path, which is in-
versely proportional to the Mie cross section. The mini-
mal values of this localization length are roughly located
at the maxima of the Mie cross section and are of the or-
der of 10mm, a value comparable to the mean free path
and also to the mean distance between scatterers for the
filling fraction mentioned above.
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FIG. 2: Full curve : transmitted intensity between antennas a
and b for the disordered realization shown in Fig. 1. Dashed
curve: Mie cross section of a single dielectric scatterer. The
dotted lines indicate the resonances whose associated wave-
functions are depicted on Fig. 3.

By using an appropriate fitting procedure [10] we ex-
tracted the central frequency and the spectral width of
a given resonance. Due to the finite size of the scatter-
ing region, only a few widths take values close to those
expected when taking only the ohmic losses into account
(close to 1MHz at 6GHz), whereas the vast majority are
significantly larger. To begin, we focused our attention
on three resonances: one in the gap at 5.45GHz, one on
the edge of the gap at 5.66GHz, and one at 7.80GHz,
and with respective widths 1.1MHz, 3.0MHz, 15.0MHz.
When using different pairs of antennas we obtained spec-
tra very similar to the one presented in Fig. 2, the most
affected resonances being the sharpest, like the three se-
lected, as they can even disappear for a given pair. This
behavior pleads in favor of the observation of strongly
localized modes. Indeed, as will be shown below, when
both antennas are located on vanishing tails of a given
localized mode, the transmission signal itself vanishes.

We obtained the spatial distribution of these reso-
nances by using a well-known scanning perturbation
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technique (see ref. [15] and references therein). This
technique is based on the fact that, for a given reso-
nance, a frequency shift is caused by the presence of a
small movable stainless steel bead placed inside the cav-
ity. This perturbation technique crucially relies on the
fact that the analyzed resonance is sufficiently well iso-
lated from its neighbors. The shift is a measure of the in-
tensity of the local field at the bead location, and is essen-
tially proportional to the square of the electric field[15].
Indeed, through measurements on computable modes of
an empty rectangular cavity we checked that the trans-
verse magnetic field contribution is at most of the order
of 1 % of the maximum contribution of the electric field.
The bead can be moved on a very finely defined grid (5-
mm-step) from the outside of the cavity by means of a
strong magnet which is fixed on an X-Y precise transla-
tion stage.

(a)

(b)

(c) (f)

(e)

(d)

FIG. 3: (Color online) Comparison between experimental and
numerical maps of the amplitude of the electric field for local-
ized modes at 5.45 GHz (a) and (d), 5.66 GHz (b) and (e), and
at 7.80 GHz (c) and (f), the scattering region being a 25 cm
× 25 cm square. The numerical maps are obtained through
FDTD-based simulations (with perfectly open boundary con-
ditions).

In figure 3 (a,b,c), two-dimensional scans of the am-
plitude (square root of the intensity) of the three long-
lived modes mentioned above are depicted. They display

a clear spatial concentration. Whereas mode (a) seems
to be trapped in an small region surrounded by scatter-
ers, modes (b) and (c) are more extended. Following
a method indicated below, we evaluated the localization
lengths for these modes: between 15 and 25mm for mode
(a), 25-36mm for mode (b) and 38-50mm for mode (c)
(the ranges depending on the anisotropy of the spatial
pattern). Note that modes (a) and (b) have vanishing
amplitudes at the locations of antennas b and c (see Fig.
1) and that their corresponding peaks vanish in the trans-
mission signal when the pair of antennas b and c is used.

For the sake of completeness, we also performed nu-
merical simulations of the Maxwell equations in our sys-
tem through a Finite-Difference Time-Domain (FDTD)
method [16]. To mimic perfectly open boundary condi-
tions Perfectly Matched Layer (PML) boundaries were
implemented [17]. These PML conditions are used in the
same spirit as the absorbing microwave layers of the ac-
tual experiment. In the numerical simulations, losses are
only due to the leakage through the boundary since no
ohmic dissipation is included. Hence, spectral responses
display sharper peaks than in the experiment but all the
identified resonances of the experiment are found at the
corresponding frequencies. Fig. 3 shows a comparison
between experimental and simulated modes. The agree-
ment is good. Note the presence of a nonvanishing field
inside the scatterers, such information being beyond the
reach of our experimental measuring technique.

As the numerical modes have precisely calculated ex-
ponentially vanishing tails far from their centers, we ex-
tracted values of their localization lengths ξloc by numer-
ically evaluating the field amplitude spatial autocorre-
lation. (Due to a small contribution from the squared
magnetic field to the frequency shift, our experimental
scanning technique is less accurate for this purpose.) The
first important result we deduce from the field ampli-
tude spatial autocorrelation concerns the anisotropy of
the exponential decay for a given mode. In our experi-
mental system, the scale separation between the localiza-
tion length and the size of the scattering system is most
likely not sufficient to observe a spatial decay with a sin-
gle characteristic length at large distances. The overall
values of ξloc thus obtained are in complete agreement
with the minimal values of ξtheory. The finite size of the
scattering system is also known to influence the spectral
widths due to leakage at the boundary [18]. This influ-
ence is quantitatively described by the following relation
between the spectral partial width Γleak due to leakage
at the boundary, the localization length ξloc, and the dis-
tance R from the center of the mode to the boundary:

Γleak ∝ exp(−2R/ξloc) (3)

This is readily demonstrated in our experiment. By re-
ducing the size of the scattering region by steps of 2 cm
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we experimentally obtained increasing values of the spec-
tral width for a given resonance. We then extracted the
partial width Γleak from the measured total width Γtot

thanks to a proper evaluation of the contribution Γ∞ of
Ohmic losses [10]. The behavior of Γleak given by relation
(3) was observed, in different realizations of disorder, for
many localized modes provided they were sufficiently well
centered in the scattering region (otherwise, the above re-
duction was not feasible). This is illustrated in Fig. 4
for a mode measured at 4.2GHz in a scattering region
of the same size as before with a filling fraction of 5.5%
and dmin = 13mm. In Fig. 4, ln[(Γtot − Γ∞)/Γ∞] is
plotted vs the size 2R of the scattering region. The ex-
pected exponential behavior is quantitatively verified if
one uses, instead of the localization length, a value close
to the maximal value of the range deduced from the spa-
tial autocorrelation: 1.4 cm ≤ ξloc ≤ 2.5 cm. All this
confirms that the exponentially vanishing field of such
modes at the boundary involves all the scatterers of the
system through complex multiple interference effects. In
consequence, we can conclude that the modes we observe
should not be simply considered as defect-like modes or
cavity modes built by the mere presence of a few scatter-
ers surrounding them.
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FIG. 4: Evolution of the reduced normalized width vs the size
2R of the scattering system for the mode shown in inset. Γ∞

is the contribution of ohmic losses to the total spectral width
Γtot = Γleak + Γ∞. Straight line is the best linear fit whose
absolute value of the inverse slope is 2.3 ± 0.2 cm

In summary, we have presented the unambiguous
observation of strongly localized modes in a two-
dimensional open disordered microwave cavity. Most im-
portantly, we have investigated the influence of the finite
size of the scattering system on the structure of localized
modes. Indeed, we have found that the naive picture
of exponentially decaying spatial envelopes should be re-
considered in view of the complex patterns of the ob-
served modes. Nonetheless, through the field amplitude
spatial autocorrelation we extracted a range of localiza-

tion lengths for a given mode and successfully related the
largest value to the measured leakage rate at the bound-
ary.
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