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Abstract- First, we calculate the total field for an 
outgoing or an incoming TM cylindrical incident wave 
illuminating a cylindrical periodic structure of metallic 
wires. Then, we give analytical formulas to extract the 
characteristics (reflection and transmission) of  the 
cylindrical periodic structure. To finish, we extend the 
study to infinite radius periodic structure by given an 
approximation of the dispersion diagram. 
 

I- Introduction 

Cylindrical periodic structures are not often used in 
antenna devices. Before associating this type of structures 
with an antenna it is important to understand there 
characteristics.  

In part II, we calculate the total field due a 
cylindrical periodic structure of metallic wires illuminated 
by an outgoing cylindrical wave or an incoming 
cylindrical wave, outside and inside the cavity. Unlike in 
the plane case, in the cylindrical structure we have not 
access directly to the characteristics of the cylindrical 
surface because of the multiples reflections between the 
center and the surface. In part III, we show how to extract 
the reflection and transmission characteristics of a single 
cylindrical surface by the knowledge of the preceding 
results. In part IV, the multiple layer periodic structure 
characteristics are deduced from one surface 
characteristics. 
 

II- Calculation of the total field 

The cylindrical periodic structure of infinite long 
metallic wires (figures 1) have the following parameters : 
C is the radius of the cylinder, a is the diameter of the 
wires, Pθ is the angular period, Pt is the transversal period 
(Pt=Pθ*C) and N=360/Pθ is the number of wires.  

In figure 1a the structure is illuminated by a TM 
outgoing cylindrical wave and in figure 1b we consider a 
TM incoming cylindrical incident wave. For these two 
cases (case 1a and case 1b) we will calculate the total 
Electric field inside and outside the cylindrical cavity. 
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Figure 1(a) Cylindrical periodic structure of metallic 
wires illuminated by an outgoing cylindrical incident 

wave 
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Figure 1 (b) Cylindrical periodic structure of metallic 
wires illuminated by an incoming cylindrical incident 

wave 
 

Let us call E(ρ) the tangential composing of the total 
electric field in function of the distance ρ to the center  
The total field is the sum of the incident field and the 
diffracted field [1].  

For case 1a the expression of E is : 
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For case 1b the expression of E is :  
 

   (1b) ( ) ( ) ( )( ) ∑
=

ρ+ρη−+ρ=ρ
N

1n
dnn0ainc EKkj2exp(r1EE ( )

 
Where ( ) ( )ρ=ρ kHE 2

0inc  for the outgoing cylindrical 

incident wave or ( ) ( ρ=ρ kH1
0

( )

)Einc  for the incoming 

cylindrical incident wave, ( )
( ) 










xJ
xN

0

0= arctanx0η , J0(x) and 

N0(x) are the Bessel functions of order 0, and k is the free 
space wave number. ra is the reflection coefficient in the 
center which is equal to one when no object is placed in 
the center. Edn is the electric field diffracted by wire 
number n (n=1,…N). Kn represent the unknown factors 
which contain the coupling between wires. Because of the 
symmetry theses factors don’t depend on the wire 
considered :  
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K is determined by imposing zero to E at a surface of a 
metallic wire : 
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In fact, for all wires but one this condition will be 
took in the center of a wire and for this wire the condition 
is took at a distance a/2. For small diameter of wire a 
comparing to the wavelength, Edn are approximated by the 
Hankel function of first order . The formulation of  E2

0H dn 
are given below : 
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The total field E(ρ) is then given by (1a) or (1b) for the 
two cases 1a and 1b respectively. 

Let us call T the total transmission coefficient 
outside the cylindrical cavity and R the total reflection 
coefficient inside the cavity at a distance D (<C) from the 
center :  
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We call To the value of T when the incident wave 

Einc is an outgoing wave (case 1a) and Ti when it is an 
incoming wave (case 1b). Similar definitions are given for 
Ro and Ri.  

 

III- Characterization of a cylindrical periodic surface 

(r, t) are the complex reflection and transmission 
coefficient of the cylindrical periodic structure of metallic 
wire for an outgoing cylindrical wave (figures 1a). (r’, t’) 
are the complex reflection and transmission coefficient of 
the structure for an incoming cylindrical incident wave 
(figures 1b). The purpose of this part is to determine (r, t) 
and (r’, t’) by the knowledge of To, Ti, Ro and Ri. Let us 
insist that the method that we will describe can be used 
even if the total field is calculated by an another method 
that the method of part II. In [2,3] the problem of a source 
inside a cylindrical periodic surface have been also treated 
but the characteristics of the surface have not been given. 

 
To can be expressed in terms of (r, t) and ra (see 

figure 2a) :  
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Ro is the wave at a distance D from the line source 

inside the cavity, normalized by the incident wave (figure 
2b). Ro can be expressed in terms of (r, t) and ra : 
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With expressions (7) and (8), we can calculate the 

reflection and transmission coefficients (r, t) if we know 
Ro and To : 

 

   ( ) C
*
Doa

o

BBRr
1R

+

−r =   ,           (9) )Brr1(Tt Cao −=

 
where ( )( )kCj2expB 0C η−=       ,     ( )( )kDj2expB 0

*
D η=  

  (10) 
 

 
t 

ra r, t

trraexp(-2jη0(kC))

tr2ra
2exp(-4jη0(kC))

… 
C (a)  

 ra r, t 
1 

r2raexp(-4jη0(kC)+ 2jη0(kD)) 

… 

C (b) 

r.exp(-2jη0(kC)+ 2jη0(kD)) 

rraexp(-2jη0(kC)) 

r2ra
2exp(-4jη0(kC)) 

D 
 

Figures 2 : (a) : Partial terms of the "total" 
transmission coefficient To (b) : Partial terms of the 

"total" reflection coefficient Ro inside the cavity 
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Figures 3 : (a) : Partial terms of the "total" 

transmission coefficient Ti (b) : Partial terms of the "total" 
reflection coefficient Ri inside the cavity 

 
In  figure 3a we can see that Ti can be expressed in 

terms of  (r’, t’) , (r, t) and ra :
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Ri can be expressed in terms of t’, r and ra (figure 
3a) : 
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With expressions (11) and (12), we can calculate the 
reflection and transmission coefficients (r’, t’) if we know 
Ri and Ti and (r, t): 
 

 ( )
Da

iC
Br1

RrB1't
+
−

=  ,         







−
−−=

Ca

Ea
i*

CE
Brr1
Br'tt1T

BB
1'r   (13) 

 
where    ,   B , ( )( )kCj2expB 0C η−= ( )( )kEj2exp 0E η−=
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IV- Radius periodic structures 

In Figure 4a and Figure 4b, we plot the magnitudes 
of (r, t) and (r’, t’) and the phases of r and r’ obtained with 
R0,T0, Ri and Ti (obtained in part II) for two examples : 
C=40mm and C=120mm respectively , with Pt constant. 
We see that (r’, t’) tend to (r, t) as C increase. In Figure 5 
we can see that the resonances of To are well given by the 
intersections of the phase of r and 2kη0(kC). The 
condition of continuity r+1=t have been verified also. 

 
The value of |To| superior to one (Figure 5) 

correspond to a matching of the ideal source (ra=1) and 
must not be took as a gain enhancement. We can note that 
an enhancement of the bandwidth of the resonance of [To| 
can be obtain if ϕr increase with frequency. This can be 
obtained with a negative index material as it is observed 
in [5] . 
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Figure 4 : |t|,|t’|, |r|, |r’|, ϕr et ϕr’ for (a) : C=40mm (b) 

: C=120mm (a, b) Pt=pi/6*40mm constant 
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Figure 5: the resonances of |To| correspond to the  
intersections between ϕr  and 2η0(kC) (C=200mm, 

a=1mm, Pθ=30°, Pt=pi/6*200mm ≈105mm)  
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If we consider, now, two surfaces 1 and 2 (Figure 6), 

and if we consider only the reflections between these two 
surfaces (considering a matched source, i.e. ra=0), then the 
transmission coefficient must be equal to : 
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This is the cylindrical equivalent of the Fabry-Perot 

cavity in the plane case. 
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Figure 6 : Two layer cylindrical periodic structure 
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Figure 7 : Two layer cylindrical structure transmission 
coefficient |T2| (a=1mm C1=160mm, Pr=40mm Pθ1=15° 

Pθ2 =12°, Pt  constant) 
 

Figure 6 represent a cylindrical structure of two 
layers with a source in the center. Figure 7 give an 
example of  the transmission coefficient of this structure if 
ra=0.  

The case of multiple surfaces is easy to obtain (by 
recurrence) and it is not necessary to develop it. 

We consider, now, an infinite number of cylindrical 
surfaces. In the same way than in the plane case, we can 
consider that the cylindrical wave propagate in the 
structure with a constant of propagation β (cylindrical 
Floquet equivalent theorem). We can see [4] also that the 
dispersion equation of the plane case is a good 
approximation of the dispersion equation :  
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Where k is the wave number, Pr the radius period and 
y=2(1-t)/t the normalized equivalent impedance of a 
cylindrical surface. The cylindrical surfaces have the same 
period Pt and then the same characteristics when C is 
sufficiently large. 
Figure 8 represent a radius periodic cylindrical structure 
of multiple layers. Figure 9 give the modulus of 
M=cos(kPr)+jy/2sin(kPr) (16), βPr and also the magnitude 
of the reflection coefficient r6 of a six layer structure of 
metallic wires. A frequency band gap appears when |M|>1 
(no real solution for β) where |r6| is near 1. 
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Figure 8 : Multiple layer cylindrical periodic structure 
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Figure 9 : Six layer cylindrical periodic structure 

reflection coefficient, βPr and |M|  (a=1mm, 
Pr=C1=40mm Pθi=60°/i (i=1,2,…), Pt  constant) 

 

V- Conclusion 

We have seen how to obtain the mains characteristics 
of a cylindrical periodic surface of metallic wires and of 
multiple layer radius periodic cylindrical structure. These 
methods will be used to design new types of antennas.  
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