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CC26, Université Montpellier 2, 34095 Montpellier Cedex 5, France
3European Synchrotron Radiation Facility - 6 rue Jules Horowitz BP 220, F-38043 Grenoble Cedex 9, France
4Present address: Stanford Linear Accelerator Center 2575 Sand Hill Road, Menlo Park, CA 94025, USA ∗

(Dated: November 16, 2007)

We use time-resolved X-Photon Correlation Spectroscopy to investigate the slow dynamics of col-
loidal gels made of moderately attractive carbon black particles. We show that the slow dynamics is
temporally heterogeneous and quantify its fluctuations by measuring the variance χ of the instanta-
neous intensity correlation function. The amplitude of dynamical fluctuations has a non-monotonic
dependence on scattering vector q, in stark contrast with recent experiments on strongly attractive
colloidal gels [Duri and Cipelletti, Europhys. Lett. 76, 972 (2006)]. We propose a simple scaling
argument for the q-dependence of fluctuations in glassy systems that rationalizes these findings.

PACS numbers: 64.70.Pf, 82.70.Gg, 82.70.Dd

I. INTRODUCTION

Understanding the dramatic slowing down of the dy-
namics in systems undergoing a glass transition is one
of the key problems in condensed matter and statisti-
cal physics [1]. In recent years, research efforts have fo-
cused on the role of dynamical heterogeneity: as the glass
transition is approached, the dynamics becomes increas-
ingly correlated in space, since rearrangements are pos-
sible only through the cooperative motion of “clusters”
of particles [2, 3, 4]. This cooperativity leads to strong
temporal fluctuations of the dynamics. Indeed, because
of dynamical correlations, the number of statistically in-
dependent objects in the system becomes smaller than
the number of particles, leading to enhanced fluctuations.

Numerical simulations have tested these features on a
wide variety of systems [4]. Experimental work, by con-
trast, is much more scarce, because probing the dynam-
ics with the spatial and temporal resolution needed to
highlight their heterogeneous nature is an arduous task,
especially for molecular glass formers [2, 3]. The slow
dynamics of colloidal systems, foams and granular mate-
rials [5] share intriguing similarities with those of glass
formers, including dynamical heterogeneities. These are
experimentally more accessible than in molecular sys-
tems, since the relevant time and length scales are larger.
Various techniques have been used to characterize them,
from direct space measurements [6, 7, 8] to novel scat-
tering methods that probe the temporal fluctuations of
the intensity correlation function [9, 10, 11, 12].

Valuable information on the physical origin of the aver-
age dynamics is generally obtained by studying its length
scale dependence, e.g. the dependence of the intensity
correlation function on the magnitude of the scattering
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vector q in scattering experiments. Similarly, one ex-
pects to gain a better understanding of dynamical het-
erogeneities by analyzing their behavior at different q’s.
Unfortunately, experimental and numerical or theoretical
determinations of dynamical fluctuations as a function of
q are still very scarce [7, 12, 13, 14, 15, 16, 17], leaving
this issue an open question.

In this paper, we investigate dynamical fluctuations
in colloidal gels made of moderately attractive carbon
black (CB) particles, to which a dispersant is added to
control the strength of the (attractive) interparticle in-
teractions. We apply, to our knowledge for the first time,
time-resolved scattering methods to X-Photon Correla-
tion Spectroscopy (XPCS), thereby demonstrating that
the dynamics of the CB gels are temporally heteroge-
neous. Dynamical fluctuations are quantified by means of
a q-dependent dynamical susceptibility, χ, similar to the
dynamical susceptibility χ4 studied in simulations [16].
Surprisingly, χ is found to initially increase with q, but
eventually to decrease at large scattering vectors. This
non-monotonic behavior is in contrast with recent low-
q measurements on diluted, strongly attractive colloidal
gels [12], where dynamical fluctuations increased linearly
with q over one decade in scattering vector. We pro-
pose a simple scaling argument for the q-dependence of
dynamical fluctuations in glassy systems, which recon-
ciles these contrasting findings and rationalizes previ-
ously published data for granular media and glass for-
mers [7, 13, 14, 15, 16].

The paper is organized as follows: in Sec. II we present
and characterize our experimental system and introduce
shortly the time-resolved XPCS technique. Section III
reports both the average dynamics of the CB gels and
its temporally fluctuations. Our results are discussed in
Sec. IV, where a simple scaling argument for the length
scale dependence of the dynamical susceptibility is intro-
duced.
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II. MATERIALS AND METHODS

A. Sample preparation and characterization

Particle size and morphology. Our gels are made of
CB particles of average radius R = 180 nm, suspended
in mineral oil at an effective volume fraction ϕ ≈ 6%, as
determined by viscosity measurements (see below). The
particles have a conveniently high scattering cross sec-
tion for X-rays. They are fractal aggregates made of
permanently fused primary particles (fractal dimension
df = 2.2 ± 0.1) [18]. The diameter of the primary parti-
cles ranges from 20 to 40 nm, as determined by electron
microscopy. However, the smallest units in our samples
are effectively the CB particles themselves and not the
primary particles, since the CB particles can not be bro-
ken, neither by thermal fluctuations, nor by adding a
dispersant or by applying a large shear, e.g. during rhe-
ology tests or sonication. The size and polydispersity of
the CB particles were determined by applying the cumu-
lant analysis described in Ref. [19] to intensity correlation
functions measured by dynamic light scattering (DLS) at
q = 6.01 µm−1 (scattering angle θ = 20 deg). A very
diluted (ϕ ≈ 2×10−6) and fully dispersed sample of CB-
particles in mineral oil was prepared for the DLS mea-
surements. For spherical, monodisperse particles, one
expects g2 − 1 to relax exponentially; deviations due to
shape and/or size polydispersity may be quantified by the
ratio κ2/κ2

1, where κi is the i−th coefficient of a cumulant
expansion: ln{[g2(τ)−1]0.5} = κ0−κ1τ+κ2τ

2/2+... [19].
Figure 1 shows ln{[g2(τ) − 1]0.5} vs τ for our DLS

measurements: the data are very close to a straight line,
indicating a nearly exponential decay and thus suggest-
ing that the sample polydispersity must be moderate. By
generalizing the arguments of Ref. [19] to particles with
a fractal morphology, one finds that in the low-q limit
(qR . 1) the first two cumulants are related to the aver-
age translational diffusion coefficient, D, and its relative

variance, σ2
D = (D2/D

2
− 1), by the following expres-

sions:

κ1 = Dq2 (1)

κ2 = σ2
D(Dq2)2/2 , (2)

with D = kBT/(6πηRapp), Rapp = R2df/R2df−1, T the
temperature and kB the Boltzman’s constant. Here,
Rn =

∫

dRP (R)Rn is the n-th moment of the normalized
number distribution of particle radii, P (R). For the data
shown in Fig. 1, we find σ2

D = 2κ2/κ2
1 = 0.047, confirm-

ing that the polydispersity is moderate. The average par-

ticle radius and its relative variance, σ2
R = (R2/R

2
− 1),

may be obtained from σ2
D and Rapp provided that P (R)

is known. Since for moderate polydispersity the exact
shape of P (R) has little influence on the final result, we
choose a generalized exponential (or Schulz) distribution,
for which calculations can be performed analytically [19].
By taking for simplicity df = 2 (very close to the value
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FIG. 1: Second-order cumulant fit (line) of the intensity cor-
relation function (open circles) measured by dynamic light
scattering at q = 6.01 µm−1 for a diluted suspension of CB
particles.

2.2 of our particles), one finds

Rapp = R4/R3 = R(1 + 3σ2
R) (3)

σ2
D =

R2 R4

R3
2 − 1 =

1 + 3σ2
R

1 + 2σ2
R

− 1 , (4)

yielding for our CB particles R = 180 nm and σR = 0.23.

Determination of the volume fraction The particle
concentration of the two CB gels studied here is 2%
w/w. The effective volume fraction corresponding to
this weight fraction was determined by measuring the
viscosity of a suspension where the CB particles were
fully dispersed (1.6% w/w dispersant). The effective hy-
drodynamic volume fraction, ϕ, is estimated using [20]
η∞/µ = (1−ϕ/0.71)−2, where µ is the shear-independent
viscosity of the mineral oil and η∞ is the high shear rate
viscosity of the suspension. The value ϕ ≈ 6% thus ob-
tained was found to be consistent with that obtained by
measuring the low-shear viscosity of the suspension, η0,
and using [20] η0/µ = (1 − ϕ/0.63)−2.

Estimate of the depth of the particle-particle interac-
tion potential. The attraction between CB particles is
controlled by the amount of added dispersant. The depth
of the well of the particle-particle interaction potential,
U , may be estimated by studying the mechanical re-
sponse of the CB gels. As discussed in ref. [21], the relax-
ation spectrum (as measured by oscillatory rheology) of
CB suspensions and its dependence on volume fraction is
essentially identical to that obtained for model systems of
nearly monodisperse spherical particles that interact via
a short-ranged potential induced by the depletion mech-
anism. Therefore, we use the non-equilibrium state dia-
gram of the depletion systems with known depth of the
interaction potential to evaluate U for our CB gels. The
diagram is shown in Fig. 3 of Ref. [21]: the control pa-
rameters are ϕ and U ; a line U = Uc(ϕ) separates the
systems with solid-like mechanical behavior (upper part
of the diagram) to those with a liquid-like behavior (lower
part). For the CB gel with 0.2% dispersant, we find that
the elastic modulus is very low (Gp = 9 × 10−4 Pa),
which indicates that this system corresponds to a state
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close to the fluid-solid boundary. Figure 3 of Ref. [21]
indicates that for short ranged potentials the boundary
corresponds to U = Uc ≈ 12kBT at ϕ = 6%. Thus, we
assign U ≈ 12kBT to the CB gel at ϕ = 6% and with
0.2% dispersant.

For the CB-system with 0% dispersant, we take advan-
tage of the dependence of the elastic modulus on disper-
sant concentration, which was found to exhibit a critical-
like behavior, Gp = G0(U/Uc − 1)ν , with ν = 3.9 and
G0 ≈ 1 Pa [18]. We measure Gp = 4.5 Pa for the CB gel
without dispersant, yielding U ≈ 2.5Uc ≈ 30 kBT .

Sample preparation. The CB suspensions are prepared
from a stock suspension of 4% w/w carbon black (Cabot
Vulcan XC72) in light mineral oil (Aldrich). The stock
solution is made by first mixing the carbon black powder
into the mineral oil using a standard household mixer.
Subsequently, it is thoroughly sonicated for 1 hour using
an ultrasound device (Hielscher UP200H) operating at a
power of 120 W and a frequency of 24 kHz. To avoid
overheating, the suspension is placed in an ice bath and
sonication is run in cycles of 1 s. The stock solution is
then left to equilibrate for 2 days, before it is used to
prepare the final samples. Before diluting the sample
to a final concentration of 2% w/w CB (corresponding
to ϕ ≈ 6%), the stock suspension is again thoroughly
mixed; the final samples are then prepared by adding
either pure mineral oil or a solution of dispersant in min-
eral oil; they are mixed and left to equilibrate for 2 days.
Prior to the XPCS experiments, the samples are again
thoroughly mixed and subsequently injected in a 1 mm
(inner diameter) cylindrical capillary. The capillary is
sealed and placed in a water bath in which we introduce
our ultrasound device, thereby submitting the sample to
a final indirect sonication step (120 W and 24 kHz) for
about half an hour. We define the age of sample, tw,
as being the time elapsed since this final sonication step.
Note that sonication breaks up any aggregates that may
have been formed between the CB particles, without af-
fecting the integrity of the CB particles themselves.

B. Time-resolved XPCS measurements

Average dynamics. The dynamics of the CB gels are
investigated by means of XPCS performed at the ID10
Troika beamline at the European Synchrotron Radiation
Facility (ESRF), with X-rays of wavelength λ = 1.55
Å. The scattering volume has a cylindrical shape, with
diameter 12 µm and length 1 mm (along the horizon-
tal direction), defined by the beam size and the capil-
lary diameter, respectively. The scattered intensity is
recorded by a charge-coupled device (CCD) camera, cov-
ering about one decade in scattering vector: 15 µm−1 .
q . 150 µm−1, corresponding to distances comparable
to or smaller than the CB particle size. XPCS measure-
ments start at age tw = 2 min: we find that the dynamics
initially slows down, as observed for many glassy sys-
tems [5], but that after a few hours a stationary state is

attained. All measurements presented in this work start
at tw = 5 hours, well in the stationary regime, and last
typically up to 3 hours. Mechanical and beam instabil-
ities are a concern when measuring very slow dynamics,
especially in XPCS experiments. By using a static scat-
terer (Vycor glass), we have checked that the setup was
stable up to τ ≈ 3000 sec, longer than the relevant time
scales in our experiments.

In order to measure the average dynamics and
its fluctuations, we use the time-resolved correlation
(TRC) method [9]. The instantaneous degree of
correlation between X photons scattered at time t
and t + τ is measured according to cI(q, t, τ) =

〈Ip(t)Ip(t + τ)〉
q
/

(

〈Ip(t)〉q 〈Ip(t + τ)〉
q

)

−1, where Ip(t)

is the scattered intensity at pixel p and time t and 〈· · ·〉q
is an average over a ring of pixels corresponding to ap-
proximately the same magnitude of q but different az-
imuthal orientations. The intensity correlation function
is g2(q, τ) − 1 = cI , where · · · indicates a time average.
g2 is related to the dynamic structure factor f(q, τ) by
g2 − 1 = βf2, where β < 1 is a positive instrumental
constant.

Fluctuations of the dynamics. To quantify dynamical
heterogeneity we calculate χ(τ, q)(exp) = var(cI(q, t, τ)),
the temporal variance of the instantaneous degree of cor-
relation, cI(q, t, τ) [24], which we correct by subtract-
ing the contribution of measurement noise. The correc-
tion procedure is described in detail in Ref. [25]; here
we simply recall its main features. The experimentally
measured degree of correlation is affected by a statistical
noise stemming from the finite number of pixels, np, over
which this quantity is averaged. Therefore, one has [25]

χ(τ, q) = χ(exp)(τ, q)−var[n(q, t, τ)] = χ(exp)(τ, q)−C/np ,

with χ(exp)(τ, q) = var[cI(q, t, τ)], χ(τ, q) the desired
noise-free dynamical susceptibility, n(q, t, τ) the statis-
tical noise, and C a positive constant. The last equality
stems from the central limit theorem. In order to obtain
χ(τ, q), for each q we calculate χ(exp)(τ, q) by processing
the same set of images with different choices of np (by
using only 1 pixel every 1, 2, 4, 8,... available pixels). By
extrapolating the χ(exp)(τ, q) vs 1/np data to 1/np = 0,
we obtain the desired noise-free χ(τ, q). To estimate the
uncertainty associated with this procedure, we inspect
the data for τ much larger than the slowest relaxation of
g2 − 1, where one expects χ(τ, q) = 0 [10, 25]. In this
limit, we indeed find χ = 0 (see Figs. 2b and 3b below)
within an experimental uncertainty, σχ(q), which is es-
timated by calculating the standard deviation of χ(τ, q)
as a function of τ , at large τ . The values of σχ(q) thus
obtained are taken as an estimate of the error bars on χ
at all delays, and will be used in particularly in Fig. 5.
The average relative uncertainty is 6% for the CB gel
with U ≈ 12 kBT and less than 1% for the gel with
U ≈ 30 kBT .
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FIG. 2: (Color online) Top panel, main figure: intensity corre-
lation functions at various q’s for the CB gel with U ≈ 12 kBT
(data are corrected for stray light). From top to bottom, q
increases from 17.1 µm−1 to 92.0 µm−1 (see labels in bot-
tom panel). Inset: q-dependence of τ1 (open squares) and τ2

(solid squares). The line is a power law fit to τ1(q) yielding
an exponent −0.91± 0.1. Bottom panel: τ dependence of the
dynamical susceptibility χ for the q vectors corresponding to
those shown in the top panel. For the sake of clarity, not all
available data have been plotted in the two main panels.

III. RESULTS

Figure 2a shows g2−1 for the CB gel with U ≈ 12 kBT ,
at various q. The intensity correlation function exhibits
a two-step decay, whose physical origin we shall dis-
cuss later. Figure 2b displays the τ -dependent ampli-
tude of the noise-corrected fluctuations of the dynamics,
χ(τ, q); at all q’s, χ exhibits a peaked shape, strongly
reminiscent of that observed in a variety of glassy sys-
tems [7, 8, 10, 12, 13, 14, 16, 25, 29]. The peak of the
dynamical susceptibility, χ∗, occurs at a time delay τ∗(q)
of the same order of magnitude of the decay time associ-
ated with the initial relaxation of g2 − 1. Additionally, a
shoulder in χ(τ) is observed on the time scale of the final
relaxation of g2 − 1.

To gain insight on the physical origin of the slow dy-
namics, it would be desirable to quantify the decay of g2

by fitting its relaxation by an appropriate function, such
as the combination of two (stretched) exponential func-
tions. However, due to the limited image acquisition rate,
the initial decay of g2 − 1 is only partially captured in
our experiments, especially at the largest q vectors. As a
consequence, a direct fit of the initial relaxation is not re-
liable. As an alternative procedure, we use a scaling anal-

ysis similar to that adopted in several photon correlation
spectroscopy works (see, e.g., [22, 27, 28], as shown for
the gel with U ≈ 12 kBT in Fig. 3a. We first scale the lag-
time axis by τ∗(q), the lag corresponding to the peak of
the dynamical susceptibility χ. This choice is motivated
by the fact that, quite generally, for glassy systems τ∗ is
of the same order of magnitude of and proportional to the
system relaxation time (see e.g. [9, 29]). Furthermore,
our χ data exhibit a remarkable scaling behavior, as
shown in Fig. 3b. This allows us to determine τ∗ at all q
with an uncertainty smaller than the temporal resolution
of the CCD camera (2 sec). We finalize our scaling proce-
dure of the correlation function by normalizing g2−1 with
a q-dependent amplitude, A(q), which leads to a collapse
of all our q-dependent data in the lag-time-range of the
initial decay. To determine the shape of the initial decay,
we assume that the data can be modeled by a stretched
exponential decay, A exp[−(τ/τ1)

p1 ], and search for the
stretching exponent p1 that best linearizes our data plot-
ted as ln[g2(q, τ)−1]− lnA(q) versus (τ/τ∗)p1 , where we
find an optimum value of p1 = 1.2 ± 0.2. As shown in
Fig. 3a, a very good scaling onto a straight line is ob-
tained for τ ≤ τ∗; at larger lags the data curve upwards,
because the initial decay of g2 is followed by a (tilted)
plateau, as seen in Fig. 2a. The same scaling proce-
dure is also used to characterize the initial decay for the
gel with U ≈ 30 kBT , for which we find p1 = 1.1 ± 0.2
(data not shown). Figure 4 shows some representative
intensity correlation functions for both gels (symbols),
together with the fits issued from the scaling analysis
(lines). A full relaxation of g2 is observed only for the
gel with U ≈ 12 kBT , whose final decay is well approxi-
mated by a single exponential as shown in Fig. 4b. The
fact that for the gel with U ≈ 30 kBT no final relaxation
of g2 is observed in the accessible time scale is most prob-
ably due to the deeper interparticle potential well that
makes particle displacements more difficult.

The q-dependence of τ1, the characteristic time of the
initial relaxation of g2−1, is shown in the inset of Fig. 2a
for the gel with U ≈ 12 kBT . The data can be modeled
by a power law τ1 ∼ q−0.91±0.1, shown in the inset of
fig. 2a as a continuous line (similar results are also ob-
tained for the gel with U ≈ 30 kBT ). We can exclude
that the initial relaxation of g2 is due to thermally in-
duced fluctuations of the gel branches [22], which we ex-
pect to exhibit characteristic times at least three orders
of magnitude smaller than τ1. Indeed, both the nearly
q−1-dependence of τ1 and p1 > 1 suggest that the dy-
namics is determined by stress-induced rearrangements
similar to those of other soft glassy materials (see [5, 23]
and references therein). The final decay of the correla-
tion function is approximately exponential, with a decay
time τ2 that is q-independent. This behavior most prob-
ably stems from random rare rearrangements occurring
when bonds are broken, leading to particle displacements
larger than 1/q. Indeed, in this case we expect one sin-
gle rearrangement to be sufficient to fully decorrelate the
contribution of the displaced scatterers to g2 − 1. The
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FIG. 3: (Color online) Scaling analysis of the average dynam-
ics and of its fluctuations, for the CB gel with U ≈ 12 kBT
(same data as in Fig. 2; here data at all the available q are
plotted, except for the smallest and the largest, for which the
data are more noisy). a) Scaling plot of the initial decay of
g2 − 1. b) Scaling-plot of the dynamical susceptibility using
reduced variables χ/χ∗ and τ/τ∗. χ∗ and τ∗ are the height
and the position of the peak of the dynamical susceptibility,
respectively. (same symbols as in a)).

.

only time scale for the final relaxation of g2 is then the
average time between rearrangements, regardless of q.
Assuming uncorrelated events with Poissonian statistics,
one expects an exponential decay of g2, in agreement with
our measurements. As mentioned before, for the CB gel
with no dispersant (U ≈ 30 kBT ) no final relaxation is
observed within our experimentally accessible time win-
dow; this is most likely due to a decrease in the rate of
bond breaking as U increases.

We investigate the length scale dependence of dynam-
ical heterogeneity by measuring χ∗(q), the height of the
peak of the dynamical susceptibility, shown in Fig. 5.
For both gels, we find that χ∗(q) first increases with q,
reaches a maximum value at q ≡ q∗ and then decreases
at larger scattering vectors. Moreover, we find that the
dynamical fluctuations are more pronounced for the gel
with the deeper interparticle potential well. This can be
intuitively understood as the size of the regions that re-
arrange cooperatively is presumably larger in gels with
stronger interparticle interactions, leading to larger dy-
namical fluctuations. Additionally, it is conceivable that
the relaxation process itself is more heterogeneous in time
for stronger gels, where internal stress build-up and re-
lease is likely to be more important, further contribut-
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FIG. 4: (Color online) a): Intensity correlation functions rep-
resentative of the behavior at small, intermediate and large q
vectors for the CB gel with 0.2% dispersant (symbols; from
top to bottom, q = 17.1, 39.6, and 80.8 µm−1). The lines
are fits to the initial decay of g2 − 1 issued from the scaling
analysis described in the text. b): zoom on the final decay of
g2−1 for the same data as in a), together with the large-τ fits
(lines). c): g2−1 vs τ for the CB gel with no dispersant (sym-
bols; from top to bottom, q = 26.5, 61.2, and 141.5 µm−1).
In a) and c) the fits are represented as solid lines for τ ≤ τ1

and continued as dashed lines beyond the fitting interval.
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FIG. 5: Peak of the dynamic susceptibility, χ∗, vs q for a CB
gel with 0.2% dispersant (squares) and no dispersant (circles).
Error bars are calculated as explained in sec. II. Inset: same
data normalized by the squared amplitude of g2 − 1.

ing to enhanced fluctuations. As outlined in ref. [12], χ
should in principle be normalized by the (q-dependent)
squared amplitude of the relaxation of g2 − 1, to allow
for an explicit comparison of data obtained at different
q’s. [26]. Here, such a correction is affected by a large
uncertainty, since the short-time behavior of g2 is barely
accessible to the CCD. The height of the peak of the
variance normalized using the amplitude estimated via
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the scaling procedure, χ∗/A2, is shown in the inset of
Fig. 5. Although the data are more noisy, the peaked
shape observed in the main plot is preserved.

IV. DISCUSSION

The q dependence of χ∗ found here is very different
from that measured in low-q light scattering experiments
on strongly attractive gels made of spherical polystyrene
particles [12], where χ∗ ∼ q. One may wonder whether
this discrepancy stems from a difference in the particle
morphology or polydispersity. However, CB suspensions
have been found to exhibit the same relaxation spectrum
(as measured by rheology) as model systems consisting
of spherical, nearly monodisperse colloids interacting via
short-ranged depletion forces [21]. Thus, the dynami-
cal properties reported here are likely to be generic for
colloidal gels with moderate attractive interactions. In-
stead, we propose that the different q-dependence of χ∗

arises from the different q and U ranges probed in this
work compared to [12]. In this section, we introduce a
simple —yet general— scaling argument for the length-
scale dependence of dynamical fluctuations in glassy sys-
tems that reconciles these contrasting observations. We
assume the dynamics to be due to random rearrangement
events each affecting a “blob” of volume Vb. The fluc-
tuations of cI then stem from fluctuations of Ntot, the
total number of events needed to decorrelate the scat-
tered light. In determining Ntot, one has to take into
account that one single event may not displace particles
far enough to fully suppress the local contribution to the
scattered light; additionally, one single event may affect
only a portion of the whole scattering volume. Thus,
Ntot ∼ NblobNev, where Nblob ∼ Vsc/Vb is the number of
dynamically correlated blobs of volume Vb contained in
the scattering volume Vsc, and Nev is the number of rear-
rangement events that are needed, at any given location,
to relax the local contribution to the correlation function,
i.e. the number of events on the time scale τr of the sys-
tem’s relaxation. The inset of Fig. 6 is a schematic rep-
resentation of this concept for Nblob ∼ 50 and Nev = 2:
in this case, g2 − 1 decays to zero when at least two rear-
rangement events (symbolized by a black and a gray cir-
cle) have occurred at every location in the system. Given
the random nature of the events, Ntot fluctuates, and so
does cI , with var(cI) ∼ var(Ntot). According to the cen-
tral limit theorem, the relative variance of Ntot —and
thus χ— is expected to scale as N−1

tot ∼ (NblobNev)
−1.

We stress that in general both Nblob and Nev are q-
dependent quantities. Indeed, Nev decreases as q in-
creases, because fewer events are needed to displace
the particles over the smaller distances corresponding
to larger scattering vectors. More specifically, in our
model the average number of events is proportional to
time and thus we expect Nev ∼ τr ∼ q−α. For uncor-
related particle displacements due to successive events
(“Brownian-like” rearrangements), α = 2. By contrast,

��� χ
*

 

��� �
α

α ��	
�� �����	
�� ��

FIG. 6: (Color online) Inset: schematic representation of the
rearrangement events within the scattering volume. Succes-
sive events at the same location are indicated by circles of
different grey level. Main figure: qualitative double logarith-
mic plot of the proposed q-dependence of dynamical fluctua-
tions. Left axis: χ∗ (continuous line, blue); right axis: N−1

ev

(dashed line, red), and N−1
blob ∼ Vb (dotted line, black). The

slope α varies between 1 and 2, depending on the nature of
the dynamics, as discussed in the text.

α = 1 if the displacement direction persists over several
events (“ballistic-like” rearrangements), as found for our
CB gels and other systems with internal stress-driven dy-
namics [5, 12, 23]. Note that at very large q Nev should
saturate to one, when the particles’ displacement due to
one single event exceeds 1/q, the length scale probed in a
scattering experiment. By contrast, there are no a priori

prescriptions on the q-dependence of Nblob. However, it
is reasonable to assume that the latter be an increasing
function of q, since in glassy systems rearrangements in-
volving displacements over large distances (probed at low
q) are likely to require the highly cooperative motion of
many particles, whereas smaller displacements (probed
at high q) may be achieved independently by clusters
containing just a few particles. Thus, for q → 0, Nblob

is expected to saturate at a lower bound, which may be
as low as 1 when Vb is larger than the scattering vol-
ume, as observed in [12]. In the opposite limit, q → ∞,
Nblob should saturate to Np, the number of particles in
the system.

The main panel of Fig. 6 illustrates schematically the
q-dependence of N−1

blob and N−1
ev (right axis) and that

of χ∗ ∼ (NblobNev)
−1 (left axis). At low q, χ∗ ∼ qα,

since N−1
blob saturates to one whereas N−1

ev ∼ qα. This
is the regime observed for the strongly attractive gels of
ref. [12], for which Nblob = 1 and χ∗ ∼ N−1

ev ∼ τr(q)
−1 ∼

q (α = 1). By contrast, χ∗ tends to a constant value at
very large q, because N−1

blob saturates to N−1
p , while N−1

ev

saturates to one. The behavior of the dynamical suscep-
tibility for intermediate q’s depends on the detailed inter-
play between Nblob and Nev. In Fig. 6 we have sketched
the case where N−1

blob decreases faster than N−1
ev grows,

yielding a peaked shape of χ∗, as observed in the exper-
iments presented here.

We expect these scaling arguments to hold also for
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other glassy systems exhibiting dynamical fluctuations.
Indeed, a growing trend in the low q regime, with α = 2,
is predicted for dynamically facilitated models, for which
χ∗ saturates in the opposite limit q → ∞ [13]. For a 2-D
granular system [7] and in simulations of a Lennard-Jones
glass former [16] and a short-range attractive glass [15],
a non-monotonic behavior similar to that of the CB gels
has been reported, with χ∗ initially growing with q but
then decreasing after going through a peak. The length
scale corresponding to this peak is comparable to the
inter-particle distance for repulsive systems, while it is
shifted to smaller values, corresponding to the width of
the interparticle potential well, for attractive glasses [15].
Finally, the high-q regime has been explored for hard
spheres within the mode coupling theory in [14], where
the amplitude of χφ, a lower bound for χ4, was reported
to decrease with q around the peak of the static structure
factor, in agreement with the behavior predicted by our
scaling argument at large q.

Simulations of glass formers and experiments on 2D
granular materials suggest that χ∗ is maximum on the
length scale of the particle size or that of the interparti-
cle bond. Colloidal gels present an additional characteris-
tic length, the size of the (fractal) clusters that compose
them. For the gels of ref. [12], χ∗ was shown to grow
with q for length scales intermediate between the cluster
and the particle size. For the CB gels studied here, χ∗

peaks at q∗ ≈ 20 − 50 µm−1 (see Fig. 5), corresponding
to a length scale Λ ≡ 2π/q∗ ≈ 125 − 300 nm, compara-
ble to the particle size. Collectively, these observations
suggest that the crossover length scale for dynamical het-
erogeneity in colloidal gels is of the order of or smaller
than the particle size, similarly to molecular glass form-
ers and granular materials, rather than the cluster size.
Interestingly, in our gels Λ shifts towards smaller val-
ues (q∗ increases) when the particles are more sticky, the
same trend as that reported in Ref. [15] when going from

a nearly hard-sphere system to an attractive one. Al-
though the exact value of q∗ most likely depends on the
detailed shape of the interparticle potential, it is intrigu-
ing to note that the values found here (q∗R ≈ 3.6 for
U ≈ 12kBT and q∗R ≈ 9 for U ≈ 30kBT , respectively)
are comparable to those shown in [15] for a nearly-hard-
sphere and an attractive system (q∗R ≈ 2.5 and q∗R ≈ 6,
respectively).

In conclusion, we have shown that the dynamics of
CB gels is temporally heterogeneous. Dynamical fluctu-
ations increase with q, peak around the inverse particle
size, and decrease at larger scattering vectors. This be-
havior and that of other systems can be rationalized by a
simple scaling argument, providing a general framework
for understanding temporal fluctuations of the dynam-
ics in glassy systems. Additionally, our measurements
demonstrate that XPCS may be used to obtain quanti-
tative information not only on the average dynamics, but
also on its heterogenous behavior. This opens a new way
to investigate dynamical heterogeneity in a wide variety
of materials, possibly including molecular glass formers,
whose characteristic length scales match those probed
by XPCS, provided that a high enough signal can be col-
lected.
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