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This paper deals with some very simple interacting pargltemselementary cellular automatan the fully asyn-
chronous dynamics: at each time step, a cell is randomlyegdicknd updated. When the initial configuration is
simple, we describe the asymptotic behavior of the randotiksyzerformed by the borders of the black/white re-
gions. Following a classification introduced by Fatéal., we show that four kinds of asymptotic behavior arise, two
of them being related to Brownian motion.
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1 Introduction

1.1 Elementary Cellular Automata

Cellular automataare dynamical systems widely used the two last decades &r ¢sdnodelize phe-
nomena arising in game theory, economy, theoretical phybiology, or theoretical computer science
(complexity, computation). It consists of a (finite or coalvle) set of cells, the state of each cell at time
k being a function of the state of its neighbours at tilne 1. The set of possible states is finite, and, as
we see, time is discrete. Cellular automata were introdbgedn Neumann [VN66] in order to emulate
self-replicationin biology.

This paper deals more specifically wighementary cellular automatECA), introduced by Wolfram
[Wol84], that is two-state automaté/{ or white/black) with a finite and cyclic set of cells. Let usad
a few definitions.

Definition 1 A (deterministicelementary cellular automatd&CA) is a triplet(n, 2(0), ), in whichn
stands for the number of cells(0) € {0, 1}" denotes thénitial configurationands : {0,1}* — {0, 1}
is thelocal transition functiopor local rule

The first studies focused on the synchronous dynaniie,af(0), ¢), i.e. the evolution of the configuration
under iterations of the functioA® onz(0):

A% {0,1}" — {0,1}"
/!

(w1, an) = (2., 2))

in which, fori € {1,2,...,n}, 2} = 6(z;—1, 25, xi+1), thatis, then cells are updated simultaneously. It
must be understood with the conventiopn, ; = =1, xg = x,, SO that the set of configuration is cyclic.

Thus, (z(k); k = 0,1,...) is a sequence of words of lengthon the alphabef0, 1}. Alternatively,
we shall consider configurations as doubly infinite pericgiquencese,, )z, with periodn. We will
focus here only omlouble-quiescerECA, i.e. ECA for whichd(0,0,0) = 0 andd(1,1,1) = 1. This
terminology has been introduced in [FMSTO05].

We are intersested here in thgynchronoudynamic : when the cells are not updated simultaneously,
but randomly picked and sequentially updated.

Definition 2 Thefully asynchronous dynamiaf the automatom is the random process of0, 1}™ de-
fined by :

XQ = JI(O),
X, = A2 Xy, foreachk > 1,

k
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where (ix)r>1 is a sequence of i.i.d. random variables, uniform{in...,n} and A? is the function
defined by
A3 {013 —{0,1}"

J

(1, .. ) = (2],...,2))

in WhICh.I'; = 5(%‘—17%, $j+1)1 While, if¢ 7& j, SE; = Z;.

Influence of asynchronism in ECA's has been studied for hetdn [IB84, SAR99], with motivations
in physics, and in biology. It turns out that asynchronisrnually changes drastically the asymptotic
behavior of cellular automata (see Figure 1.2 below for aiktion).

1.2 Worst expected convergence time

In the asynchronous case, for the 64 double-quiescent E&sjuestion of worst expected convergence
time has been exhaustively investigated by Fatéd. [FMSTO05], with surprising results, that we recall
below. A local transition function is given by its eight transitions. A transition is said to dtiveif

it changes the cell it is applied to. Of cousés completely determined by its active transitions. Active
transitions are labelled with a letter, as follows (a natathat proves to be quite handy when classifying
ECA’).

A B C D E F G H
000| 001 | 100| 101 | 010 | 011 | 110| 111
1 1 1 1 0 0 0 0

For instance, the only cells possibly changed by the autnmat= DG are precisely the white cells
surrounded by two black cells, and the black cells with alblegll on the left side and a white cell
on the right side. Double-quiescent ECA are those for whieither A nor H appear. The automaton
Identityis denotedz. For an automatoh, §s denotes the set of fixed points &fof course, whem is
double-quiescen{0™,1"} C Fs).

Definition 3 Given a fully asynchronous automat@m, =(0), ¢), T, = T,,(d, 2(0)) denotes the random
variable

T, = inf{k > 0; X}, € 35},

in which we use the conventiomf{()} = +oco. TheWorst Expected Convergence TifeECT; is the
real number
WECT; = max E[T,(d,z(0))].
z(0)e{0,1}~
Fatéset al. [FMSTO5] classify the 64 double-quiescent ECA's in five fles, according to the asymptotic
behavior of WECTj, whenn is large. Let©(g,,) denote the set of sequencgs= (f,,).>1 that satisfy
c1 < fn/gn < e, fOr suitably chosen constants, ¢ € (0, +00) that depend orf but not onn.

Theorem 1 (Fatés, Morvan, Schabanel & Thierry [FMSTO05]) For 6 # &, eitherWECTj is infinite
or it belongs to one of these four classe®(n logn), O(n?), O(n?),O(n 2"). The corresponding fami-
lies of automata are called respectivélwergent Coupon CollectarQuadrati¢ Cubic, andExponential
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[ Class [ [# ]
[ Identity [ o [1] Class 5 #
E 2 BDEF 2
Coupan DE 1 BDEG 2
5 4 Cubic BCDEFG | 1
BEF 4
Fo 2 BEG 4
BhE 4 BCEFG 2

BCDE | 2 :
Quadratic BE 4 | [ Exponential [ BCEF [ 4|
EF 4 BF >
BCE 2 . BG 2
EFG 5 Divergent BCF 7
BCDEF | 4 BCFG 1

BEFG 4

Fig. 2: Simulations of the synchronous and asynchronous dynamid¢hé rule BDFG,
for n = 50 and2(0) = 02°15,

This classification is remarkably similar to that introddd®s Wolfram in a completely different context.
For reasons of symmetry between black and white, or betweftarid right, the 64 cases reduce actually
to 25. The main results of [FMSTO05] are summarized in Figu(ehé third column gives the number of
symmetries).

Without loss of generality, we assume in the sequel this even. Original motivation of this work
was to refine the methods leading to Theorem 1. When theling@i#iguration contains only one black
region, sayz(0) = 0m/21"/2, the whole sequencg:(k)) in the asynchronous dynamic contains only
one black region (see Fig. 1.2), unless it has reached the figmt0”. We assume from now on that
z(0) = 0"/21"/2. In a longer paper, we shall discuss the asymptotic beha¥itive borders of black
regions for an initial state with several black regions. We(®o, Lo) = (0,n/2). Fork < T,, we
define(Ry, Li) by induction as the unique element 8t such thatr, (k) = 0,2,4+1(k) = 1, and
|Ly — Lk—1]| < 1,resp.xg, (k) = 1,z1,4+1(k) = 0and|R, — Rix—1] < 1. This way, we can track if the
black zone shifts, makes several revolutions, for instance
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Simulations suggest that there exists a continuous linmitHfe bi-dimensional processiy, Lk )r>0,
after a suitable renormalization. Precisely, given sonteraaton, we exhibit some continuous process
with values inR? such that the following weak convergence holds (in a senge tdefined in the next
Section):

1)

From this convergence of stochastic processes, we hopealtwdeguantitative information on statistics
of automata, e.g. on the r.%,, /E[T,,].

_ ! 2
nt (LLt]E[Tn]JaR\_t]E[Tn]J)tZO = (Xt( )’Xt( ))t>o'

1.3 Convergence in D,(I)

If Tis an intervall0, 7], with 0 < T' < 400, let D,(I) be the set otadlad’ functions I — RP. We
adress the convergence of random variableB,j(/), endowed with the Skorohod topology. Recall that,
when the limit is a continuous function, convergence in tker8hod topology is equivalent to uniform
convergence on compact sets, that is, convergence forstende

.0 =3 ™ (Lnsup | 70 g(0) i ).

k>1

Definition 4 (Convergence inD,(I)) LetX (resp.(X (™), >¢) be a random variable (resp. a sequence
of random variables) with values i, (I). The sequenc (") converges weakly t&, if for any function
L :D,(I) — R, bounded and continuous,

lmE[L(X™)] = E[L(X)].

We shall use the notation

XM = X

We use repeatedly the next two results:
Theorem 2 ([Bil68], Th. 5.1) Leth : D,(I) — D,(I), andD;, be the set of discontinuity points bf
Assume thak (") = X and thatP(X € D) = 0. Then
R(X™) = h(X).

Perhaps the most important result of convergence of stticlpascesses is the convergence of renormal-

ized random walks to the linear Brownian motia8; ). [Bil68, Don51, RY99]:

Theorem 3 (Donsker [Don51]) Let X1, X5, ... be a sequence of i.i.d. random variables viiftk;] = 0
andE[X7?] = 1. SetSy = >, X;. Then

Sint|
Zint] By)i>o.
( Vn )t>0 = (Beezo

) The terminologycadlagis usually applied to right-continuous functions that adanieft-limit at each point of0, 7. It is an
acronym for the french expressigontinue a droite, limite a gauche
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1.4 The results

In this paper, we study the case where the initial configomati0) is composed by a single black re-
gion: z(0) = 0™/21"/2, The space renormalization must bé», and the time renormalization has to be
@) (E[Tn]—l), as shown in equation (1). Roughly speaking, renormatinaif a discrete process can lead
to four different behaviors, ordered by increasing degfeamdomness:

¢ the sequence converges to a non null, non-random, process,
e the sequence converges to a random process (e.g. to tharstdindar Brownian motion),

e the sequence is tight (relatively compact) but differetissguences converge to different limit
processes,

e the sequence is not tight (unbounded).

Our results are roughly summarized below:

quadratic — non-random limit
cubic — reflected (and-or) coalescent Brownian motions
exponential —  no limit (untight)
divergent — reflected Brownian motions

so that three of the four previous cases occur when renaimglE CA's as in (1).

2 Quadratic automata : non-random limit

2.1 The automaton FG
Fort > 0, set

P(t) = (Yi(t),v2(t) = (3 +1,1—1).

Due to Theorem 1, only the time-renormalizatioh can, eventually, lead to a nontrivial limit process.
Actually, a limit process exists, and this limit is non-ranal Recall that L, Ry) is the process of the
borders of the black region,

gn(t) = Ll_thJ/\Tn,/n; Tn (t) = R\_tnzj/\Tn,/n- (2)

Theorem 4 The following convergence holdsT, (R ) :

(Unsrn) = (¥ (EA )10

Proof: First, consider the Markov chaiiLs, Ry )r>o defined by(Lo, Ro) = (n/2,0), and

(Ly, Ri) with probability 22
(Lit1, Rig1) = { (Lx + 1, Ry,)  with probability 2
(Ly, Ry, — 1) with probability 1



Asynchronous Cellular Automata and Brownian Motion 7

B E D F G C

Fig. 3: Automaton FG, and its limit process

Fort > 0, set
gn(t) = Ll_tn2j /na fn(t) = R\_tnzj/n
We have
[tn?]
n2

)

RACEENOIEE

thus forz, T' two positive constants, and faerlarge enough,

P (sup
t<T

We need the following bound:

Lt~ n ()] 2 ) <P <sup

t<T

o)~ Ella(o)]] 2 5 ).

Lemma 4.1 (Kolmogorov's inequality, [Bil95], Th. 22.4) Let (Y% )x>0 denote sequences of i.i.d. ran-
dom variables such th&[Y; ,] = 0, E [V1,,°] = ¢, < cc. One notesSy,,, = Y1, + - + Yy FOI
anyk andxz > 0,

> < 2,
P <1I£1la<xk [Sin| > x> <cpk/x 3)
Let us write

Li—(n/2) =By +...+ By, (4)

in which theB;’s are i.i.d. random variables with(B; = 1) = 1 —P(B; = 0) = 1/n. Applying Lemma
4.1 with Sy, = Ly, — (n/2) — (k/n), Yin = B; — (1/n), ¢, = 5t andk = | T'n?], one obtains

’ (?Eg () 7E[~n(t)]’ = g) B P( max |Sen| > ”2_35)

1<4< (T2

< 4[Tn?|n"3z72.

With - = n=1/2*9 for somes € (0,1/2), it leads to

P (sup
t<T

On(t) — wl(t)‘ > ac) <Tn2,
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The same argument holds for the right bordg It follows that

Now, the proces(slik, Rk)kzo is designed to have the same distributiof &g, Ry )x>0, as long ad, <
Ry, — 1. More precisely, ifr and£ denote the operators defined Ba(0, +o0) by

T(f) =inf{t > 0; fi(t) > fo(t) — 1},

and
L(f)=EANTU)))iso0

then we have:

(bn 1) 2 £ (ns ) - 6)
Theorem 2 allows us to conclude, since, in the relation () )imit pointe is a point of continuity ofZ,
and since(y) (t A §)),o = £ |

2.2 Other quadratic automata.

Quadratic automata are roughly divided into two sub-famsiliFG belongs to the first one, with automata
B, EF, EFG, BDE, BE, BCDE and BCE. The proof adapts easily tofathem, and they converge to
non-random limits. The second family contains BCDEF and BEFheir behavior is slightly different.
A border (say, the left-border) essentially drifts to thghti (with small random perturbations), whereas
the right-border performs a symmetric random walk. Howgtherse random perturbations are of order
O (n'/?) and are erased by the space renormalization fdgter so that the limit is also deterministic.
We get the following convergence:

Theorem 5 For automata BCDEF and BEFG, the following convergence siagid; (R ) :
(ln,rn) = (1/’/ (t A %))tzo’
wherey/ (t) = (3,1 —1).

Proof: This proof and the proof of Theorem 4 are similar. One justtbagplace the sequen¢s;) in
(4) by a sequence of i.i.d. r.v., with

P(B;=1)=P(B;=-1)=1(1-P(B; =0)) =1/n.

3 Cubic automata : interactions between Brownian motions

3.1 The automaton BCEFG

The class of cubic automata provides a variety of intergdtmit processes, related with the standard
linear Brownian motion [RY99]. For sake of brevity, we foausthe automaton BCEFG: its limit process
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B E D F G C
EE B BN
e

Fig. 4. The automaton BCEFG: a simulation fer= 50 and the limit process (hefE ~ 0.195...).

can be described by reflection and coalescence of two indepéstandard linear Brownian motioig
andWy: setB™Y = 0.5 + V2 Wi (t) (resp.B\? = /2 Wa(t)). Fort > 0, set

Ly, _ Ry _
fn(t) _ ZLnd A (T 1)’ TTL(t) _ nd A (T 1)

n n
We have

Theorem 6 Set
(Bf,87) = (BV v B, B A B,

and
T =inf{t > 0;|BY — B®| > 1} = inf{t > 0; B — B; > 1}.

Then
(fn(t)a Tn(t))tzo = (B;\T)B;/\T)tzo'

Proof: First, we study a simpler MarkoW L\, R{")x>0 = (L, Ri) x>0, With values inZ2, starting at
(5,0). Its transition probabilitieg, ) (.,.) are defined as follows:

o ify=o0-1,

Play) (e+1,9) = Pley) (@y—1) = Pey).(na) = 5 Play) (o) =
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eify=o—n+1,
Play),(—1,9) = Play)(@y+1) = Pley),(z+1y-1) = > Play) (ay) = S

e else,

Play),(2—1,9) = Play) (@y—1) = Play),(e41y) = Play),(eyt1) = s Play) (o) =

We takep symmetric, that isp(y 4, (t,2) = P(x,y),(z,t)- D€ transitions o(ik, Rk)kzo are designed with
the purpose that the Markov chain

(E;,R;) = (Ek V Ry, Ly, /\Rk)

has the same distribution &by, Rx)r>0, as long ad;, —n < Ry — 1. These processes, when suitably
renormalized, converges to Brownian-like stochastic esses. More precisely, for> 0, set

(En,fmé,t,f;) () =n~! (EWJ,Rttnsj,iﬁnsj,éﬁnﬂ) .

Lemma 6.1

(ln7a) = (B, BY) 7)

>0

Proof of the Lemma: This Lemma is a consequence of the following Propositiorictvis a particular
case of ([EK86], Chap.7, Th 4.1).
Proposition 1 Letl,,, n, an, by, ¢, be some random elementsZin (Ry), and let(F;"):>0 be the filtra-
tion defined byF" = ¢ (Zn(s),Fn(s); s < t). Suppose that

1. For eachn, /,, and, are F;-martingales.

2. Foreachn, 2 — a,,, 72 — b, and{,7, — ¢, are F'-martingales.

Assume furthermore that for each consté@nt- 0, the following convergences hold in probability:

sup |an(t) — 2t] — 0, (8)
t<T
sup |b, () — 2t| — 0, 9)
t<T
sup |en ()] — 0. (10)
t<T

Then _
(0n(t), 70 (1)) ;50 = (V2B}, V2B})

whereB}, B? are two independent Brownian motions.

t>07
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We apply Proposition 1 with

n3
[tn®]—1

en(t) = % Y Y~ Y Ruenet
=0
Simple calculations show that
1. (£ (t))i>0 and(7, (t));>0 areF'-martingales,
2. 2 — a, andi? — b, areF}-martingales,
3. lyin — ¢y is aFP-martingale.

The Theorem will be proved once it is etablished that for €ach 0,

tn3 . -
sup ‘QLLBJ _ zt‘ — 0, in probability, (11)
t<T n
[tn®] -1
sup |— Z l\ie—ée\zl - l\ie—éelzﬂ—l — 0, in probability. 12)
t<T (N5

Only (12) is nontrivial. We will denote by.? thelocal timein p at timek of the random walk| L, —
Ry|)r>o0; that is

k
p _ - -
Ly = Z l\Le—ReIZP'
£=0

Itis proved in Appendix that there existssuch that for each,
E[LP] < n+ Cn/4EY/4,

Hence, by the Markov inequality,

1 o
P (SUP o [ sy = L2

t<T N > 5) <n 3R [sup ‘L?tn3J N

3
t<T [tn3]

|

-3 -1 0 n—1
snoek [S;i‘} L |+ 1L ']
= n =% (BILYz sl + EILT7N 1)
< 2071/47173/2571,

which converges to zero whéhis fixed. O
Now, since the operatadt defined oriD2 (0, +00) by

A(f) = (1) V f2(8), fr() A fa(t)) 20
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is continuous, it follows that
(7)) = (Bf,By)

niy'n t>0"

The stochastic proce$s; B;)t>0 is often called a planar Brownian motion reflected at a lirexétihe
first bisectrix). Finally, using the operatorsand £ defined at Section 2.1, we have again:

by ) 2 (ﬁ f‘) : (13)

n»r'n

Again, Theorem 2 allows us to conclude, since, due to pragsssf sample paths of the standard Brownian
motion (cf. [RY99], Chap.2, Th.2.2), the limit poifi3;", B; ):>o is almost surely a point of continuity
of L. i

3.2 Automata BDEF, BEF, BCDEFG, BCEFG : Brownian motion

Up to symmetries, there are 6 different cubic automata. @heesarguments show that four of them admit
a continuous limit with a.3-time-renormalization: automata BDEF, BEF, BCDEFG, BCER®G these
limits involve the standard Brownian motion: resp. reflddad stopped, reflected, coalescent, coalescent
and reflected BM. The proofs differ only by the choice of ther@orA.

3.3 Automata BDEG, BEG : no convergence

Then3-time-renormalization is not suitable for these two auttantnat behave as quadratic automata. It
is primarily due to the fact that
Eln™'Litns)] = 1/2+ tn,

that does not converge.

4 Exponential automaton : no convergence
4.1 The automaton BDFG

B E D F G C
0
A t A

Fig. 5: The automaton BDFG.
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BDFG is, up to symmetries, the onéxponential automatorSimulations suggest that its behavior is
quite different from those already encountered. The rigitlbr essentially drifts to the left (with small
random perturbations), while the left border, that wouldlsymmetric random walk, is pushed to the left

by the right border. Actually, the size of the black regiﬁﬁb) = |Ry — Li| performs abiasedrandom
walk on{1,...,n}, reflected at,, absorbed at. According to [FMSTO05],

E[T,] = % n2" + O(n?).
As opposed to the previous cases, it turns out that the pgoces

_ (-1 71)
Zn = (n ZLtn2nJ)t20

is not weakly convergent. Actually, the sequerieg) is nottight @, This is a consequence of the next
Proposition, a slight modification of ([Ald78], Cor. 1), wepowerful in this case:
Proposition 2 Assume that the sequenes ) converges irD(R). Let(r,, d,,) be a sequence such that

(i) forall n, 7, is a stopping time w.r.t the process, ):>o (with its natural filtration) andr,, takes its
values in a finite set,

(i) (d,) is a sequence of real numbers converging to zero.
Then
2n (T + 0n) — 2n(T0) 30, n — oo. (14)

Now, set

tp =n"127"T,,
Tn = 2 A inf{u > 0; 2, (u) > 1/2},
6 = L.

n

Ther.v.7, is a stopping time w.r.tz,,, and it takes its values in the finite det~ 127"k : 1 < k < 2n2"}.
We show that these sequendes) and(d,,) violate the condition (14), as would do any subsequence.
Incidentally, the fact that any subsequence violates (1&Qlpdes tightness for the sequericg).

It is convenient to generate the sequef£g) with the help of a sequence of i.i.d. r.¢Yy, Yy,...)
such that; = —1, (resp. 0, 1) with probabilitieg (resp.”=2, 1), as follows:

Zi1 =2k + Y Locz,<n + 1z,—0 andvi=1
For any0 < e < 1/3, we see that

P(|2n (T + 0n) — 2u(Tn)| > €) = IEI)(|Zn2"’(rn+5n) — Znanr,| > ne)
2 P(|Znan (r46,) = Zn2nr,| > ne;m < 1)
> ]P)(YnQ"Tn+1 + ... Yn2n7-n+2n < —NE; T < 1)

() Meaning that its closure is not even compact, cf. [Bil68]definitions.
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The two events on the right hand side are independent. Megaly,
P(|zn (T + 0n) — 2n(m0)| > €) > P(Y1 + ... Yon < —ne)P(r,, < 1)

in whichlim,, P(Y1 + - - - + Ya» < ne) = 1 by the Bienaymé-Tchebychev inequality. It is more involved
to prove thatim inf,, P(7,, < 1) > 0, so we only give a sketch of the proof. Let us consider the rermb
N and the positions of excursions 4f, that reachn but not2n, and that occur befor&,,: N has a
geometric distribution with parameté&™ + 2)~!, so thatE[N] = 2" + 1, and so that, with a probability
exponentially close to 1V > 2. Given thatN > 2 andT;, = ¢, the first excursion of,, that reaches

n takes place before all the other excursions of the same kindgN > 2, there exists at least another
one of the kind), and approximately before half the othemesions. Thus the conditional expectation
of the first return of,, to O afterr,,, given N > 2 andT;, = ¢, is not larger tham =12~ ¢/2, or than

t, /2. Markov inequality entails that the conditional probatgithatr,, < 3t,,/4 is larger than 1/3. As a
consequencé®(r,, < 1) is larger tharP(¢,, < 4/3)/3 ~ (1 — e~12)/3, and (14) does not hold.

5 Divergent automata
5.1 The automata BCFG, BF and CF: reflected Brownian motions

Fig. 6: Simulations for divergent automata BCFG and BF.

The limit processes of these three divergent automata kedeo reflected Brownian motions. The
main difference with Section 3 is that coalescence does cmiro In order to state our results for the
automaton BCFG, we shall use the same tools and notationsSestion 3. Set

(2) _ )
(Lt;Rt) = (BEQ)aBgl)) =+ (7171)% + (071);
it | B — B | is even,
(2) (1)
(Lo ) = (B, BP) + (1,-) 2520 4 (05,-0.5),

if LB§2> - Bt(l)J is odd. One can sgd,, R) as two self-reflected Brownian motions on the circle.
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Set . .
(000, (0) = (3Lt Rl )

with these notations one gets the following result.
Theorem 7 For the automaton BCFG,

(b, ™) = (L, R).

For the automaton BR/,,, r,) = (W, 1), in which W denotes a standard linear Brownian motion
starting ab.5, reflected a6 and1, while for the automaton CF, only the renormalized width= r,, — ¢,,
of the black region converges W, while (¢,,, r,,) is untight: more precisely, one can see that

(n(@)/mrn(t)/1)50 = (£,0.5+1)1>0.

5.2 The automaton BCF

This automaton behaves a lot like the exponential automBRFG of Section 4, with the difference that
its width is reflected ab but also at, — 1. The hitting time of the barrier — 1 has again an expectation
n 2", but then the whole process starts again. For the same easoin Section 4, the sequence of
processes,, is not tight.

5.3 The automaton BG

Starting fromz(0) = 0™/21"/2, the automaton BG cannot reach a fixed point. However, thamjnis
similar to that of quadratic automata, and the limit is indieeterministic, when the renormalization is

that of Section 2 : here . .
(00,7 0) = (3Lt i)

Theorem 8 For automaton BG, the following convergence hold®ir(R ) :

1
(gn,Tn) = <§ t,lt)

t>0

Appendix

Lemma 8.1 Let (Z;),>o be a random walk oZ, P(Zy11 = Z¢ + 1) = P(Zpy1 = Zy — 1) = 1/n,
P(Zos1 = Zp) = "T‘2 starting fromz,. There exists a constaat such that pour each

E[LP] < n+ Cn/4EY/4,

Proof: Let (Z;)g~o be arw. oz, P(Zyy1 = Zy + 1) = P(Zyy1 = Zy — 1) = 1/2, starting fromz. If
{>n,
é ~
P(Ze=p) =Y P(Beom = §)P(Z; = p),
=0
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whereBy 5/, is a binomial r.v., with paramete(s, 2/n).
P(Zy =p) < > P(Byojm = §)P(Z; = p) + > P(Bya/m = )P(Z; = p)
1/4 1/4
i-21=(%) i-21>(%)

o 1/4
< > P(Byajn = 5)P(Zj =p) + P(|Beam — 51> (3) )

< > P(By o/ = §)P(Z; = p) + 2exp(—V2n).

Here we have used th&(|B, , — rq| > h) < 2exp(— ) (see for example [Bol85],Chap.l,Cor.4).
Hence,

P(Z,=0) < max P(Beom = j) x 2 (%) 1 max P(Z; = p) + 2exp(—Vv/2n).
=213 =213

<oy () (O ()2 4+ 2exp(— \/_n)<02( )3/4. (15)

This last inequality is the consequence of two well-knoweidgsee [Fel70],Chap.VI):

1. Th tral t in the bi ial distributi is bounded above b
e central term in the binomial distributid?). , is bounded above {/yﬁ

PP(S; = p) is bounded above b%, C being independent af, andp.

Now, for eachk > n,

B=>rz=0<ns 3P

=0 {=n+1
4
<n+Cp ) (%)3/ < n+ Can®/ R
l=n+1
O
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