
HAL Id: hal-00133806
https://hal.science/hal-00133806

Submitted on 27 Feb 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A nonlinear model for combustion instability: analysis
and quenching of the oscillatrions

Ioan Doré Landau, Fethi Bouziani, Robert Bitmead

To cite this version:
Ioan Doré Landau, Fethi Bouziani, Robert Bitmead. A nonlinear model for combustion instability:
analysis and quenching of the oscillatrions. A. Astolfi, L. Marconi. Analysis and design of nonlinear
control systems, Springer, pp.100-119, 2007. �hal-00133806�

https://hal.science/hal-00133806
https://hal.archives-ouvertes.fr


A non linear model for combustion instability :

analysis and quenching of the oscillations

Ioan D. Landau1, Fethi Bouziani,2, and Robert R. Bitmead3

1 Laboratoire d’Automatique de Grenoble, ENSIEG BP 46, 38402 Saint-Martin
d’Hères, France landau@lag.ensieg.inpg.fr

2 Laboratoire d’Automatique de Grenoble, ENSIEG BP 46, 38402 Saint-Martin
d’Hères, France Fethi.Bouziani@lag.ensieg.inpg.fr

3 Department of Mechanical & Aerospace Engineering, University of California,
San Diego, La Jolla CA 92093-0411, USA rbitmead@ucsd.edu

Prelude

It is a great pleasure for us to contribute to this book dedicated to Alberto
Isidori on the occasion of his sixty fifth birthday. It is also, for the first author,
the occasion to acknowledge a very long period of useful and pleasant exchange
which started in 1973 (bilinear systems) and has continued through the years
on various specific subjects.

The important contributions of Albereto Isidori in the control of nonlinear
systems have had a tremendous impact in the control community. Feedback
linearization was one of the important subjects developed by Alberto. While
the oscillatory nonlinear system considered in this contribution requires spe-
cific techniques for its analysis, still a feedback linearization is used for quench-
ing the oscillations.

1 Introduction

Combustion instabilities phenomena in gas turbine are the focus of several in-
vestigations started from more than 200 years [1]. Recent important research
programs oriented on this topic are conducted in some countries with indus-
trial collaboration (inter alia USA, France and UK). The papers [2, 3, 4, 5]
give an overview of this activity. These phenomena are extremely complex and
hard to predict, but in most cases it can be explained by an unsteady flame
generating pressure waves which are reflected by physical boundaries into the
combustion process. In term of system interpretation, this correspond to a
positive feedback coupling between the heat-release process and acoustics of
the combustion chamber (Figure 1). The positive feedback coupling leads to
the creation of nonlinear limit cycles. Generally, these phenomena occur only
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Fig. 1. Positive feedback coupling between the heat-release process and acoustics.

in the confined environments. The Rijke tube [6] which consists of flame placed
inside an open-ended cylinder (Figure 2), is one simple demonstration that
shows that instabilities occur in the confined environments.

The heart of the issue is that combustion at low equivalence ratio (fuel-
to-air ratio) is desirable for reducing pollution. Unfortunately, as equivalence
ratio decreases the instability appears and manifests itself through strong
self-sustained oscillations, which can be sometimes characterized by the coex-
istence of oscillations at several distinct non-harmonic frequencies.

From a practical perspective, the modulation of a fuel flow fraction into
the combustor is possible as a control input (of multiplicative type). This
modulation has been widely tested in experiments as a candidate for active
control for suppressing the combustion instability [7, 8]. In the literature,
several active control methods have been proposed; an excellent overview of
existing methods is given in [5]. Systematic design and implementation of ac-
tive control requires a realistic low order model which exhibits the dominant
dynamical effects. The parsimonious modelling of such nonlinear systems is an
extremely difficult task, given that high-order, physics-based computational
fluid dynamical codes can be unreliable in demonstrating the phenomenon
well. One particular feature which the model should capture is the simultane-
ous coexistence of two non-harmonic oscillating modes [9, 10].

Establishing a low order model requires a good knowledge of the phys-
ical phenomenon in same time the availability of mathematical tools allow-
ing the analysis of nonlinear oscillating systems. The models presented in
the literature are established according to various approaches. Some mod-
els are established by a purely theoretical approach starting from physical
equations of combustion process while others by a purely experimental ap-
proach. However, there exist models which are established on a compromise
between the theoretical approach and the experimental approach (gray-box
approach). Among these models, Dunstan and Bitmead model [11] represents
good base for understanding the instabilities mechanism. Unfortunately, in
the absence of analysis tools this model loses much of its utility. This leads
that for such system, the first step of model identification can be seen as
the association between the powerful analysis methods and existing models.
The Krylov-Bogoliubov (K-B) method (detailed in [12, 13, 14, 15, 16]) is one
of analysis methods widely used for nonlinear oscillating systems. From our
knowledge, this work is the first application of K-B method for analysis of
combustion instabilities models. The effectiveness of this method combined
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Fig. 2. Rijke tube.

with a relevant model may be considered as the solution of combustion insta-
bilities modelling problem.

The model presented in this chapter, inspired from [11], is an analyti-
cally tractable model for combustion instabilities. The chapter is organized
as follows. In Section 2, a summarize of the first K-B approximation for au-
tonomous multi-resonator systems is present. To illustrate efficiency of K-B
approximation and multiplicative control, in Section 3, a generalized Van der
Pol equation is considered as a reduced-order model for combustion instabili-
ties. In Section 4, a multiple-resonator model is presented and analyzed using
K-B method. This model is employed in Section 5 for studying the possibility
of quenching of the oscillations in combustion instabilities by multiplicative
control. In Section 6, conclusion and further work remarks are given.

2 First K-B approximation for autonomous

multi-resonator systems

Consider a system with n resonators described by differential equations of the
form,

d2xj

dt2
+ ω2

j xj = ǫfj

(

x,
dx

dt

)

, (j = 1, 2, . . . , n), (1)

where x = {x1, . . . , xn},
dx
dt

= {dx1

dt
, . . . , dxn

dt
} and ǫ is a small parameter. For

the jth resonator, the first K-B approximation (for more details see Chapter 2
of [15]) proposes the solution
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xj = aj cos(ψj), (2)

where ψj = ωjt + θj , aj and θj are slowly time-varying functions obeying the
equations

{

daj

dt
= − ǫ

2ωj
Hjj(a1, . . . , an, θ1, . . . , θn),

dθj

dt
= − ǫ

2ωjaj
Gjj(a1, . . . , an, θ1, . . . , θn),

(3)

with Hjj and Gjj obtained from the function fj

(

x, dx
dt

)

by substituting

{

xk = ak cos(ωkt + θk),
dxk

dt
= −akωk sin(ωkt + θk),

(k = 1, 2, . . . , n) (4)

and by setting it in the form

fj (a1 cos(ω1t + θ1), . . . , an cos(ωnt + θn),−a1ω1 sin(ω1t + θ1), . . . ,

−anωn sin(ωnt + θn)) = Hjj sin(ωjt + θj) + Gjj cos(ωjt + θj)

+

r
∑

ωj 6≈ωℓ

(Hℓj sin(ωℓt + θℓ) + Gℓj cos(ωℓt + θℓ)) ,(5)

where ωℓ and θℓ are integer linear combinations of ω1, . . . , ωn and θ1, . . . , θn,
respectively, and r is the number of possible integer linear combinations of
ω1, . . . , ωn different from ωj . For xj the coefficients of the fundamental term
in (5) are used and the all other terms are eliminated.

3 Simple case study: generalized Van der Pol equation

In this section a reduced-order model for combustion instabilities with one
single resonator (corresponding to a generalized Van der Pol equation) will be
considered to illustrate the potential effectiveness of K-B method for analysis
and the closed-loop multiplicative control for quenching the oscillations.

3.1 Model analysis

Consider the Van der Pol equation in generalized form (Figure 3).

ẍ + ω2x =
d

dt

{

ϕv0 + ϕv1x −
ϕv3

3
x3

}

, (6)

where ω is the natural frequency, ϕv1 and ϕv3 are arbitrary positive constants,
ϕv0 is an arbitrary constant, p = x is the downstream pressure perturbation
at the burning plane, and q = ϕv0 + ϕv1x − ϕv3

3 x3 is the flame heat release
rate.
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Fig. 3. A simplified combustion instabilities model.

Lemma 1. For the Van der Pol equation (6), the application of K-B approx-
imation gives

x = a cos(ωt + θ) (7)

with
{

ȧ = ϕv1

2 a
(

1 − ϕv3

4ϕv1

a2
)

θ̇ = 0
(8)

Proof: consider the equation (6) and the form (1), in this case (ǫ = 1)

f(x,
dx

dt
) = ϕv1

(

1 −
ϕv3

ϕv1
x2

)

dx

dt
. (9)

Introducing x = a cos(ωt + θ) and ẋ = −aω sin(ωt + θ), i = 1, 2, in (9), one
gets

f(., .) = −ωϕv1a

(

1 −
ϕv3

4ϕv1
a2

)

sin(ωt + θ) −
ωϕv3a

3

4
sin (3(ωt + θ)) . (10)

Consequently, one can consider that (10) is in the form (5). Thus for x one
obtains

{

H1 = −ωϕv1a
(

1 − ϕv3

4ϕv1

a2
)

G1 = 0
(11)

By the application of rule (3) on (11), one deduces the result on lemma 1.
The equations system (8) have two steady-state solutions. One steady-

state solution corresponds to a = 0, and it is unstable. The other steady-

state solution correspond to a = 2
√

ϕv1

ϕv3

, and it is locally stable. Therefore,

we conclude for the uncontrolled generalized van der Pol equation, that the
solution x is a self-sustained oscillation with steady frequency close to ω and

with steady state amplitude close to 2
√

ϕv1

ϕv3

.
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3.2 Quenching of the oscillations

The output-feedback control is introduced into the model by multiplying a
function of the output x to capture the effect of fuel flow modulation on
the heat release rate. The control strategy is characterized by the following
differential equation.

ẍ + ω2x =
d

dt

{

(1 + Φ(x))
(

ϕv0 + ϕv1x −
ϕv3

3
x3

)}

, (12)

where ϕv0 is different from zero and the feedback law Φ(x) is a polynomial
function of x. In order to quench self-sustained oscillation, the control law
must force the system (12) to be asymptotically stable at the origin. Hence,
one considers the following lemma.

Lemma 2. For the following control low

Φ(x) = −Kx −
1

ϕv0

(

ϕv1x −
ϕv3

3
x3

)

, (13)

where K is a constant of the same sign of ϕv0, the system (12) is locally
asymptotically stable at the origin.

Proof: Introducing the expression (13) into the differential equation (12), one
gets

ẍ + ω2x = −Kϕv0ẋ − 2ϕv1

(

K + ϕv1

ϕv0

)

xẋ + 4ϕv3

3

(

K + 2ϕv1

ϕv0

)

x3ẋ − 2
ϕ2

v3

3ϕv0

x5ẋ

Expressing this equation in state equation form with z1 = x and z2 = ẋ, one
obtains















ż1 = z2

ż2 = −ω2z1 − Kϕv0z2 − 2ϕv1

(

K + ϕv1

ϕv0

)

z1z2

+ 4ϕv3

3

(

K + 2ϕv1

ϕv0

)

z3
1z2 − 2

ϕ2

v3

3ϕv0

z5
1z2

.

Computation of the linearized system matrix around the origin gives

Az =

[

0 1
−ω2 −Kϕv0

]

, (14)

since by assumption K and ϕv0 have the same sign, the eigenvalues of matrix
Az will have negative real part. By using Lyapunov’s indirect method, one
can deduce that the system is locally asymptotically stable at the origin.

The local asymptotical stability at the origin implies that quenching of
the oscillation is possible and can occur in a local domain around the origin
which can be estimated [17]. This quenching is illustrated by the simulation
test presented in Figure 4.
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Fig. 4. Simulation test of quenching oscillations on a model described by a gen-
eralized van der Pol equation, where K = 1, ϕv0 = 0.45, ϕv1 = ϕv1 = 0.1 and
ω = 1.

4 Combustion instability model

The relationship between coupled Van der Pol equations and combustion in-
stabilities model of Dunstan and Bitmead [11] has been discussed in [18]. A
system of two coupled Van der Pol equations has been considered as a basic
model for combustion instabilities

{

d2x1

dt2
+ ω2

1x1 = ǫ d
dt

(

(x1 + x2) −
1
3 (x1 + x2)

3
)

,
d2x2

dt2
+ ω2

2x2 = ǫ d
dt

(

(x1 + x2) −
1
3 (x1 + x2)

3
)

,
(15)

where ω1 and ω2 are the natural radian frequencies of the first and second
resonators respectively and which can have arbitrary values with some modest
provisions to be developed, ε is a small positive quantity. The model has been
successfully analyzed using Krylov-Bogoliubov approach in [18]. However, this
model does not include the cascade differentiator - delay and the low pass filter
(existing in Dunstan and Bitmead model [11]). While interesting results have
been obtained concerning the existence or quenching of the oscillations in the
system, the model was not able to explain the simultaneous presence of two
oscillating non-harmonic modes observed experimentally.

In order to make modelling more realistic in [19], the model based on two
coupled Van der Pol equations was further generalized by incorporating delay
and filtering. The modifications lead to the model presented in Figure 5 and
is described by the following equations

{

ẍ1 + ω2
1x1 = d

dt
LPF

{

ϕv0 + ϕv1ṗτ − ϕv3

3 ṗ3
τ

}

,

ẍ2 + ω2
2x2 = d

dt
LPF

{

ϕv0 + ϕv1ṗτ − ϕv3

3 ṗ3
τ

}

,
(16)

where ϕv0 is an arbitrary constant, ϕv1 and ϕv3 are arbitrary negative con-
stants, τ is a transport time delay from nozzle to flame surface, LPF is the
transfer operator of the low pass filter, p = x1 + x2 is the downstream pres-
sure perturbation at the burning plane, ṗτ is the output of the delay-plus-
differentiator block and q is the flame heat release rate.
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Fig. 5. Proposed combustion instability model.

4.1 Model analysis

Equation development and analysis

The first step of analysis is to develop the left term of equations (16) in order
to apply K-B approximation. The presence of delay and low pass filtering
yields some difficulties in computing approximations, which will be treated
by introducing some realistic assumptions which are effective in stationary
regime. Consider the system (16) and the form (1) (with ǫ = 1), in this case

f1 = f2 = f =
d

dt
LPF

{

ϕv0 + ϕv1ṗτ −
ϕv3

3
ṗ3

τ

}

. (17)

Replacing

ẋi = −aiωi sin(ωit + θi), (i = 1, 2)

in ṗ, one obtains

ṗ = ẋ1 + ẋ2

⇒ ṗ = −ω1a1 sin(ω1t + θ1) − ω2a2 sin(ω2t + θ2)

= ω1a1 cos(ω1t + θ1 +
π

2
) + ω2a2 cos(ω2t + θ2 +

π

2
),

which after adding delay effect, takes the form

ṗτ = ω1a1τ cos(ω1t + θ1τ + π
2 − ω1τ) + ω2a2τ cos(ω2t + θ2τ + π

2 − ω2τ),(18)

where a1τ , a2τ , θ1τ and θ2τ are amplitudes and phases after the delay block,
respectively. Since, for K-B approximation the amplitudes ai and the phases
θi (i = 1, 2) are slowly time-varying functions, and in order to approximate
the time delay block, we propose the following assumption.

Assumption 1 For small time delay τ , the quantities |ai−aiτ | and | θi−θiτ |
(i = 1, 2) can be neglected.
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The assumption 1 allows the following approximations

{

aiτ = ai − (ai − aiτ ) ≈ ai,

θiτ = θi − (θi − θiτ ) ≈ θi.
(i = 1, 2) (19)

To get an expression in the form of (5), the low pass filter block must be
also approximated. Therefore, we consider a second assumption

Assumption 2 The low pass filter is linear and its dynamics is much faster
than the evolution of amplitudes and phases.

The utility of assumption 2 is that, for an input given as the sum of sinusoidal
terms (such as (5)), the output will be equal to the sum of the outputs of
each term, and for sinusoidal inputs with slowly time-varying amplitudes and
phases the rise time will be neglected, and the amplitudes and phases will be
considered as constant parameters. Therefore, the assumption 2 leads to the
following approximation

LPF (a cos(ωt + θ)) ≈ G(ω)a cos(ωt + θ − φ(ω)) (20)

where a, ω and θ are the amplitude, the frequency and the phase of input,
respectively, G(ω) and φ(ω) are the gain and the phase at frequency ω intro-
duced by the filter. We use the following notation in the remaining of paper

ψk1k2
= (k1ω1 + k2ω2)t + (k1θ1 + k2θ2), (21)

Ak1k2
= ω

|k1|
1 ω

|k2|
2 G(k1ω1 + k2ω2), (22)

χk1k2
=

(k1 + k2)π

2
− (k1ω1 + k2ω2)τ − φ(k1ω1 + k2ω2). (23)

The continuation of analysis will show that this notations have important
significance. Indeed, the expression (21) correspond to linear combinations of
frequencies ω1 and ω2 present in the development of f and the expressions (22)
and (23) are the gain and phase introduced by the delay plus differentiator
block and filtering, respectively.

Lemma 3. Consider the expression (18) and the assumptions 1 and 2. Then
one obtains the following development

f ≈ −ϕv1

{

ω1A10a1

(

1 − ϕv3

ϕv1

(

(ω1a1)
2

4 + (ω2a2)
2

2

))

sin(ψ10 + χ10)

+ ω2A01a2

(

1 −ϕv3

ϕv1

(

(ω2a2)
2

4 + (ω1a1)
2

2

))

sin(ψ01 + χ01)
}

+ ϕv3

{

ω1A30a3

1

4 sin (ψ30 + χ30) +
(2ω1−ω2)A2−1a2

1
a2

4 sin (ψ2−1 + χ2−1)

+
(2ω1+ω2)A21a2

1
a2

4 sin (ψ21 + χ21) +
(ω1+2ω2)A12a1a2

2

4 sin (ψ12 + χ12)

+
ω2A03a3

2

4 sin (ψ03 + χ03) +
(2ω2−ω1)A−12a2

2
a1

4 sin (ψ−12 + χ−12)
}

. (24)
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Proof: substituting approximations (19) in expression (18), one gets

ṗτ ≈ ω1a1 cos(ω1t + θ1 + π
2 − ω1τ) + ω2a2 cos(ω2t + θ2 + π

2 − ω2τ). (25)

Introducing (25), using notation (21) in nonlinear static function and trigono-
metrical simplifications lead to the expression

ϕv0 + ϕv1ṗ−τ − ϕv3

3 ṗ3
−τ ≈ ϕv0 + ϕv1ω1a1

(

1 − ϕv3

ϕv1

(

(ω1a1)
2

4 + (ω2a2)
2

2

))

cos(ψ10

+π
2 − ω1τ) + ϕv1ω2a2

(

1 −ϕv3

ϕv1

(

(ω2a2)
2

4 + (ω1a1)
2

2

))

cos(ψ01 + π
2 − ω2τ)

−ϕv3

{

(ω1a1)
3

12 cos
(

ψ30 + 3π
2 − 3ω1τ

)

+
ω2

1
ω2a2

1
a2

4 cos
(

ψ2−1 + π
2 − (2ω1 − ω2)τ

)

+
ω2

1
ω2a2

1
a2

4 cos
(

ψ21 + 3π
2 − (2ω1 + ω2)τ

)

+
ω1ω2

2
a1a2

2

4 cos
(

ψ12 + 3π
2 − (2ω2 + ω1)τ

)

+ (ω2a2)
3

12 cos
(

ψ03 + 3π
2 − 3ω2τ

)

+
ω1ω2

2
a2

2
a1

4 cos
(

ψ−12 + π
2 − (2ω2 − ω1)τ

)

}

(26)

Using (26), property (20) and notation (22), one arrives at (24).
Result (24) yields the frequency set

W = {ω1, ω2, 3ω1, 3ω2, 2ω1 + ω2, ω1 + 2ω2, 2ω1 − ω2, 2ω2 − ω1} , (27)

which will be very important for identifying the different situations depending
on the proximity of frequencies in W . Consequently, one has the following
three situations:

1. ω1 6≈
{

ω2, 3ω2,
ω2

3

}

,
2. ω1 ≈ ω2 : Mutual synchronization with close frequencies
3. ω1 ≈ 3ω2 (respectively ω2 ≈ 3ω1): Mutual synchronization with multiple

frequencies

Experimental results ([11]) reveal that both modes can oscillate freely without
synchronization and with the frequencies not respecting the conditions of cases
number 2 and 3. Hence, we limit our study here to case 1. This is new and
have clear practical implication when compared with [18].

K-B approximation of the model

The second step of analysis is to find the expression of the model outputs
using the result (24) and to analyze the evolution of this outputs in different
situations.

Lemma 4. Consider the condition ω1 6≈
{

ω2, 3ω2,
ω2

3

}

and the result (24).
The application of K-B approximation gives

xi = ai cos(ωit + θi), (i = 1, 2) (28)

with
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ȧ1 = ϕv1A10 cos(χ10)
2 a1

(

1 − ϕv3

ϕv1

(

(ω1a1)
2

4 + (ω2a2)
2

2

))

,

ȧ2 = ϕv1A01 cos(χ01)
2 a2

(

1 − ϕv3

ϕv1

(

(ω2a2)
2

4 + (ω1a1)
2

2

))

,

θ̇1 = ϕv1A10 sin(χ10)
2

(

1 − ϕv3

ϕv1

(

(ω1a1)
2

4 + (ω2a2)
2

2

))

,

θ̇2 = ϕv1A01 sin(χ01)
2

(

1 − ϕv3

ϕv1

(

(ω2a2)
2

4 + (ω1a1)
2

2

))

,

(29)

Proof: by application of rules (2) and (3) on the expression (24), one finds
easily the result of K-B approximation described in lemma (4).

From the equations (29), one can see that the coupled parameters are a1

and a2. Therefore, the system dynamics depend essentially on the evolution
of amplitudes a1 and a2. The analytical determination of equilibrium points
gives

a1 = 0 and a2 = 0, (30)

a1 = 2
ω1

√

ϕv1

ϕv3

and a2 = 0, (31)

a1 = 0 and a2 = 2
ω2

√

ϕv1

ϕv3

, (32)

a1 = 2
ω1

√

ϕv1

3ϕv3

and a2 = 2
ω2

√

ϕv1

3ϕv3

. (33)

The stability of each equilibrium point leads to a particular regime. Conse-
quently, one distinguishes four operation regimes, which will be elaborated
and explained shortly :

1. Asymptotically stable system,
2. Two generators with competitive quenching,
3. Simultaneous self-sustained oscillations,
4. Total instability.

For stability study one can apply Lyapunov’s indirect method, which uses
the stability property of linearized system around the equilibrium point. The
computation of general characteristic polynomial leads to the flowing result

P (λ) = λ2 − ϕv1

2

{

A10 cos(χ10)
(

1 − ϕv3

ϕv1

(

3(ω1a1)
2

4 + (ω2a2)
2

2

))

+A01 cos(χ01)
(

1

−ϕv3

ϕv1

(

3(ω2a2)
2

4 + (ω1a1)
2

2

))}

λ + A10A01 cos(χ10) cos(χ01)
4

{

ϕ2
v1

(

1 − ϕv3

ϕv1

(

3(ω1a1)
2

4

+ (ω2a2)
2

2

))(

1 − ϕv3

ϕv1

(

3(ω2a2)
2

4 + (ω1a1)
2

2

))

−ϕ2
v3(ω1ω2a1a2)

2
}

. (34)

The characteristic polynomial obtained is second order. Therefore, the stabil-
ity can be verified by testing the signs of polynomial coefficients.

Asymptotically stable system:

The system is asymptotically stable around the origin, if and only if the equi-
librium point (30) is asymptotically stable. Introducing (30) in the general
characteristic polynomial (34), one obtains
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Fig. 6. Simulation test for ω1 = 2π×210, ω2 = 2π×740, ϕv0 = 0.45, ϕv1 = −0.135,
ϕv3 = −5.4 × 10−3, LPF = 2π×500

s+2π×500
and τ = 5.5 × 10−3.
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Fig. 7. Simulation test for ω1 = 2π×210, ω2 = 2π×740, ϕv0 = 0.45, ϕv1 = −0.135,
ϕv3 = −5.4 × 10−3, LPF = 2π×500

s+2π×500
and τ = 3.5 × 10−3.

P (λ) = λ2 − ϕv1

2

{

A10 cos(χ10) + A01 cos(χ01)
}

λ +
A10A01 cos(χ10) cos(χ01)ϕ

2

v1

4 ,

which has two stable zeros if the following conditions are respected

{

−ϕv1

{

A10 cos(χ10) + A01 cos(χ01)
}

> 0

A10A01 cos(χ10) cos(χ01)ϕ
2
v1 > 0

⇐⇒

{

ϕv1 cos(χ10) < 0
ϕv1 cos(χ01) < 0

(35)

Provided (35) is satisfied and initial states are close to the origin, the ampli-
tudes of both oscillations converge to equilibrium point (30). Figure 6 shows
an example of simulation test, where the conditions (35) are satisfied under
realistic parameters values.

Two generators with competitive quenching:

The two generators with competitive quenching regime occurs when both
equilibrium points (31) and (32) are locally stable. Substituting (31) into
(34), one gets

P (λ) = λ2 + ϕv1

{

A10 cos(χ10) + 1
2A01 cos(χ01)

}

λ +
A10A01 cos(χ10) cos(χ01)ϕ

2

v1

2 ,



Combustion instability 13

0.6 0.61 0.62 0.63 0.64
−5

0

5
x 10

−3

0.6 0.61 0.62 0.63 0.64
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−3

0.6 0.61 0.62 0.63 0.64

−6

−4

−2

0

2

4

6

x 10
−3

Time[sec] Time[sec] 

Time[sec] 

x1 x2 

p

Fig. 8. Simulation test for ω1 = 2π×210, ω2 = 2π×740, ϕv0 = 0.45, ϕv1 = −0.135,
ϕv3 = −5.4 × 10−3, LPF = 2π×500

s+2π×500
and τ = 4.8 × 10−3.

The local stability of (31) is satisfied if and only if
{

ϕv1

{

A10 cos(χ10) + 1
2A01 cos(χ01)

}

> 0

A10A01 cos(χ10) cos(χ01)ϕ
2
v1 > 0

⇐⇒

{

ϕv1 cos(χ10) > 0
ϕv1 cos(χ01) > 0

(36)

By symmetry, for the equilibrium point (32) one finds the same conditions.
Provided that the conditions (36) are satisfied, the amplitudes of x1 and x2

converge to one of both possible equilibrium points (31) and (32). Depending
on the initial states, one of the generators is excited, while the oscillations
of the other generator are entirely quenched. Figure 7 shows an example of
simulation test on two generators with competitive quenching regime.

Simultaneous self-sustained oscillations:

Simultaneous oscillation of both resonators occurs when the equilibrium point
(33) is stable. Introducing (33) in (34), one obtains

P (λ) = λ2 + ϕv1

3

{

A10 cos(χ10) + A01 cos(χ01)
}

λ −
A10A01 cos(χ10) cos(χ01)ϕ

2

v1

3 ,

The equilibrium point (33) is locally stable if and only if
{

ϕv1

{

A10 cos(χ10) + A01 cos(χ01)
}

> 0

−A10A01 cos(χ10) cos(χ01)ϕ
2
v1 > 0

⇐⇒

{

ϕv1

(

A10 cos(χ10) + A01 cos(χ01)
)

> 0
cos(χ10) cos(χ01) < 0

(37)



14 I. D. Landau, F. Bouziani and R. R. Bitmead
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Fig. 9. The operation regimes as a function of τ , ω1 = 2π × 210, ω2 = 2π × 740,
ϕv0 = 0.45, ϕv1 = −0.135, ϕv3 = −5.4 × 10−3 and LPF = 2π×500

s+2π×500
.

By satisfying (37), it is possible to have simultaneous self-sustained oscilla-
tions, the amplitudes of x1 and x2 converge to the equilibrium point (33). By
the self-sustained oscillations it is meant that both oscillators are excited with-
out synchronization. The Figure 8 shows the stationary part of a simulation
test example on simultaneous self-sustained oscillations regime.

Total instability:

When the conditions (35), (36) and (37) are not satisfied, there does not exist
a stable equilibrium point. Therefore, there is no stable limit cycle and the
amplitudes of both oscillations diverge. By total instability it is meant that
for any initial states, the oscillations of the system diverge.

Results analysis

The results demonstrate the existence of four operation regimes when the ra-
tio of natural frequencies is different from 1, 3 and 1

3 . The occurrence of each
operation regime depends on the satisfaction of some conditions. The simula-
tions confirm the quality of estimated amplitudes using K-B approximation.
The condition for each regime contain essentially the phases χ01 and χ10 in-
troduced by the delay and low pass filtering respectively. The phase domain
conditions (35), (36) and (37) are independent. So with fixed delay and low-
pass filter it is not possible to have operation in more than one regime. The
results suggest that it is perhaps possible in certain cases to estimate the delay
from the measurement of the oscillations (number, frequency, amplitude). To
illustrate the importance of delay, Figure 9 depicts the operation regimes for
several values of τ and for other parameters fixed near to the practical values.
One observes the occurrence of various regimes as a function of the delay.

From a practical point of view, the interesting situation is the simulta-
neous self-sustained oscillatory regime which is represented in Figure 9. The

fact that, the amplitudes of harmonics ω1 and ω2 take values 2
ω1

√

ϕv1

3ϕv3

and

2
ω2

√

ϕv1

3ϕv3

respectively, shows clearly that they depend inversely on the values

of frequencies (phenomenon which has been observed in practice). The results
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of Figure 9 have a very important practical implication : the design of the
combustion system influence the type of combustion instability which may
occurs.

5 Quenching of the oscillations

For the development of effective control method for quenching both oscillation
modes present in combustion instabilities, the model (15) is taken by adding a
multiplicative control action (modulation of the fuel flow). The multiplicative
effect of the control action must be included in the representation to capture
the modulation of a fraction of the fuel flow u into the combustion chamber
and its consequent effect on the heat release rate [11, 10]. This leads to the
following differential equations.

{

ẍ1 + ω2
1x1 = d

dt
LPF

{

(1 + u)
(

ϕv0 + ϕv1ṗτ − ϕv3

3 ṗ3
τ

)}

,

ẍ2 + ω2
2x2 = d

dt
LPF

{

(1 + u)
(

ϕv0 + ϕv1ṗτ − ϕv3

3 ṗ3
τ

)}

.
(38)

To deal with combustion instabilities, different approaches are considered
in practice [5]. One can use a feedback control which is based on using the
pressure measurement. Two types of control law can be considered, one linear
the other nonlinear. The linear law need the availability of x1 and x2 which can
be obtained by using appropriate band pass filters [20]. Here we are interested
on the non-linear feedback which use the pressure measurement (p = x1 +x2),
since it gives effective results and is subject to less constrains. To study the
effects of such control we use the K-B method. The following assumption is
proposed concerning the validity of the K-B approximation.

Assumption 3 Let a1 and a2 be the amplitudes of the oscillations x1 and
x2 obtained from K-B approximation. If a1 and a2 are asymptotically locally
(globally) stable at the origin, then the original system is asymptotically locally
stable at the origin.

For non-linear feedback, the pressure measurement p is differentiated and
delayed with a delay τ to obtain ṗτ , which is introduced into a non-linear
function Φ, to obtain a control law u = Φ(p, ṗτ ). This control strategy is
explained in the block diagram shown in Figure 10. This control law will
be used to add damping and to compensate the physical feedback caused
by the coupling between the thermal heat-release process and the acoustics
of the combustion chamber. If such a control is designed, the system will be
asymptotically stable at the origin and the quenching of oscillations will occur.
This can be interpreted also as a feedback linearization which in addition
stabilizes the system. The results are summarize in the following lemma

Lemma 5. For the control law

Φ (p, ṗτ ) = −Kp −
1

ϕv0

(

ϕv1ṗτ −
ϕv3

3
ṗ3

τ

)

, (39)
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Fig. 10. Block diagram of non-linear feedback.

where K is a constant satisfying the conditions
{

Kϕv0 cos(φ(ω1)) > 0,

Kϕv0 cos(φ(ω2)) > 0,
(40)

the system is locally asymptotically stable at the origin.

Proof: Replacing the function (39) in (38) yields,






















ẍ1 + ω2
1x1 = d

dt
LPF

{

ϕv0 − Kϕv0p − Kϕv1pṗτ + K ϕv3

3 pṗ3
τ

−
ϕ2

v1

ϕv0

ṗ2
τ + 2ϕv1ϕv3

3ϕv0

ṗ4
τ −

ϕ2

v3

9ϕv0

ṗ6
τ

}

,

ẍ2 + ω2
2x2 = d

dt
LPF

{

ϕv0 − Kϕv0p − Kϕv1pṗτ + K ϕv3

3 pṗ3
τ

−
ϕ2

v1

ϕv0

ṗ2
τ + 2ϕv1ϕv3

3ϕv0

ṗ4
τ −

ϕ2

v3

9ϕv0

ṗ6
τ

}

.

Therefore, for the K-B approximation (1) with ǫ = 1 one may consider the
following choice.

f1 = f2 = f = d
dt

LPF
{

ϕv0 − Kϕv0p − Kϕv1pṗτ + K ϕv3

3 pṗ3
τ

−
ϕ2

v1

ϕv0

ṗ2
τ + 2ϕv1ϕv3

3ϕv0

ṗ4
τ −

ϕ2

v3

9ϕv0

ṗ6
τ

}

. (41)

Introducing xi = ai cos(ωit+θi) and ẋi = −aiωi sin(ωit+θi), i = 1, 2, in (41),
using the approximation (25) and after trigonometric simplifications and using
assumption 2, one obtains the expression

f ≈ Kϕv0ω1G(ω1)a1

[

cos(φ(ω1)) sin(ω1t + θ1) − sin(φ(ω1)) cos(ω1t + θ1)
]

+ Kϕv0ω2G(ω2)a2

[

cos(φ(ω2)) sin(ω2t + θ2) − sin(φ(ω2)) cos(ω2t + θ2)
]

+

r
∑

ωℓ 6≈ω1∧ω2

(Hℓ(a1, a2, θ1, θ2) sin(ωℓt + θℓ) + Gℓ(a1, a2, θ1, θ2) cos(ωℓt + θℓ)) .
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Fig. 11. Linear feedback control applied at the first appearance of oscillations.

Applying the rule (3) for the amplitudes leads to the following approximations.

{

da1

dt
= − 1

2G(ω1)Kϕv0 cos(φ(ω1))a1,
da2

dt
= − 1

2G(ω2)Kϕv0 cos(φ(ω2))a2.
(42)

These are linear differential equations for the uncoupled amplitudes a1 and a2.
The amplitudes are globally asymptotically stable at origin if the conditions
(40) are satisfied. Appealing to the assumption 3, one deduces the result.

This control has been tested in simulation, with the same model parame-
ters used in simultaneous self-sustained oscillations and with gain K = 100 for
the two possible scenarios. In the first scenario, the control is applied at the
appearance of oscillations in x1 or x2. This is presented in Figure 11. In the
second scenario, the control is applied after that the oscillations of x1 and x2

have already reached steady-state operation. This is presented in Figure 12.
The control law yields asymptotic local stability at the origin. The do-

main of amplitudes a1 and a2 where quenching oscillations is guaranteed, is
delimited by the boundary of validity the K-B method applied to (38). It is im-
portant to note however, that such control strategy requires good knowledge
of the parameters values in the combustion instability model, particularly of
the value of the delay τ .

6 Conclusion

This paper presents a model for combustion instabilities which is analyti-
cally tractable. Its analysis is carried on using the Krylov - Bogoliubov(K-B)
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Fig. 12. Non-linear feedback control applied after the oscillation has reached steady-
state.

method. The analysis has shown that the model can explain the coexistence
of several distinct non-harmonic frequencies observed in practice. The paper
has also shown and quantified the effect of the delay for the occurrence of the
various phenomena observed.

Once that a method of analysis has been made available and taking ad-
vantage of the mutiplicative control which can be implemented by amplitude
modulation of the fuel flow, a feedback control methodology for quenching
oscillations in combustion instabilities has been developed. The possibility of
quenching oscillations has been analyzed also by the K-B method.

Further work will focus on robustness of these quenching approaches with
respect to model parameters uncertainties as well as a quantitative evaluation
of the stability domains.
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