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Adaptive estimation of linear functionals in the convolution model and applications.

Introduction

We consider the convolution model

Z i = X i + ε i . (1) 
The sequences (X i ) i∈N and (ε i ) i∈N are independent. The X i 's are i.i.d with unknown density g, the ε i 's are i.i.d. with known density f ε , whose smoothness is described by the following assumption.

Suppose there exist nonnegative numbers κ 0 , κ 0 , β, α, and ρ such that f * ε satisfies κ 0 (x 2 + 1) -β/2 exp{-α|x| ρ } ≤ |f * ε (x)| ≤ κ 0 (x 2 + 1) -β/2 exp{-α|x| ρ },

with β > 1 when ρ = 0. Since f ε is known, the constants α, ρ, κ 0 , κ 0 and β defined in [START_REF] Artiles Martínez | Adaptive minimax estimation in classes of smooth functions[END_REF] are known. When ρ = 0 in (2), the errors are called "ordinary smooth" errors. When α > 0 and ρ > 0, they are called "super smooth". The standard examples for super smooth densities are Gaussian or Cauchy distributions (super smooth of order β = 0, ρ = 2 and β = 0, ρ = 1 respectively). An example of ordinary smooth density is the Laplace distribution (ρ = 0 = α and β = 2). In this context, many papers studied the so-called "deconvolution problem". In other words, many strategies have been developed in order to estimate the distribution g of the unobserved X i 's, when assuming that g belongs to some smoothness class defined by:

S(b, a, r, L) = f such that +∞ -∞ |f * (x)| 2 (x 2 + 1) b exp{2a|x| r }dx ≤ 2πL (3) 
for b, a, r, L some unknown non-negative numbers, such that b > 1/2 when r = 0. Kernel estimators were first widely studied (see Carroll and Hall [START_REF] Carroll | Optimal rates of convergence for deconvolving a density[END_REF], Stefanski and Carroll [START_REF] Stefanski | Deconvoluting kernel density estimators[END_REF], Fan [START_REF] Fan | On the optimal rates of convergence for nonparametric deconvolution problems[END_REF]), in the case of Sobolev balls (case r = 0 in (3)). Classically in this context, the slowest rates of convergence for estimating g are obtained for super smooth error densities. Then adaptive strategies have been examined, using wavelets (see Pensky and Vidakovic [START_REF] Pensky | Adaptive wavelet estimator for nonparametric density deconvolution[END_REF]), or model selection methods (see Comte et al. [START_REF] Comte | Penalized contrast estimator for adaptive density deconvolution[END_REF]). These works, together with those of Butucea [START_REF] Butucea | Deconvolution of supersmooth densities with smooth noise[END_REF], Butucea and Tsybakov [START_REF] Butucea | Sharp optimality for density deconvolution with dominating bias. i and ii[END_REF] and Lacour [START_REF] Lacour | Rates of convergence for nonparametric deconvolution[END_REF], studied cases r > 0, a > 0 in (3) involving thus infinitely many times differentiable functions and lead to improved but non standard rates whose optimality in the minimax sense was detailed in Fan [START_REF] Fan | On the optimal rates of convergence for nonparametric deconvolution problems[END_REF], Butucea [START_REF] Butucea | Deconvolution of supersmooth densities with smooth noise[END_REF], Butucea and Tsybakov [START_REF] Butucea | Sharp optimality for density deconvolution with dominating bias. i and ii[END_REF].

In this paper, we are interested in the problem of estimating θ(g) = ψ, g = E(ψ(X 1 )) in model [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF], where ψ is a known integrable function.

For the sake of clarity, we first define the three types of estimators and associated rates discussed in this paper: minimax, adaptive minimax and adaptive. Let 

Λ = [b, b] × [a, a] × [r, r] × [L, L] ⊂ [0, ∞) × [0, ∞) × (0,
2] × (0, ∞) be a set of parameters λ = (b, a, r, L). Definition 1.1 A sequence ϕ n,λ which tends to 0 with n is a minimax rate of convergence over the class of density functions S(λ) if there exists an estimator θ * n of θ and a constant C > 0 such that sup

g∈S(λ) ϕ -2 n,λ E g [|θ * n -θ(g)| 2 ] ≤ C, for n large enough,
and if for some c > 0 we have

inf θn sup g∈S(λ) ϕ -2 n,λ E g [|θ n -θ(g)| 2 ] ≥ c, for n large enough,
where the infimum is taken over all estimators θ n of θ. where ϕ n,λ is the minimax rate of convergence of the pointwise risk (i.e. for fixed values of b, a, r and L).

It is not always possible to attain the minimax rate uniformly over a set of parameters Λ. Most often there is a loss in the rate due to adaptation.

Definition 1. [START_REF] Artiles Martínez | Adaptive estimation of analytic functions on an interval[END_REF] We say that an estimator θ * n is adaptive if it attains a rate of convergence ψ n,λ uniformly in λ over Λ, i.e. there exists a constant C > 0 such that 

sup λ∈Λ sup g∈S(λ) ψ -2 n,λ E g [| θ * n -θ(g)| 2 ] ≤ C,
ψ -2 n,λ E g [|θ n -θ(g)| 2 ] ≥ c,
for n large enough, where the infimum is taken over all possible estimators θ n .

Comte et al. [START_REF] Comte | Penalized contrast estimator for adaptive density deconvolution[END_REF] developed model selection techniques to provide an adaptive estimator of g.

Using the same collection of spaces S m , we can build an estimator of θ(g) = ψ, g on a given S m , for which we can exhibit various rates of the mean square error. Then, in the spirit of Laurent et al. [START_REF] Laurent | Adaptive estimation of linear functionals by model selection[END_REF], we build an adaptive procedure for automatic selection of the space S m in a collection (S m ) m∈Mn . The difficulty here lies in finding an adequate penalization of an empirical error of the estimator. We adapt Laurent et al. [START_REF] Laurent | Adaptive estimation of linear functionals by model selection[END_REF]'s methodology by defining the selection spaces in the frequency domain. Moreover, our setting is not gaussian. To compute the rates, we have to take into account the regularity parameters of the function ψ, which is thus assumed to satisfy, ∀x ∈ R,

|ψ * (x)| 2 ≤ C ψ (x 2 + 1) -B exp(-2A|x| R ). ( 4 
)
We also extend the result to different dependency contexts, in view of particular hidden markov models or ARCH-type models.

Adaptive estimation of linear functionals has been widely studied in the context of the white noise model and regression (direct observation), see e.g. Lepski [START_REF] Lepski | A problem of adaptive estimation in Gaussian white noise[END_REF], Tsybakov [START_REF] Tsybakov | Pointwise and sup-norm sharp adaptive estimation of functions on the Sobolev classes[END_REF], Cai and Low [START_REF] Cai | On adaptive estimation of linear functionals[END_REF][START_REF] Cai | Adaptive estimation of linear functionals under different performance measures[END_REF], Artiles and Levit [START_REF] Artiles Martínez | Adaptive estimation of analytic functions on an interval[END_REF] Laurentet al. [START_REF] Laurent | Adaptive estimation of linear functionals by model selection[END_REF] and in the context of density models with direct observations Lepski and Levit [START_REF] Lepski | Adaptive minimax estimation of infinitely differentiable functions[END_REF], Butucea [START_REF] Butucea | Exact adaptive pointwise estimation on Sobolev classes of densities[END_REF], Artiles [START_REF] Artiles Martínez | Adaptive minimax estimation in classes of smooth functions[END_REF]. For the model of Gaussian sequences Golubev and Levit [START_REF] Golubev | An oracle approach to adaptive estimation of linear functionals in a Gaussian model[END_REF] and Golubev [START_REF] Golubev | The method of risk envelopes in the estimation of linear functionals[END_REF] considered adaptive estimation of linear functionals in both direct and inverse setup. Note also that in some particular inverse problems the pointwise adaptive estimation was solved by Klemelä and Tsybakov [START_REF] Klemelä | Exact constants for pointwise adaptive estimation under the Riesz transform[END_REF] for the Riesz transform, by Cavalier [START_REF] Cavalier | On the problem of local adaptive estimation in tomography[END_REF] for tomography problem. To our knowledge, we present the first work on model selection based adaptation for density estimation in the convolution model [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF].

Our findings are interesting, in term of rates and loss due to adaptation. We provide a new adaptation procedure and when applying our general results to pointwise estimation of g, we recover as a particular case, the upper bound rates obtained by Fan [START_REF] Fan | On the optimal rates of convergence for nonparametric deconvolution problems[END_REF], Butucea [START_REF] Butucea | Deconvolution of supersmooth densities with smooth noise[END_REF] and Butucea and Tsybakov [START_REF] Butucea | Sharp optimality for density deconvolution with dominating bias. i and ii[END_REF], directly in a general context. Moreover, we prove the optimality in the minimax sense of the loss due to adaptation for Sobolev smooth densities and supersmooth densities in presence of ordinary smooth noise and for supersmooth densities in presence of supersmooth noise with r ≥ ρ and 0 < ρ ≤ 1 (in the case r < ρ no loss occurs, while the case r ≥ ρ and 1 < ρ < 2 is still open). As a by-product we also prove in the last case that the rates of our estimator (which requires knowledge of a, r) are optimal in the minimax sense, which was not yet known in the literature.

We also apply the procedure to pointwise Laplace transform estimation, when X 1 is a positive random variable, even when the Laplace transform of the noise is infinite. Lastly, we illustrate our method with an application to the discrete stochastic volatility model, where derivatives of the Laplace transform of the volatility can be estimated with good rates. All the upper bounds given in the applications correspond to particular values for the parameters B, A, R of the function ψ in (4). Lastly, we show how the methods can be applied in the context of general ARCH-type models.

The plan of the paper is the following. Section 2 defines the estimators and studies their rates with squared loss function, and the adaptive procedure is detailed in Section 3. Both independent and β-mixing contexts are studied. In Section 4, several applications of our general results are detailed. Section 4.1 is devoted to the application of the results to adaptive pointwise deconvolution, upper bounds are deduced from Section 3 and the associated lower bounds are proven when a loss occurs. Section 4.2 presents application to Laplace transform estimation, in the standard context and 4.3 to the context of the stochastic volatility model. Lastly, Section 4.4 explains how the procedure applies to ARCH-type processes. Some proofs are gathered in Section 5.

Study of strategies for estimation

Recall that we want to estimate θ(g) = ψ, g = E(ψ(X 1 )) where X 1 follows model (1) and is unobserved. Only the Z i 's, for i = 1, . . . , n are available.

We assume in all the following that:

f ε belongs to L 2 (R) and is such that ∀x ∈ R, f * ε (x) = 0. ( 5 
)
Note that the square integrability of f ε requires that β > 1/2 when ρ = 0 in (2).

In the sequel, we denote by the convolution product of functions (u v(x) = u(t)v(t-x)dt) and by u * the Fourier Transform of u: u * (x) = e itx u(t)dt.

Two strategies

Two ideas can be investigated.

The first one is to write ψ, g = (1/2π) ψ * , g * . As the density

f Z of Z 1 satisfies f Z = g f ε , we have f * Z = g * f * ε . In other words, under (5), ψ, g = (1/2π) ψ * , f * Z /f * ε . Replacing f * Z (t) by its empirical version (1/n) n k=1 e itZ k , this leads to the estimator θ = 1 2πn n k=1 e itZ k ψ * (t) f * ε (t) dt. ( 6 
)
This estimator is built directly and seems attractive. Unfortunately, the term f * ε in the denominator should make in many cases the integral divergent (think of a Gaussian noise ε for instance). Thus, for the estimator to be well defined, it is wise to take as an estimator of θ(g),

θm = 1 2πn n k=1 |t|≤πm e itZ k ψ * (t) f * ε (t) dt. (7) 
The second strategy is less direct but natural as well: we can use some estimator of g, ĝm and set θm = θ(ĝ m ) = ψ, ĝm .

It happens that if ĝm is the projection estimator defined in Comte et al. [START_REF] Comte | Penalized contrast estimator for adaptive density deconvolution[END_REF], then θm = θm . To see this, we need to recall the definition of ĝm . Let ϕ(x) = sin(πx)/(πx). For m ∈ N and j ∈ Z, set ϕ m,j (x) = √ mϕ(mx -j). The functions {ϕ m,j } j∈Z constitute an orthonormal system in L 2 (R) (see e.g. Meyer [START_REF] Meyer | Ondelettes et opérateurs. I. Actualités Mathématiques[END_REF], p.22). Let us define

S m = span{ϕ m,j , j ∈ Z}, m ∈ N.
The space S m is exactly the subspace of L 2 (R) of functions having a Fourier transform with compact support contained in [-πm, πm]. Here Condition (5) allows to define the following contrast function: for t in S m , let

γ n (t) = 1 n n i=1 t 2 -2u * t (Z i ) , with u t (x) = 1 2π t * (-x) f * ε (x) . (9) 
Then, for an arbitrary fixed integer m, an estimator of g belonging to S m is defined by

ĝm = arg min t∈Sm γ n (t). ( 10 
)
By using Parseval and inverse Fourier formulae we obtain that E [u * t (Z i )] = t, g , so that E(γ n (t)) = t-g 2 -g 2 is minimal when t = g. This explains why γ n (t) is well-suited for the estimation of g. Note that the orthogonal projection of g on S m is g m = j∈Z a m,j (g)ϕ m,j where a m,j (g) =< ϕ m,j , g > and that ĝm = j∈Z âm,j ϕ m,j with âm,j = 1 n n i=1 u * ϕ m,j (Z i ), and E(â m,j ) = a m,j .

It is then easy to see that

θm = ĝm , ψ = j∈Z a m,j ϕ m,j , ψ = j∈Z 1 n n k=1 e iuZ k ϕ * m,j (u) f * ε (u) du 1 2π ψ * , ϕ * m,j = 1 2πn n k=1 e iuZ k j∈Z ψ * , ϕ * m,j ϕ * m,j (u) f * ε (u) du = θm , because j∈Z ψ * , ϕ * m,j ϕ * m,j (u) = ψ * (u)1 I |u|≤πm .
We have proved that:

Proposition 2.1 Let θm = θ(ĝ m ) be defined by [START_REF] Cai | Adaptive estimation of linear functionals under different performance measures[END_REF] with ĝm defined by ( 9)- [START_REF] Carroll | Optimal rates of convergence for deconvolving a density[END_REF] and θm defined by [START_REF] Butucea | Sharp optimality for density deconvolution with dominating bias. i and ii[END_REF], then θm = θm .

We can note that in practice ĝm involves an infinite sum which should be truncated. The study of the impact of this truncation is in Comte et al [START_REF] Comte | Penalized contrast estimator for adaptive density deconvolution[END_REF]. For this reason, (7) may be a better way to write the estimator.

Risk bounds and rates for independent variables

The direct strategy has the advantage that m = +∞ can be chosen. If this is possible, then the estimate is unbiased and its rate can reach the parametric rate. Indeed the variance is

Var( θ) = Var( θ∞ ) = 1 4π 2 n Var e iuZ 1 ψ * (u) f * ε (u) du = 1 4π 2 n (f * Z (u -v) -f * Z (u)f * Z (-v)) ψ * (u)ψ * (-v) f * ε (u)f * ε (-v) dudv ≤ 1 4π 2 n |ψ * (u)| 2 |f * ε (u)| 2 du |f * Z (x)|dx.
Another bound for the variance shall prove useful in the sequel:

Var( θ) ≤ 1 4π 2 n E e iuZ 1 ψ * (u) f * ε (u) du 2 ≤ 1 4π 2 n |ψ * (u)| |f * ε (u)| du 2 .
Finally,

Var( θ) ≤ 1 4π 2 n min |f * Z | |ψ * (u)| 2 |f * ε (u)| 2 du, |ψ * (u)| |f * ε (u)| du 2 .
Thus if all integrals are finite, the estimator has a quadratic risk E(θ -θ) 

|ψ * (x)/f * ε (x)| 2 dx < +∞ or |ψ * (x)/f * ε (x)|dx < ∞. ( 11 
)
Then θ given by ( 6) is well defined. It is an unbiased estimator of θ(g) = ψ, g , and

E[( θ - θ(g)) 2 ] ≤ C/n.
Remark 2.1 Condition (11) is fulfilled if ψ * decreases faster than f * ε near infinity, which corresponds to the intuitive idea that ψ is a smoother function than f ε . For example, this happens if ψ is supersmooth when ε is ordinary smooth.

In the general case, a bound for the squared bias can be found, using that

E(θ -θm ) 2 = b 2 ( θm ) + Var( θm ) with b( θm ) = θ -E( θm ). As E( θm ) = (1/(2π)) |t|≤πm g * (t)ψ * (t)dt, we obtain b( θm ) = 1 2π g * (t)ψ * (t)dt - |t|≤πm g * (t)ψ * (t)dt = 1 2π |t|≥πm g * (t)ψ * (t)dt.
Therefore, the squared-bias variance decomposition is here

E(θ -θm ) 2 ≤ b 2 ( θm ) + 1 4π 2 n min |u|≤πm |ψ * (u)| 2 |f * ε (u)| 2 du |f * Z |, u≤πm |ψ * (u)| |f * ε (u)| du 2 .
Thus we can study the rates that can be deduced from the previous upper bounds, in function of the smoothness parameters of the three involved functions: g, ψ, f ε . Proposition 2.3 Assume that C ε = |f * ε (x)|dx < +∞, and let θm be defined by ( 8) or [START_REF] Butucea | Sharp optimality for density deconvolution with dominating bias. i and ii[END_REF]. Then

E(θ -θm ) 2 ≤ 1 2π |t|≥πm |g * (t)ψ * (t)|dt 2 + 1 4π 2 n min C ε πm -πm |ψ * | 2 |f * ε | 2 , πm -πm |ψ * | |f * ε | 2 .
Let us assume thus that ψ satisfies (4), that g belongs to S(b, a, r, L) as defined by (3) and that f * ε fulfills (2). Then

b 2 ( θm ) ≤ |x|≥πm g * (x)ψ * (x)dx 2 ≤ |x|≥πm |g * (x)|(1 + x 2 ) b/2 exp(a|x| r )(|ψ * (x)|(1 + x 2 ) -b/2 exp(-a|x| r ))dx 2 ≤ |x|≥πm |g * (x)| 2 (1 + x 2 ) b exp(2a|x| r )dx |x|≥πm |ψ * (x)| 2 (1 + x 2 ) -b exp(-2a|x| r )dx ≤ LC |x|≥πm (1 + x 2 ) -b-B exp(-2a|x| r -2A|x| R )dx ≤ C 1 m -2b-2B-max(r,R)+1 exp(-2a(πm) r -2A(πm) R ).
On the other hand, for the variance, we find:

Var( θm ) ≤                                              C n (case (I)),        if (ρ = R = 0, β < B -1/2) or (ρ = R > 0, α = A, β < B -1/2) or (ρ = R, α < A) or (ρ < R) C ln(m) n (case (II)), if (ρ = R > 0, α = A, β = B -1/2) or (ρ = R = 0, β = B -1/2) C n m 2β-2B+1 , (case (III)) if (ρ = R > 0, α = A, β > B -1/2) or (ρ = R = 0, β > B -1/2) C n m 2β-2B+1-ρ+(1-ρ) + e 2α(πm) ρ -2A(πm) R if (ρ > R) or (ρ = R > 0, α > A). (case (IV))
The term 1 -ρ + (1 -ρ) + , where x + = max{x, 0}, comes from comparisons of the two possible variance orders as, e.g. for R = 0:

|u|≤πm |ψ * (u)| 2 |f * ε (u)| 2 du ≤ C 2 m 2β-2B+1-ρ exp(2α(πm) ρ )
and

|u|≤πm |ψ * (u)| |f * ε (u)| du ≤ C 3 m β-B+1-ρ exp(α(πm) ρ ).
Table 1: Upper bounds for the minimax rates of convergence

Parameters Rate ρ < R n -1 ρ = R α < A n -1 (ρ = R = 0) or (ρ = R > 0, α = A)                        β ≤ B -1/2 β = B -1/2 max{r, R} = 0 max{r, R} > 0 β > B -1/2 max{r, R} > 0 max{r, R} = 0 n -1 (ln ln n)n -1 (ln n)n -1 (ln n) (2β-2B+1)/{r∨R} n -1 n -(b+B-1/2)/(b+B) , (b > 1/2) (ρ = R > 0, α > A) v n ρ > R    max{r, R} > 0 max{r, R} = 0 v n ln(n) -(2(b+B)-1)/ρ , (b > 1/2)
More generally, several cases can arise, detailed here and summarized in Table 1. Note that in case (ρ = R > 0, α > A, min{r, R} > 0) or (ρ = R = 0, max r, R > 0 the rate is given by

v n = arg min m C B m -2b-2B+1-r∨R e -2a(πm) r -2A(πm) R +m 2β-2B+1-ρ+(1-ρ) + e 2α(πm) ρ -2A(πm) R 1 n .
These rates are faster than (ln(n)) -λ 1 and slower than n -λ 2 for any λ 1 , λ 2 > 0.

Remark 2.2 Here, the smoothness of ψ seems to have no influence on the optimal choice for m. Nevertheless, the dependence on the unknown parameters related to g of the different optimal choices of m enhances the interest of an automatic selection of m.

Note that ψ(x) = x or ψ(x) = x p are not integrable on R so that the moments of X 1 can not be estimated in that way. But if ε 1 admits moments of the same order, since they are known, they can be used together with empirical moments of the Z i 's to obtain estimated moments of X 1 .

Extension to mixing contexts

In view of applications, it is natural to study the robustness of the results with respect to dependency in the variables, and in particular to β-mixing properties.

To be more precise, two dependency contexts are considered. First, we can assume:

(D1) In Model (1), the sequences (X i ) and (ε i ) are independent and the ε i 's are i.i.d. The sequence (X i ) is strongly stationary and β-mixing, with β-mixing coefficients denoted by (β k ) k .

otherwise we assume:

(D2) In Model (1), the ε i 's are i.i.d and for any given i, X i and ε i are independent (but the sequences (X i ) and (ε i ) are not independent). The sequence (Z i , X i ) i∈Z is strongly stationary and β-mixing, with β-mixing coefficients denoted by (β k ) k .

Context (D1) encompasses the case of particular Hidden Markov Models, when the noise is additive and (X i ) is a β-mixing Markov process. As many Markov chain models or other standard models can be proved to have such mixing properties (see Doukhan [START_REF] Doukhan | Mixing[END_REF] for a large set of examples and study of their mixing properties), this means that our results can be applied to many classical models. In that case, we can prove the following result:

Proposition 2.4 Consider the model (1) under (D1) with moreover k≥0 β k < +∞. Assume that C ε = |f * ε (x)|dx < +∞.
Let θm be defined by ( 8) or [START_REF] Butucea | Sharp optimality for density deconvolution with dominating bias. i and ii[END_REF]. Then

E(θ -θm ) 2 ≤ 1 2π |t|≥πm |g * (t)ψ * (t)|dt 2 + C ε 4π 2 n min πm -πm |ψ * | 2 |f * ε | 2 , πm -πm |ψ * | |f * ε | 2 + 2( |t|≤πm |ψ * |(t)dt) 2 k≥0 β k n . (12) 
In particular, if

K ψ := |ψ * (t)|dt < +∞, then E(θ -θm ) 2 ≤ 1 π +∞ πm |g * ψ * | 2 + C ε 4π 2 n min πm -πm |ψ * | 2 |f * ε | 2 , πm -πm |ψ * | |f * ε | 2 + K n , (13) 
where K = 2K 2 ψ k β k . Note that, in any case, we have in [START_REF] Chaleyat-Maurel | Computable infinite-dimensional filters with applications to discretized diffusion processes[END_REF],

|t|≤πm |ψ * (t)|dt ≤ min 2π f ε 2 πm -πm |ψ * | 2 |f * ε | 2 , πm -πm |ψ * | |f * ε | 2 ,
so that the last term is always less or equal than the variance term. It follows that the rates, in the context of mixing X k 's described by assumption (D1), remain the same as in the independent setting.

We explain in Section 4.4, how context (D2) is linked with ARCH models. Let us for now only state the result:

Proposition 2.5 Consider the model (1) under (D2) with moreover k≥0 β k < +∞. Assume that C ε = |f * ε (x)|dx < +∞.
Let θm be defined by ( 8) or [START_REF] Butucea | Sharp optimality for density deconvolution with dominating bias. i and ii[END_REF]. Then

E(θ -θm ) 2 ≤ 1 2π |t|≥πm |g * (t)ψ * (t)|dt 2 + C ε 4π 2 n min πm -πm |ψ * | 2 |f * ε | 2 , πm -πm |ψ * | |f * ε | 2 + 2 k≥0 β k n πm -πm |ψ * | πm -πm |ψ * | |f * ε | . ( 14 
)
In particular, if f ε satisfies (2) and if ψ satisfies (4) and

|ψ * (x)| ≥ C ψ (x 2 + 1) -B exp(-2A|x| R ), (15) 
with β > max(B, 1) or (A > 0, ρ > 0), then

E(θ -θm ) 2 ≤ 1 π +∞ πm |g * ψ * | 2 + K 4π 2 n min πm -πm |ψ * | 2 |f * ε | 2 , πm -πm |ψ * | |f * ε | 2 , ( 16 
)
where K is a constant.

Note that condition (2) contains two inequalities analogous to [START_REF] Comte | Penalized contrast estimator for adaptive density deconvolution[END_REF] added to (4): they ensure that the orders are exact and not only upper bounds. They are required to compare the order of the additional mixing term to them.

It appears from Inequality ( 14) that

( |t|≤πm |ψ * |(t)dt)( |t|≤πm |ψ * /f * ε |(t)dt) ≤ ( |t|≤πm |ψ * /f * ε |(t)dt) 2 but the comparison with |t|≤πm |ψ * /f * ε | 2 (t)
dt requires a case study which explains the validity conditions β > max(B, 1) or (A > 0, ρ > 0) given for [START_REF] Doukhan | Mixing[END_REF]. It follows from ( 16) that the rates given in Table 1 are preserved whenever the ε i 's are supersmooth.

3 Adaptive estimation

The adaptation problem for linear functionals

The problem of adaptation with linear functionals can be understood by comparison with what happens for global estimation of g for instance. In this context, we can see that g -ĝm 2 = g-g m 2 + g m -ĝ m 2 with Pythagoras theorem. Then to mimic and perform the squared-bias / variance compromise, both terms must be approximated. But as g m is the orthogonal projection of g on S m , g -g m 2 = g 2 -g m 2 . Then the squared bias can be reduced to -g m 2 , the other term being a constant. A natural estimation of -g m 2 is γ n (ĝ m ) = -ĝm 2 . This explains why model selection in that case is performed by setting m = arg min m {γ n (ĝ m )+pen(m)} where the penalty generally has roughly the order of the variance (E( ĝm -g m 2 )). For linear functionals, let us describe the heuristics. As now only a standard square in involved, (θ(g)-θ(g m )) 2 = θ 2 (g)-2θ(g)θ(g m )+θ 2 (g m ), no simplification occurs in the cross product. Therefore, the best approximation of the bias is obtained by replacing it by (θ(g j )-θ(g m )) 2 for j ≥ m, j great enough, and then by (θ(ĝ j ) -θ(ĝ m )) 2 = ( θjθm ) 2 . This approximation in turn implies a bias which must be corrected. This explains why the theoretical criterion is

Crit(m) = sup j≥m (θ(g j ) -θ(g m )) 2 + pen(m),
where pen(m) has the order of the variance, and its empirical version is

Crit(m) = sup j≥m,j∈M [(θ(ĝ m ) -θ(ĝ j )) 2 -H(j, m)] + pen(m),
where H(j, m) is an additional bias correction. We can then define

m = inf m ∈ M, Crit(m) ≤ inf j∈M Crit(j) + 1 n (17) 
as the model selection procedure. It remains to find pen(•) and H(j, m) that make the procedure work and give good rates for θ m.

Model selection

First, note that model selection has an interest only in the case |ψ * /f * ε | = +∞ and |ψ * /f * ε | 2 = +∞ since otherwise the variance is of order 1/n and the rate is parametric. As ψ and f ε are assumed to be known, these conditions can be explicitly checked.

Let C ε = |f * ε (x)|dx.
Let x m , be some positive weights to be chosen, and let a > 0, we define:

pen(m) = 4(1 + 1 a )(x m σ 2 m + x 2 m c 2 m ) ( 18 
)
where σ 2 m = σ 2 0,m , c m = c 0,m , with σ 2 j,m and c j,m defined by

σ 2 j,m = 1 2πn min    C ε π(j∧m)≤|x|≤π(j∨m) ψ * (x) f * ε (x) 2 dx, π(j∧m)≤|x|≤π(j∨m) |ψ * (x)| |f * ε (x)| dx 2    and c j,m = 1 2πn π(j∧m)≤|x|≤π(j∨m) ψ * (x) f * ε (x) dx.
Let also

H(j, m) = 4(1 + 1 a )(x j σ 2 j,m + x 2 j c 2 j,m ). ( 19 
)
We can prove the following Theorem:

Theorem 3.1 Consider model ( 1) for (X i ) 1≤i≤n and (ε i ) 1≤i≤n independent sequences of i.i.d. random variables and assume that f ε satisfies [START_REF] Butucea | Deconvolution of supersmooth densities with smooth noise[END_REF]. Let θ m be defined by [START_REF] Butucea | Sharp optimality for density deconvolution with dominating bias. i and ii[END_REF] or ( 8) and ( 17)-( 18)-(

) when |ψ * /f * ε | = +∞ and |ψ * /f * ε | 2 = +∞. 19 
Then there exists some positive constant C(a) depending on a only, such that

E[( θ m -θ) 2 ] ≤ C(a) inf m∈M    |x|≥πm |ψ * (x)g * (x)|dx 2 + pen(m)    + C(a) m∈M e -xm ω 2 m + 1 n ,
where

ω 2 m = σ 2 m ∨ c m + 2(σ 2 m ∨ c m ) 2 .
Theorem 3.1 states that θ m leads to an automatic tradeoff between the squared bias term ( |x|≥πm |ψ * (x)g * (x)|dx) 2 and pen(m) if the residual m e -xm ω 2 m is negligible, that is O(1/n). In other words, x m is not free but chosen so that m e -xm ω 2 m = O(1/n). In turn, as the main term in pen(m) is clearly x m σ 2 m and σ 2 m is the variance of θm , x m represents a loss in the variance (not necessarily in the rate). Now, let us discuss the possible choices for the x m 's in order to see what loss occurs, if any, when using the adaptive procedure. The cases are discussed with respect to cases (II), (III) and (IV) of the variance which contain only known parameters, under the assumption that f ε fulfills (2), ψ fulfills (4) and g belongs to the set defined by (3).

• Case (II). We take x m = 2 ln(m) and the rate become of order (ln ln(n)) 2 /n instead of ln ln(n)/n or of order ln 2 (n)/n instead of ln(n)/n.

• Case (III). We take x m = (2β-2B+3) ln(n), and the rate becomes of order ln ln(n) ln δ (n)/n instead of ln δ (n)/n and of order (n/ ln(n)) -[(b+B)-1/2]/(b+β) instead of n -[(b+B)-1/2]/(b+β) .

• Case (IV). We take x m = 4α(πm) ρ , and there is no loss in case with logarithmic rate and a loss of logarithmic order in case where the rate is such that powers of logarithms are negligible with respect to it.

Remark 3.1 Comte et al. [START_REF] Comte | Penalized contrast estimator for adaptive density deconvolution[END_REF] provide a model selection procedure for selecting an optimal m with respect to the L 2 risk for the estimator ĝm ; let g be the resulting estimator. Then ψ, g is an estimator of θ(g) on a randomly selected space among the S m 's. The inequality

E ( ψ, g -ψ, g ) 2 ≤ ψ 2 E( g -g 2 )
explains why the rate of this estimator does not benefit of the improvement brought by the known regularity of ψ and is therefore not optimal.

Moreover, if we want to extend the adaptive result to the mixing case, we can use the Bernstein inequality given in Doukhan [START_REF] Doukhan | Mixing[END_REF] or in Butucea and Neumann [START_REF] Butucea | Exact asymptotics for estimating the marginal density of discretely observed diffusion processes[END_REF], provided that the mixing is geometrical. We can prove the following Corollary of Theorem 3.1: Clearly, the constant c appearing in the c m 's, c m,j 's is unknown, but these terms have in general negligible orders when compared to the σ 2 m 's, σ 2 j,m 's.

Applications

Pointwise estimation

For pointwise estimation of g, we can take ψ(x) = 1 I {x 0 } (x) for any given x 0 , which implies ψ * (t) = e itx 0 , |ψ * (t)| = 1. Therefore, the rates of convergence are the same as usual in pointwise deconvolution, as recalled in Table 2. When r > 0, ρ > 0 the value of m is not explicitly given. It is obtained as the solution of the equation

m2b+2β+(1-ρ) + exp{2α(π m) ρ + 2a(π m) r } = O(n). (20) 
Consequently, the rate of ĝ m is not easy to give explicitly and depends on the ratio r/ρ. If r/ρ or ρ/r belongs to ]k/(k + 1); (k + 1)/(k + 2)] with k integer, the rate of convergence can be expressed as a function of k. For explicit formulae for the rates, see Lacour [START_REF] Lacour | Rates of convergence for nonparametric deconvolution[END_REF]. These rates are known to be optimal in the minimax sense as indicated in Table 2. The case r = 0 is done in Fan [START_REF] Fan | On the optimal rates of convergence for nonparametric deconvolution problems[END_REF], the case r > 0, ρ = 0 in Butucea [START_REF] Butucea | Deconvolution of supersmooth densities with smooth noise[END_REF]. The rate in the case r > 0, ρ > 0, β = 0 is proven optimal in the minimax sense in Butucea and Tsybakov [START_REF] Butucea | Sharp optimality for density deconvolution with dominating bias. i and ii[END_REF] for r ≤ ρ and by using their construction we get by following the same proof near optimality (within a log factor) in the case r > ρ.

For adaptive pointwise estimation, using |ψ * (x)| = 1 again, we have

c m ≤ σ 2 m and x 2 m c 2 m ≤ Cx m σ 2
m for all the choices of x m that will be found. Clearly, if f ε is ordinary smooth, the choice x m = (2β +3) ln(m) suits and if f ε is supersmooth, we can choose x m = 4α(πm) ρ . These choices coincide with the general case detailed above for b = 0. Then we have m∈M e -xm ω 2 m ≤ C/n. This implies that

E[( θ m -θ) 2 ] ≤ C inf m∈M +∞ πm |g * | 2 + x m n min πm -πm |f * ε | -2 , πm -πm |f * ε | -1 2 + C n .
Table 2: Choice of m for pointwise deconvolution and corresponding rates under Assumptions ( 2) and (3). Adaptive rates for comparison. B m is abbreviated for m -2b+1-r exp(-2a(πm) r ) and V m for m 2β+1-ρ+(1-ρ)+ exp(2α(πm) ρ )/n.

f ε ρ = 0 ρ > 0 ordinary smooth supersmooth r = 0 Sob.(b) π m = n 1/(2b+2β) ϕ 2 n = O(n -(2b-1)/(2b+2β) ) minimax rate π m = [ln(n)/(2α + 1)] 1/ρ ϕ 2 n = O((ln(n)) -(2b-1)/ρ ) minimax rate ψ 2 n = O((n/ ln(n)) -(2b-1)/(2b+2β) ) adaptive rate ψ 2 n = O((ln(n)) -(2b-1)/ρ ) adaptive minimax rate (no loss) r > 0 C ∞ π m = [ln(n)/2b] 1/r ϕ 2 n = O ln(n) (2β+1)/r n minimax rate m solution of (20) = ln(n) -(ln ln(n)) 2 ϕ 2 n = O(B m) : minimax rate if r < ρ and b = 0 ϕ 2 n = O(V m) : minimax rate if r ≥ ρ, ρ ≤ 1 and b = 0 ψ 2 n = O ln ln(n) ln(n) (2β+1)/r n adaptive rate ψ 2 n = O mρI(r≥ρ) ϕ 2 n adaptive minimax rate if r < ρ and b = 0 adaptive rate if r ≥ ρ, ρ ≤ 1 and b = 0
The rates correspond to B = A = R = 0 in (4) and are the following (see also Table 2):

• Case ρ = r = 0, f ε and g are ordinary smooth, x m = (2β +3) ln(m) ≤ (2β +3) ln(n), choose m of order (n/ ln(n)) 1/(2b+2β) , the rate of the adaptive estimator is (n/ ln(n)) -(2b-1)/(2b+2β) .

• Case ρ = 0, r > 0, a > 0, f ε is ordinary smooth and g is super-smooth, x m = (2β+3) ln(m), the optimal m is of order (ln(n)/2a) 1/r and the rate of the adaptive estimator is of order ln(ln(n))[ln(n)] (2β+1)/r /n, so that the loss is of order ln(ln(n)).

• Case ρ > 0, α > 0 and r = 0, i.e. f ε is super-smooth and g is ordinary smooth. Then x m is of order m ρ , the optimal πm is (ln(n)/(2α + 1)) 1/ρ and the rate of the adaptive estimator is of order [ln(n)] -(2b-1)/ρ , i.e. there is no loss due to adaptation.

• Case ρ > 0, α > 0 and r > 0, a > 0, i.e. both f ε and g are super-smooth. Here x m is of order m ρ , there is no loss if r < ρ, a loss of order [ln(n)] ρ/r for r > ρ for a rate faster than any power of logarithm. If r = ρ the loss is logarithmic and the rate polynomial. Now, we want to prove that the losses which occur are optimal in the minimax sense.

The previously defined estimator θ m with m defined in Table 2 is adaptive minimax in the cases: (r = 0 and ρ > 0) and (r > 0, ρ > 0 and r < ρ). As we already noticed, estimators θ m which are free of parameters may attain a slower rate of convergence ψ n , i.e. it may happen that ϕ n = o(ψ n ). Therefore, we check that the loss, when it occurs, is unavoidable.

Theorem 4.1 The rates ψ n defined in Table 2 are adaptive rates and whenever a loss with respect to the minimax rate appears (compare in Table 2 ϕ 2 n and ψ 2 n ) it is optimal in the sense of Definition 1.3, under the additional hypothesis that the noise density is 3-times continuously differentiable and

for polynomial noise |f ε (u)| ≤ C 1 |u| β+1 , as |u| → ∞ (21) 
for exponential noise |f ε (u)| ≤ C|u| ρ-1 exp(-α|u| ρ ), as |u| → ∞. (22) 
Moreover, when r > 0, r ≥ ρ and 0 < ρ ≤ 1 the rate ϕ 2 n is minimax rate of estimation.

Remark 4.1 Note that the adaptive property of θ m in the case r ≥ ρ is proved only for ρ ≤ 1, which is a technical restriction. Nevertheless, it is worth noticing that, still under the restriction that ρ ≤ 1, we obtain as a by-product in Theorem 4.1 the minimaxity of the rate for r ≥ ρ. This is a new result since the latest result on the subject was proving minimaxity in the case r < ρ only (see Butucea and Tsybakov [START_REF] Butucea | Sharp optimality for density deconvolution with dominating bias. i and ii[END_REF]).

Proof of Theorem 4.1. We describe first the general procedure for proving the theorem and postpone details of constructions and proofs to Section 5.5. As the adaptation loss is different according to whether r = 0 or r = 0, ρ = 0 or ρ = 0, explicit constructions are needed for each of the following setups:

1. r = 0, ρ = 0;

2. b = 0, r > 0, ρ = 0;

3. b = 0, r > 0, 0 < ρ ≤ 1 and r ≥ ρ.

Classically, we take b = 0 without loss of generality. Typically, we construct two probability densities g 0 ∈ S(λ) and g 1,n ∈ S(λ) where λ, λ ∈ Λ. Moreover

g 1,n (x) = g 0 (x) + G(x -x 0 , m), for m = m n → ∞ with n and G(•, m) = 0, ∀m.
Note that the likelihoods of the model become f Z 0 = g 0 f ε under g 0 and

f Z 1,n (x) = [g 1,n f ε ](x) = f Z 0 (x) + [G(•, m) f ε ](x -x 0 ) under g 1,n . Then inf θn sup λ∈Λ sup g∈S(λ) ψ -2 n,λ E g [|θ n -θ(g)| 2 ] ≥ inf θn max ψ -2 n,λ E g 0 [|θ n -θ(g 0 )| 2 ], ψ -2 n,λ E g 1,n [|θ n -θ(g 1,n )| 2 ] ≥ inf Tn max q 2 n E g 0 [T 2 n ], E g 1,n [|T n -G(0, m)/ψ n,λ | 2 ] ,
where q n = ψ n,λ /ψ n,λ → ∞ when n → ∞, with a proper choice of λ, λ and T n = (θ nθ(g 0 ))/ψ n,λ . ¿From now on we denote P 0 = P g 0 , E 0 = E g 0 and P 1 = P g 1,n , E 1 = E g 1,n . Following Theorem 6 in Tsybakov [START_REF] Tsybakov | Pointwise and sup-norm sharp adaptive estimation of functions on the Sobolev classes[END_REF] we can deduce that, if |G(0, m)/ψ n,λ | ≥ c > 0 and if for some fixed 0 < < 1 and τ > 0

P 1 dP 0 dP 1 ≥ τ ≥ 1 - (23) then inf Tn max q 2 n E 0 [T 2 n ], E 1 [|T n -G(0, m)/ψ n,λ | 2 ] ≥ τ q 2 n 2 c 4 (1 -) 2 τ q 2 n 2 c 2 + (1 -) 2 c 2 . (24) 
If we can choose τ = τ n such that τ n q 2 n → ∞ with n, then the bound from below in (24) tends to c 2 (1 -) 2 so it will be larger than c 2 (1 -) 4 > 0 for n large enough.

Note also that this Lemma may provide the exact asymptotic constant in case c → 1 and

P 1 (dP 0 /dP 1 ≥ τ n ) → 1 as n → ∞.
In order to deal with [START_REF] Laurent | Adaptive estimation of linear functionals by model selection[END_REF], we proceed as follows:

P 1 dP 0 dP 1 ≥ τ = P 1 n i=1 g 0 f ε g 1,n f ε (Y i ) ≥ τ = P 1 n i=1 ln 1 - G(• -x 0 ) f ε g 1,n f ε (Y i ) ≥ ln(τ ) = P 1 n i=1 Z i,n -nE 1 (Z 1,n ) (nVar 1 (Z 1,n )) 1/2 ≥ ln(τ ) -nE 1 (Z 1,n ) (nVar 1 (Z 1,n )) 1/2 ,
where

Z i,n = ln(1 -[G(• -x 0 ) f ε ](Y i )/g 1,n f ε (Y i ))
form a triangular array of independent variables. Denote

U n := n i=1 Z i,n -nE 1 (Z 1,n ) (nV ar 1 (Z 1,n )) 1/2 .
We shall prove, for each setup, Lyapounov's central limit theorem for U n . Moreover, we give an upper bound E 1 (Z 1,n ) ≥ -c e κ n and a lower bound for Var 1 (Z 1,n ) ≤ c v κ n , where κ n is such that

χ 2 (g 0 f ε , g 1,n f ε ) := (g 1,n f ε -g 0 f ε ) 2 g 1,n f ε ≤ κ n as n → ∞. Choose then τ n → 0 such that u n := ln(τ n ) + c e nκ n (c v nκ n ) 1/2 → -∞
with n, giving that P 1 (U n ≥ u n ) ≥ 1 -, for some 0 < < 1 and large enough n and thus concluding the proof of the Theorem. 2

Pointwise Laplace Transform estimation

Let us denote for any positive real number λ the Laplace Transform of a function g by

Lg(λ) = R e -λx g(x)dx.
In other words, Lg(λ) = E(e -λX 1 ) = ψ λ , g with ψ λ (x) = e -λx , for any λ > 0.

If X 1 is a nonnegative random variable, then its density g is a R + -supported density which admits a finite Laplace Transform. In that case, we can write Lg(λ) = g, ψ λ with ψ λ (x) = e -λx 1 I {x>0} , and

ψ * λ (x) = +∞ 0 e ixu e -λu du = 1 λ -ix , |ψ * λ (x)| 2 = 1 λ 2 + x 2 . ( 25 
)
On the other hand, the noise ε is not necessarily positive random variable. If ε 1 also admits a Laplace Transform, then so does Z 1 and the Laplace Transform of X 1 can be estimated by using the empirical version of the relation Lf Z (λ) = Lg(λ)Lf ε (λ). Thus, by setting

Lg(λ) = 1 n n k=1 e -λZ k /Lf ε (λ),
we get an unbiased estimate of Lg with quadratic risk of order 1/n. Now, if ε does not admit a Laplace Transform (e.g. for f ε (x) = 1/[π(1 + x 2 )], E(e -λε 1 ) = +∞), the method developed in this paper still allows a pointwise estimation of Lg. We can define

Lg m (λ) = 1 2πn n k=1 |t|≤πm e itZ k ψ * λ (t) f * ε (t) dt, (26) 
with ψ * λ given by ( 25). Then we know that Lg m (λ) is a consistent estimator of Lg(λ), provided that m is well chosen: Proposition 4.1 Let X be a positive random variable, with a Laplace transform denoted by Lg. For all λ > 0, the estimate of Lg defined by ( 26) is such that

E Lg m (λ) -Lg(λ) 2 ≤ |t|≥πm |g * (t)|dt 2 4π 4 m 2 + 1 4π 2 n min |f * ε | πm -πm dt (λ 2 + t 2 )|f * ε (t)| 2 , πm -πm dt √ λ 2 + t 2 |f * ε (t)| 2 .
Moreover, the adaptive procedure works for automatic selection of m. The rates are easily computed by changing β into β -1 (for b > 1) and b into b + 1 in Table 2 or by setting B = 1 in Table 1. We have Proposition 4.2 Let X be a nonnegative random variable with Laplace transform denoted by Lg and estimated by Lg m given by [START_REF] Meyer | Ondelettes et opérateurs. I. Actualités Mathématiques[END_REF]. Let m be defined by [START_REF] Fan | On the optimal rates of convergence for nonparametric deconvolution problems[END_REF], pen(m) by ( 18) and H(j, m) by ( 19), with

|ψ * (x)| = |ψ * λ (x)| = 1/ √ λ 2 + x 2 .
Then, for all λ > 0,

E Lg m(λ) -Lg(λ) 2 ≤ C(a) inf m∈Mn    |t|≥πm |g * (t)|dt 2 4π 4 m 2 + pen(m)    + C(a) n .
In the same way, we can estimate the symmetrized version of the Laplace Transform namely SLg(λ) = E(e -λ|X 1 | ). In that case, ψ λ (x) = e -λ|x| and ψ * (x) = 2λ λ 2 +x 2 . The rates are obtained by changing β into β -2 (for b > 2) and b into b + 2 in Tables 2 or by setting B = 2 in Table 1.

Stochastic volatility model

Let us consider the discrete time stochastic volatility model:

U i = V i η i , i = 1, . . . , n, (27) 
where η i is an i.i.d. centered noise process while V i is a volatility process of interest. Moreover, (V i ) and (η i ) are independent and (V i ) is a stationary β-mixing process with β-mixing coefficients denoted by (β k ). When this model is obtained as the discretization of a set of continuous time stochastic differential equations, V i is in fact an integrated volatility process, it is geometrically β-mixing, and η i follows a N (0, 1) distribution, see Comte and Genon-Catalot [START_REF] Comte | Penalized projection estimator for volatility density[END_REF]. Now, Model [START_REF] Pensky | Adaptive wavelet estimator for nonparametric density deconvolution[END_REF] is considered in this form by van Es et al. [START_REF] Van Es | Nonparametric volatility density estimation for discrete time models[END_REF] among others, under the additional assumption η i ∼ N (0, 1). Setting

Z i = ln(U 2 i ), X i = ln(V i ) and ε i = ln(η 2 i )
allows to recover model [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF]. Then, we note that if η 1 ∼ N (0, 1), then

f * ε (x) = 2 ix √ π Γ(1 + ix), and |f * ε (x)| ∼ |x|→+∞ 2/ee -π|x|/2 , ( 28 
)
by using that Γ(z) ∼ |z|→+∞ √ 2πz z-1/2 e -z , see Abramowitz and Stegun [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF]. Applying the results of Section 4.1 in the mixing context (D1) (see Proposition 2.4 and Corollary 3.1), we deduce that, if V is geometrically β-mixing, we have a pointwise estimator of g,

ĝm (x) = 1 2πn |t|≤πm e it(x+Z k ) f * ε (t)
dt for which we can propose an automatic selection of m which reaches the adaptive or adaptive minimax rate. The resulting rate is of order a negative power of ln(n) if g is in a Sobolev space but it is much faster if g is supersmooth (a case which is easy to meet, see Comte and Genon-Catalot [START_REF] Comte | Penalized projection estimator for volatility density[END_REF]). Therefore, we recover as a particular case, and substantially improve the result of van Es et al. [START_REF] Van Es | Nonparametric volatility density estimation for discrete time models[END_REF], who propose a non adaptive kernel estimator of g, assuming that g is known to be twice continuously differentiable. Now, extensions of the class of discrete time stochastic volatility models have been studied (see Genon-Catalot and Kessler [START_REF] Genon-Catalot | Random scale perturbation of an AR(1) process and its properties as a nonlinear explicit filter[END_REF], or Chaleyat-Maurel and Genon-Catalot [START_REF] Chaleyat-Maurel | Computable infinite-dimensional filters with applications to discretized diffusion processes[END_REF]) and in particular, it is natural to consider more general types of distributions for η. For instance, we suppose now that η 2 follows a Gamma distribution, i.e. that f η 2 1 (x) = (e -x x p-1 /Γ(p))1 I x>0 . In that case, we find

f * ε (x) = Γ(ix + p) Γ(p) , and |f * ε (x)| ∼ |x|→+∞ √ 2πe -p Γ(p) |x| p-1/2 e -π|x|/2 , ( 29 
)
that is ε is super-smooth with β = p -1/2, α = π/2 and ρ = 1. The Gaussian case corresponds to p = 1/2. In this context, let π denotes the density of V 1 , and consider that we are interested in estimating its Laplace transform. In fact, our general method provides an estimator of

h(λ) = -(Lπ) (λ) = E(V 1 e -λV 1
), the opposite of the derivative of the Laplace Transform of π.

In other words, we can estimate

h(λ) = ψ λ , g = E(V 1 e -λV 1 ) = E(e X 1 -λe X 1
). Actually we have, for λ > 0, h(λ) = ψ λ , g , with ψ λ (x) = e x-λe x , and

ψ * λ (x) = λ -1-ix Γ(1 + ix) ∼ |x|→+∞ √ 2π eλ |x|e -π|x|/2 , ( 30 
) (i.e. B = 1/2, A = π/2 and R = 1). Let us define ĥm (λ) = 1 2πn n k=1 |t|≤πm e itZ k ψ * λ (t) f * ε (t) dt ( 31 
)
with f * ε and ψ * λ given by ( 29) and [START_REF] Tsybakov | Pointwise and sup-norm sharp adaptive estimation of functions on the Sobolev classes[END_REF]. Then, taking into account the orders of f * ε and ψ * λ , we obtain, by applying Inequality (13) of Proposition 2.4 and if p = 3/2:

E[( ĥm (λ) -h(λ)) 2 ] ≤ Kme -π 2 m + K m (3-2p)∨0 n + K" k≥0 β k n ,
where K, K and K" are positive constants, K" = 2( |ψ * |) 2 . If p = 3/2 the variance term has order ln(m)/n. Then, as (D1) is satisfied in our model, we get Proposition 4.3 Consider model ( 27) with (D1), ( 29) and [START_REF] Tsybakov | Pointwise and sup-norm sharp adaptive estimation of functions on the Sobolev classes[END_REF]. Assume that

(X k ) = (ln(V k )) is β-mixing with k β k < +∞, then ĥm defined by (31) satisfies, for λ > 0, E[( ĥm (λ) -h(λ)) 2 ] ≤ Kme -π 2 m + K (m (3-2p)∨0 1 I p =3/2 + ln(m)1 I p=3/2 ) n + K" k β k n ,
where K, K and K" are positive constants.

In other words, applying the orders detailed in Table 1 to the model ( 27), we obtain a rate of order [ln(n)] (3-2p)∨1 /n (i.e. always less than ln 3 (n)/n), whatever the smoothness of g.

No adaptation is required if p > 3/2. If p ≤ 3/2, the risk of the adaptive estimator is obtained by applying Corollary 3.1 and by choosing x m = 4 ln(m): Proposition 4.4 Consider the stochastic volatility model ( 27) with (D1), ( 29) and [START_REF] Tsybakov | Pointwise and sup-norm sharp adaptive estimation of functions on the Sobolev classes[END_REF]. Assume that (X i ) is geometrically β-mixing and consider ĥm defined by [START_REF] Van Es | Nonparametric volatility density estimation for discrete time models[END_REF], with m defined by [START_REF] Fan | On the optimal rates of convergence for nonparametric deconvolution problems[END_REF]. For any λ > 0, and p ≤ 3/2

E[( ĥ m(λ) -h(λ)) 2 ] ≤ K inf m∈M   |u|≥πm |g * (u)ψ * λ (u)|du 2 + (m 3-2p 1 I p<3/2 + ln(m)1 I p=3/2 ) ln(m) n + K ln(n) n .
This corresponds to the case where a loss of order ln(ln(n)) occurs with respect to the nonadaptive rate.

Remark 4.2 The Gaussian case, for p = 1/2 is not especially studied here because another strategy is available then. Indeed for η ∼ N (0, 1),

E(e i √ 2λU 1 ) = E E e i √ 2λV 1 η 1 |V 1 = E e -λV 1 .
Therefore the Laplace transform of π, Lπ(λ) can be directly estimated by an empirical mean of the exp(i √ 2λU k )'s, which is an unbiased estimator reaching the parametric rate 1/n. The rate would be the same for estimating h, as by differentiating,

h(λ) = E(V 1 e -λV 1 ) = (-i/ √ 2λ)E(U 1 e i √ 2λU 1 ). 
The method above reaches for p = 1/2, the rate ln w (n) ln(ln(n))/n, where 1 ≤ w ≤ 2. Therefore, it is not optimal for any p.

ARCH models

General ARCH models can be formulated as follows. Let (η i ) be an i.i.d. noise sequence.

Y i = σ i η i with σ i = F (η i-1 , η i-2 , . . . ), (32) 
for some measurable functions F , or

Y i = σ i η i with σ i = F (σ i-1 , η i-1 ) and σ 0 independent of (η i ) i≥0 . (33) 
Many examples can be found in the literature, and conditions can be given under which the process (Y i , σ i ) i∈Z is geometrically β-mixing, we refer to Comte et al. [START_REF] Comte | Adaptive density estimation for general arch models[END_REF] for a review of the examples and to the references therein. Clearly then, [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF] and satisfy conditions given by (D2).

Z i = ln(Y 2 i ), X i = ln(σ 2 i ) and ε i = ln(η 2 i ) follow Model
Therefore, taking ψ(t) = 1 I {x 0 } (t) for any x 0 , as in Section 4.1, allows to provide a pointwise density estimator and to recover the results obtained by the kernel estimator of van Es et al. [START_REF] Van Es | Nonparametric volatility density estimation for discrete time models[END_REF]. Our results are more general since van Es et al. [START_REF] Van Es | Nonparametric volatility density estimation for discrete time models[END_REF] only consider Gaussian noise η t (implying super-smooth ε i 's, see Section 4.3), and do not study adaptation (which is not useful in their particular case).

Other functionals ψ, g may be estimated with our procedure.

Proofs

5.1 Proof of Theorem 3.1.

We insert here general weights x j,m such that

H(j, m) = 4(1 + 1 a )(x j,m σ 2 j,m + x 2 j,m c 2 j,m ).
We define

Γ(m) = [θ(g m ) -θ(g)] 2 + σ 2 m + sup j≤m x j,m σ 2 j,m .
and

m opt = inf m ∈ M, / Crit(m) ≤ inf l∈M Crit(l) + 1 n .
Then we prove the following Theorem:

Theorem 5.1 There exists some positive constant C(a) depending on a only, such that

E[( θ m -θ) 2 ] ≤ C(a)(Crit(m opt ) + Γ(m opt )) +C(a)   m∈M e -xm ω 2 m + j≥mopt e -x j,m opt ω 2 j,m + 1 n   ,
where

ω 2 m = σ 2 m ∨ c m + 2(σ 2 m ∨ c m ) 2 and ω 2 j,m = σ 2 j,mopt ∨ c j,m + 2(σ 2 j,mopt ∨ c j,m ) 2 .
First, note that Theorem 5.1 implies the result. Indeed we observe that for j ≥ m, σ 2 m,j ≤ σ 2 j and c m,j ≤ c j , so that choosing x m,j = x j implies that 

P Crit(m) > (1 + a)Crit(m) + 4(1 + 1 a )(x + x 2 ) ≤ j≥m,j∈M
e -x j,m e -x/(σ 2 j,m ∨c j,m ) .

Proof of Lemma 5.1. We use Bernstein inequality which, for i.

i.d. Y k 's such that var(Y 1 ) ≤ v 2 , Y 1 ∞ ≤ 1/a, gives, for S n = n k=1 Y k P S n -E(S n ) n ≥ 2uv 2 n + u an ≤ exp(-u).
We take, for j ≥ m,

Y k = Y k (j, m) = 1 2π πm≤|t|≤πj e itZ k ψ * (t) f * ε (t) dt. (34) 
Then S n /n = θjθm and E(S n /n) = E( θjθm ) = θ(g j ) -θ(g m ). Moreover, we obtain that v 2 /n ≤ σ 2 j,m and 1/(an) = c j,m . It follows that

P [( θj -θm ) -(θ(g j ) -θ(g m ))] 2 ≥ σ j,m √ 2u + c j,m u 2 ≤ 2e -u . Now, we use that (A + B) 2 ≤ 2(A 2 + B 2 ) and that (x + y) 2 ≤ (1 + 1/a)x 2 + (1 + a)y 2 gives, by setting u = y and v = x + y, that (v -u) 2 ≥ (1/(1 + 1/a))v 2 -(1 + a)/(1 + 1/a)u 2 . We obtain P{( θj -θm ) 2 ≥ (1 + a)(θ j -θ m ) 2 + 2(1 + 1/a)(2σ 2 j,m u + c 2 j,m u 2 )} ≤ 2e -u .
Now we set u = x j,m + x/(σ 2 j,m ∨ c j,m ) and we find

P{( θj -θm ) 2 -H(j, m) ≥ (1 + a)(θ j -θ m ) 2 + 4(1 + 1 a )(x + x 2 )} ≤ 2e -x j,m e -x/(σ 2 j,m ∨c j,m ).
To conclude we write

P Crit(m) < (1 + a)Crit(m) + 4(1 + 1 a )(x + x 2 ) ≤ P ∃j ≥ m, j ∈ M, ( θj -θm ) 2 -H(j, m) ≥ (1 + a)(θ j -θ m ) 2 + 4(1 + 1 a )(x + x 2 ) ≤ 2
j≥m,j∈M e -x j,m e -x/(σ 2 j,m ∨c j,m ) .

This ends the proof of Lemma 5.1. 2 Now we follow the steps of the proof of Laurent et al. [START_REF] Laurent | Adaptive estimation of linear functionals by model selection[END_REF]. • We first consider the case where m ≤ m opt . The proof is exactly the same and we obtain

P 1 2 ( θ m -θ(g)) 2 > (1 + a)Crit(m opt ) + 4 1 + 1 a (x + x 2 ) + sup j≤mopt H(m opt , j) +(θ(ĝ mopt ) -θ(g)) 2 + 1 n ∩ { m ≤ m opt } ≤ j≥mopt e -x j,m opt e -x/(σ 2 j,mopt∨c j,m opt ) . (35) 
• Now we consider the case m > m opt . We apply Bernstein Inequality to

Ỹk = Ỹk (m) = 1 2π |t|≤πm e itZ k ψ * (t) f * ε (t) dt,
in the same way as in Lemma 1. We obtain, for all m ∈ M,

P (θ(ĝ m ) -θ(g)) 2 ≥ (1 + a)(θ(g m ) -θ(g)) 2 + 4(1 + 1 a )(x + x 2 ) + pen(m) ≤ 2e -xm e -x/(σ 2 m ∨cm) .
This implies that

P (θ(ĝ m) -θ(g)) 2 ≥ (1 + a)(θ(g m) -θ(g)) 2 + 4(1 + 1 a )(x + x 2 ) + pen( m) ≤ m∈M 2e -xm e -x/(σ 2 m ∨cm) .
As sup j≥m [( θmθj ) 2 -H(j, m)] ≥ ( θmθm ) 2 -H(m, m) = 0, we have Crit(m) ≥ pen(m).

Using the inequalities, pen(m) ≤ Crit( m) ≤ Crit(m opt ) + 1/n, we obtain

P (θ(ĝ m) -θ(g)) 2 ≥ (1 + a)(θ(g m) -θ(g)) 2 + 4(1 + 1 a )(x + x 2 ) + Crit(m opt ) + 1 n ≤ m∈M 2e -xm e -x/(σ 2 m ∨cm) .
If m > m opt , then ( θm -θ(g)) 2 ≤ sup j≥mopt (θ j -θ(g)) 2 and we apply Lemma 1 with m = m opt . This yields We write that E(X) = E(X1

P (θ(ĝ m) -θ(g)) 2 ≥ (1 + a)( sup j≥mopt (θ(g j ) -θ(g)) 2 + 4(1 + 1 a )(x + x 2 ) +(1 + a)Crit(m opt ) + 1 n ∩ { m > m opt } ≤ m∈M 2e -xm e -x/(σ 2 m ∨cm) + j≥mopt 2e -x j,m opt e -x/(σ 2 j,m opt ∨c j,m opt ) . (36) 
I X≥Y +Cm opt ) + E(X1 I X≤Y +Cm opt ) ≤ E[(X -Y -C mopt ) + ] + E(Y + C mopt ). Then, setting C a = 24(1 + 1/a) and Z = X -Y -C mopt E[Z + ] = +∞ 0 P(Z > t)dt = C a 1 0 P(Z > C a u)du + ∞ 1 P(Z > C a u)du = C a 1 0 P(Z > C a (u ∨ u 2 ))du + 2 ∞ 1 P(Z > C a v 2 )vdv = C a 1 0 P(Z > C a (u ∨ u 2 ))du + 2 ∞ 1 P(Z > C a (v ∨ v 2 ))vdv E[(X -Y -C mopt ) + ] ≤ C a m∈M 2e -xm (σ 2 m ∨ c m + 2(σ 2 m ∨ c m ) 2 ) +C a j≥mopt 2e -x j,m opt (σ 2 j,mopt ∨ c j,mopt + 2(σ 2 j,mopt ∨ c j,mopt ) 2 ) = C a   m∈M 2e -xm ω 2 m + j≥mopt 2e -x j,m opt ω 2 j,mopt   .
The end of the proof is the same as in Laurent et al. [START_REF] Laurent | Adaptive estimation of linear functionals by model selection[END_REF]. 2

5.2 Proof of Proposition 2.4.

The decomposition of the risk is the same and the bound for the bias also. Only the variance has to be re-examined. The basic idea is that, for k = , cov(e itZ k , e isZ ) = f * ε (t)f * ε (-s)cov(e itX k , e isX ) by conditioning on (X k , X ). The additional trick is the standard covariance inequality for β-mixing variables (see e.g. Doukhan [START_REF] Doukhan | Mixing[END_REF]) which implies that

|cov(e itX k , e isX )| ≤ β |k-| . Var( θm ) = 1 4π 2 n 2 Var n k=1 |t|≤πm e itZ k ψ * (t) f * ε (t) dt = 1 4π 2 n 2 n k=1 n =1 |t|≤πm,|s|≤πm cov(e itZ k , e isZ ) ψ * (t) f * ε (t) ψ * (-s) f * ε (-s) dsdt = 1 4π 2 n 2 n k, =1,k = |t|≤πm,|s|≤πm
cov(e itX k , e isX )ψ * (t)ψ * (-s)dsdt

+ 1 4π 2 n 2 n k=1 |t|≤πm,|s|≤πm cov(e itZ k , e isZ k ) ψ * (t) f * ε (t) ψ * (-s) f * ε (-s) dsdt. (37) 
The last term is the standard variance term of the independent case. The first one is bounded in modulus by

2 4π 2 n 2 n 1≤k< ≤n |t| ≤ πm, |s| ≤ πm |cov(e itX 1 , e isX -k )||ψ * (t)ψ * (-s)|dsdt ≤ 1 2πn n k=1 β k |t|≤πm |ψ * (t)|dt 2 .
This gives the result. 2

Proof of Proposition 2.5.

Under (D2), we only obtain tha for k < , cov(e itZ k , e isZ ) = f * ε (-s)cov(e itZ k , e isX ) by conditioning on (X ). The covariance inequality for β-mixing variables (see e.g. Doukhan [START_REF] Doukhan | Mixing[END_REF]) still applies (but to the variables (X k , Z k ) and (X , Z ) and implies that |cov(e itZ k , e isX )| ≤ β |k-| .

Then (37) remains true but leads for the bound of the modulus of the last term, to:

2 4π 2 n 2 n 1≤k< ≤n |t| ≤ πm, |s| ≤ πm |cov(e itZ 1 , e isX -k )|| ψ * (t) f * ε (t) ψ * (-s)|dsdt ≤ 1 2πn n k=1 β k |t|≤πm |ψ * (t)|dt |t|≤πm ψ * (t) f * ε (t)
dt .

This gives Inequality [START_REF] Comte | Penalized projection estimator for volatility density[END_REF].

For the proof of ( 16), the result follows from the fact that the new mixing term is always negligible with respect to the independent variance term if ε is super-smooth (case A, ρ > 0). If ε is ordinary smooth, then we only have to study when m (-B+1) + +β-B+1 is less than m 2β-2B+1 , which occurs if β > max(B, 1). 2

Proof of Corollary 3.1

The main difference with respect to the proof of Theorem 5.1 lies in the Bernstein inequality which must be written in the mixing context. For geometrically mixing variables (and q = q n = 2 ln(n)/c if β k ≤ e -ck ), we get from Theorem 4 p.36 in Doukhan [START_REF] Doukhan | Mixing[END_REF], that

P S n -E(S n ) n ≥ 2uṽ 2 n + 2 ln(n)u can ≤ e -u + 2 n 2 , with Y 1 ∞ ≤ 1/a and 1 q Var q k=1 Y k ≤ ṽ2 .
In all cases, |M| ≤ n, so that summing up the residuals of order 1/n 

] × [L, L] ⊂ (1/2, ∞) × (0, ∞).
Let us choose g 0 in the class S(b, L/2) such that g 0 > 0 and g 0 (x) ≥ c|x| -2 as |x| → ∞. We choose next the function G such that G(x, m) = m -b+1/2 G(mx) and with G * at least 3-times continuously differentiable having the property

I(1/2 ≤ |u| ≤ 3/4) c(1 + u 2b ) ≤ G * (u) ≤ I(1/4 ≤ |u| ≤ 1) c(1 + u 2b
) .

Here, m = (c 0 ln(n)/n) -1/(2b+2β) . Note that G * (0) = G = 0. Firstly, g 1,n is a positive function with integral equal to 1 and belongs to S(b, L). Indeed, for each fixed x we have G(x, m) → 0 when n → ∞ and as

G * is 3 times continuously differentiable that means |G(x, m)| ≤ O(|x| -3 ) = o(g 0 (x)) as |x| → ∞, giving that g 1,n ≥ 0 for n large enough. Moreover, ( |g * 1,n (u)| 2 |u| 2b du) 1/2 ≤ ( |g * 0 (u)| 2 |u| 2b du) 1/2 + m -b-1/2 ( 1/4≤|u|/m≤1 |G * (u/m)| 2 |u| 2b du) 1/2 ≤ 2πL/2 + C c ( 1 1/4 |u| 2b (1 + u 2b ) 2 du) 1/2 ≤ (2πL) 1/2 , for c > 0 large enough. Secondly, G(0, m) ψ n,b = (ψ n,b ) -1 m -b+1/2 1 2π G * (u)du ≥ c -b+1/2 0 2π 3/4 1/2 du ≥ c 1 • c -b+1/2 0 > 0.
We shall prove that (23) holds with

τ = n -2β+1 2b+2β
and together with the fact that

τ q 2 n = τ ψ 2 n,b ψ 2 n,b = τ ln(n) n - (2β+1)(b-b) (2b+2β)(2b+2β) = (ln(n)) - (2β+1)(b-b) (2b+2β)(2b+2β) n 2β+1 2b+2β
b+β b+β tends to infinity, with n, the proof of ( 24) and hence of the Theorem is finished.

We can prove that for each x 0

sup x |[G(m(• -x 0 )) f ε ](x)| f Z 0 (x) = o(1), as n → ∞, ( 38 
) therefore f Z 1,n (x) = f Z 0 (x)(1 + o(1)
), where o(1) → 0, n → ∞ uniformly in x. As we chose g > 0 then f Z 0 > 0 and together with the previous statement it means that for any M > 0 we can find a constant c 2 > 0 such that f Z 1,n ≥ 1/c 2 on [-M, M ]. Moreover, for some M > 0 large enough, see Butucea and Tsybakov [START_REF] Butucea | Sharp optimality for density deconvolution with dominating bias. i and ii[END_REF],

f Z 0 (x) = g 0 f ε (x) ≥ C 2 x 2 , as |x| ≥ M.
Therefore, for large enough M > 0, f Z 1,n (x) ≥ 1/(c 3 |x| 2 ), for some constant c 3 > 0 and for |x| ≥ M . Finally, we deal with

χ 2 (f Z 0 , f Z 1,n ) = m -2b+1 [G(m(• -x 0 )) f ε ] 2 (x) f Z 1,n (x) dx ≤ m -2b+1 c 2 |x|≤M [G(m(• -x 0 )) f ε ] 2 (x)dx + c 3 |x|>M |x| 2 [G(m(• -x 0 )) f ε ] 2 (x)dx ,
say T 1 and T 2 , for some fixed, large M > 0. Then

T 1 ≤ m -2b-1 c 2 2π |G * ( u m )f * ε (u)| 2 du ≤ c 4 m -2b-1 m m/4 1 |u| 2β du ≤ c 5 m -2b-2β ≤ c 6 c 0 ln(n) n . (39) 
For T 2 we follow the similar proof in Butucea and Tsybakov [START_REF] Butucea | Sharp optimality for density deconvolution with dominating bias. i and ii[END_REF] and use condition ( 21) to get

T 2 ≤ m -2b+1 c 3 2π ∂ ∂u 1 m G * u m f * ε (u) 2 du ≤ c 6 m -2b-1 m -2β = o(T 1 ), n → ∞. (40) 
Therefore, from (39) and (40) we have χ

2 (f Z 0 , f Z 1,n ) ≤ κ n , with κ n = c χ c 0 ln(n)/n. We use the fact that -u(1 + u) ≤ ln(1 -u) ≤ -u for all u ∈ [0, 1/2] and that (38) implies that |u| = |[G(m(• -x 0 )) f ε ](x)|/f Z 1,n (x) ≤ 1/2 for n large enough to get E 1 Z 1,n = ln 1 - [G(•, m) f ε ](x -x 0 ) f Z 1,n (x) f Z 1,n (x)dx ≥ -[G(•, m) f ε ](x -x 0 )dx - [G(•, m) f ε ] 2 (x -x 0 ) f Z 1,n (x) dx ≥ -χ 2 (f Z 0 , f Z 1,n ) ≥ -κ n ,
for n large enough. Indeed, note that G(•, m) = 0 and therefore

[G(•, m) f ε ](x -x 0 )dx = 0. Moreover, V 1 (Z 1,n ) ≤ E 1 (Z 2 1,n ) = ln 2 1 - [G(•, m) f ε ](x -x 0 ) f Z 1,n (x) f Z 1,n (x)dx ≤ [G(•, m) f ε ] 2 (x -x 0 ) f Z 1,n (x) 2 1 + [G(•, m) f ε ] 2 (x -x 0 ) f Z 1,n (x) 2 f Z 1,n (x)dx ≤ c v χ 2 (f Z 0 , f Z 1,n ) ≤ c v κ n ,
as by (38): sup x |f Z 0 (x)/f Z 1,n (x)| is bounded from above by some constant depending only on g 0 and f ε . By similar calculations, we also check that

V 1 (Z 1,n ) ≥ 1 2 E 1 (Z 2 1,n ) = 1 2 ln 2 1 - [G(•, m) f ε ](x -x 0 ) f Z 1,n (x) f Z 1,n (x)dx ≥ 1 2 [G(•, m) f ε ] 2 (x -x 0 ) f Z 1,n (x) dx ≥ 1 2 f Z 1,n ∞ [G(•, m) f ε ] 2 (x -x 0 )dx ≥ c v κ n , and that n i=1 E 1 Z i,n -E 1 (Z i,n ) n • V 1 (Z 1,n ) 4 ≤ nE 1 |Z 1,n | 4 (c v ) 2 n 2 κ 2 n ≤ n [G(•, m) f ε ] 4 (x -x 0 )dx(1 + o(1)) (c v ) 2 ln 2 (n) ≤ nc |G * (u, m)f * ε (u)| 2 du( |G * (u, m)f * ε (u)|du) 2 (c v ) 2 ln 2 (n) ≤ c ln(n) • m -2b-2β+1 ln 2 (n) = o(1),
as n → ∞ and since b > 1/2. Next we apply Lyapounov's central limit theorem for triangular arrays, see Petrov [START_REF] Petrov | Limit theorems of probability theory, volume 4 of Oxford Studies in Probability[END_REF], to get

P 1 (U n ≥ u n ) ≥ 1 -, as 0 ≥ u n = ln(τ ) + κ n √ c v κ n = -2β+1 2b+2β + c χ c 0 √ c v c χ c 0 ln(n) → -∞,
with n.

2) Case α, r > 0 and ρ = 0. Without loss of generality we consider b = 0. In this case, take some a ∈ [a, a] and g 0 belonging to S(a, r, L/2) such that g 0 > 0 and g 0 (x) ≥ c|x| Note that this gives a first order approximation of m = (log n/(2a)) 1/r . Then, similarly to the case 1, g 1,n is a proper density function as soon as n is large enough and for some M > 0 we have f Z 1,n (x) = g 1,n * f ε (x) ≥ C|x| -2 for all |x| ≥ M . By using (41), we get that g 1,n belongs to S(a, r, L) for any a ≥ a. Next, |g 1,n (x 0 ) -g 0 (x 0 )| ψ n,a,r = c 0 |G(0)| > 0 and we get, by the same procedure as for the case 1, Let us choose c 0 small such that c 0 c χ < (r -r)(2β + 1)/(rr) and let ξ and τ be defined by c 0 c χ < ξ < r -r rr (2β + 1) and τ = ln(n) -ξ .

χ 2 (f Z 0 , f Z 1,n ) = c 0 ln ln n n m 2β+1 [G(m(• -x 0 )) f ε ] 2 (x) f Z 1,n (x 
On the one hand, this implies τ q 2 n → ∞ with n. On the other hand, after checking again that Lyapounov's central limit theorem holds in this case we get

P 1 dP 0 dP 1 ≥ τ ≥ P 1 (U n ≥ u n ) ≥ 1 -,
as u n = (-ln(τ ) + nκ n )(c v nκ n ) -1/2 = (-ξ + c 0 c χ )(c v c 0 c χ ) -1/2 ln ln(n) → -∞.

3) Case r > 0, 0 < ρ ≤ 1 and r ∈ [r, r] such that r ≥ ρ. Without loss of generality we consider b = 0.

As in the second case, take some a ∈ [a, a] and g 0 belonging to S(a, r, L/2) such that g 0 > 0 and g 0 (x) ≥ c|x| -2 as |x| → ∞. Let also G be a function such that G * is 3-times continuously differentiable with a bounded first derivative and having the property We stress the fact that m is no longer a scaling parameter of the function G in this construction. Again, as previously, we can check that g 1,n is a proper probability density, as soon as n is large enough, and that for some M > 0 we have f Z 1,n (x) ≥ C|x| -2 for all |x| ≥ M . Let us check that g 1,n belongs to S(a, r, L). It is enough to bound from above and we can check similarly to Butucea and Tsybakov [START_REF] Butucea | Sharp optimality for density deconvolution with dominating bias. i and ii[END_REF] that for m solution of (42) this sequence is equivalent to ψ n,a,r when n → ∞. Finally Let c 0 be small such that c 2 0 c χ < 2α and let ξ and τ be defined by c 2 0 c χ < ξ < 2α and τ = e -ξ(π ln(n)/(2a)) ρ/r .

χ 2 (f Z 0 , f Z 1,n ) = c 2 0 [(g 1,n -g 0 ) f ε ] 2 (x) f Z 1,n (x) dx ≤ c 2 0 |x|≤M [(g 1,n -g 0 ) f ε ] 2 (x)dx + |x|>M x 2 [(g 1,n -g 0 ) f ε ] 2 (x)dx , say T 1 + T 2 . Then

29

We have τ ψ 2 n,a,r /ψ 2 n,a,r ≥ (ln(n)) A exp (-ξ + 2α) ln(n) 2a Thus, the rate ϕ n is a minimax rate of convergence for r ≥ ρ, ρ ≤ 1. 2

Definition 1 . 2

 12 An estimator θn is adaptive minimax over the family of classes λ∈Λ S(λ) if there exists some constant C > 0 such thatsup λ∈Λ sup g∈S(λ) ϕ -2 n,λ E g [| θn -θ(g)| 2 ] ≤ C, for n large enough,

Corollary 3 . 1

 31 Consider model (1) under (D1) or under (D2) with f ε satisfying (2) and ψ satisfying (4) and (15) with β > max(B, 1) or A, ρ > 0, and assume in both case that β k ≤ e -ck for any k ∈ N. Then if f ε satisfies (5), if |ψ * (t)|dt < +∞ and |ψ * /f * ε | = +∞, |ψ * /f * ε | 2 = +∞ then the result of Theorem 3.1 for θ m defined in the same way, holds with c m , c j,m replaced by 2c m ln(n)/c, 2c j,m ln(n)/c and σ 2 m , σ 2 j,m multiplied by 2.

j≥mopteLemma 5 . 1

 51 -x j,m opt ω 2 j,m ≤ m∈M e -xm ω 2 m . Moreover Crit(m) ≤ |x|≥πm |ψ * (x)g * (x)|dx 2 +pen(m) and Γ(m) ≤ |x|≥πm |ψ * (x)g * (x)|dx 2 + 2pen(m). This implies Theorem 3.1. Now we establish the following Lemma. For all m ∈ {1, . . . , m n } := M, for all x > 0,

LetC

  mopt = 3(1 + a)Crit(m opt ) + 2 sup j≤mopt H(m opt , j) + (1 + a) sup j≥mopt (θ j -θ(g)) 2 + 3 nand X = ( θ m -θ(g))2 , Y = 2( θmopt -θ(g))2 . It follows from (35) and (36) that, for all x > 0,P X -Y > C mopt + 24(1 + 1 a )(x ∨ x 2 ) ≤ m∈M 2e -xm e -x/(σ 2 m ∨cm) + j≥mopt 2e -x j,m opt e -x/(σ2j,m opt ∨c j,m opt ) .

5. 5 1 1)

 51 Proof of Theorem 4.Case r = 0, ρ = 0 and Λ = [b, b

  -2 as |x| → ∞. Let us consider a function G as for the case 1 such that G * is 3-times continuously differentiable having the propertyI(π/2 ≤ |u| ≤ 3π/4) c(1 + u 4 ) ≤ G * (u) ≤ I(π/4 ≤ |u| ≤ π) c(1 + u 4 ) . Next, g 1,n (x) = g 0 (x) + c 0 ln ln n n m β+1/2 G(m(x -x 0 )),where m is such that c 0 ln ln n n m 2β+r-1 exp (2a(πm) r ) ≤ 2πL/2. (41)

) dx ≤ c 0 ln ln n n m 2β+1 c 1 [

 1 G(m(• -x 0 )) f ε ] 2 (x)dx(1 + o(1)) ≤ c 0 c χ ln ln n n =: κ n .

I(π/ 2

 2 ≤ |u| ≤ 3π/4) ≤ G * (u) ≤ I(π/4 ≤ |u| ≤ π).Next, define g 1,n via its Fourier transformg * 1,n (u) = g * 0 (u) + c 0 e -α(πm) ρ √ n m ρ-1/2 e 2α|u| ρ G * (|u| ρ -(πm) ρ ) e iux 0 ,where m is solution of the equation 2a(πm) r + 2α(πm) ρ = log n -(log log n) 2 .(42)

1 2π c 2 0e 4 e

 124 -2α(πm) ρ n m 2ρ-1 e 4α|u| ρ |G * (|u| ρ -(πm) ρ ) | 2 e 2a|u| r du ≤ c 2 0 m 2ρ-1 e -2α(πm) ρ 2πn π/4≤|u| ρ -(πm) ρ ≤3π/4α|u| ρ +2a|u| r du ≤ c 2 0 c 1 m 2ρ-1 e -2α(πm) ρ 2πn (πm) 1-r e 4α(πm) ρ +2a(πm) r ≤ c 2 0 c 2 n -1 m 2ρ-r e 2a(πm) r +2α(πm) ρwhich tends to 0 when m is defined by (42). Next,|g 1,n (x 0 ) -g 0 (x 0 )| = 1 2π c 0 e -α(πm) ρ √ n m ρ-1/2 e 2α|u| ρ G * (|u| ρ -(πm) ρ ) du ≥ c 0 m ρ-1/2 e -α(πm) ρ 2π √ n π/2≤|u| ρ -(πm) ρ ≤π e 2α|u| ρ du≥ c 0 c 3 m 1/2 e α(πm) ρ 2π √ n

T 1 ≤ c 2 0 c 4 ec 2 0 c 5 e 4 e 2α|u| ρ du = c 2 0 c 6 (c 7 e 2 du ≤ c 8 e -2α(πm) ρ n m 2ρ- 1 π

 45467281 -2α(πm) ρ n m 2ρ-1 |G * (|u| ρ -(πm) ρ )f * ε (u)| 2 du ≤ -2α(πm) ρ n m 2ρ-1 π/4≤|u| ρ -(πm) ρ ≤3π/πm) ρ n .Moreover, under the additionnal assumption (22) that |∂f * ε (u)/∂u| ≤ O(1)|u| ρ-1 exp(-α|u| ρ ) as |u| → ∞, T 2 ≤ c 2 0 -2α(πm) ρ n m 2ρ-1 ∂ ∂u [G * (|u| ρ -(πm) ρ )f * ε (u)] /4≤|u| ρ -(πm) ρ ≤3π/4 |u| 2(ρ-1) e 2α|u| ρ du ≤ c 9 (πm) 3ρ-2 n = o(T 1 ),for ρ ≤ 1 and n large enough. Thusχ 2 (f Z 0 , f Z 1,n ) ≤ c 2 0 c χ (πm) ρ n =: κ n .

+

  B(ln(n)) C → ∞for some real numbers A, B C, as C < ρ/r and ξ < 2α. We check that Lyapounov's theorem holds and thatu n = -ln(τ ) + nκ n √ c v nκ n = -ξ(π ln(n)/(2a)) ρ/r + c 2 0 c χ (πm) ρ c 0 √ c v c χ (πm) ρ/2 → -∞with n, as m defined by (42) is larger than (ln(n)/(2a)) 1/r .The proof that ϕ n is the minimax rate of estimation in this case repeats the proof of 3 with modified choice of g 1,n via its Fourier transformg * 1,n (u) = g * 0 (u) + c 0 e -α(πm) ρ √ n m (ρ-1)/2 e 2α|u| ρ G * (|u| ρ -(πm) ρ ) e iux 0 ,where m is solution of the equation (42). This gives the rate|g 1,n (x 0 ) -g 0 (x 0 )| ≥ c 0 c 3 m -(ρ-1)/2 e α(πm) r √ n ,which is equivalent to V m for n large enough and nχ 2 (f Z 0 , f Z 1,n ) ≤ c 2 0 c 6 + c 9 m 2ρ-2 ≤ c 2 0 c χ .

  for n large enough. and if the loss of rate with respect to the minimax rate is optimal, i.e. it satisfies the following lower bounds inf

	θn	sup λ∈Λ	sup g∈S(λ)

  Assume that f ε and ψ are such that |f *

	2 of order 1/n. As
	|f * Z (x)|dx ≤ |f * ε (x)|dx < ∞ by (2), we have the following result:
	Proposition 2.2

ε (x)|dx < +∞ and

  2 will give negligible terms of order 1/n. Next, the variables are still given by (34) and we can see from the bound that the upper bound being multiplied by 2 ln(n)/c in the Bernstein Inequality, all c j,m 's and c m 's are the same as previously multiplied by 2 ln(n)/c, this gives cj,m = 2c ln(n)c j,m and cm = 2c ln(n)c m .

	Lastly, it follows from the above computation of Var( θm ) that the new variance terms denoted
	by σ2 j,m , σ2 m can be bounded under (D1) by				
	σ2 j,m ≤ σ 2 j,m +	1 πn	k≥1	β k	π(m∧j)≤|t|≤π(m∨j)	|ψ * (t)|dt	2	,
	and analogously for σ2 m . It follows from our set of assumptions that σ2 j,m ≤ σ 2 j,m + c/n ≤ 2σ 2 j,m
	and σ2							

m ≤ 2σ 2 m . The case (D2) is analogous under the more restrictive assumptions given. The result of Corollary 3.1 follows. 2