N

N

Cylindrical periodic structures of metallic wires
Halim Boutayeb, Kouroch Mahdjoubi

» To cite this version:

Halim Boutayeb, Kouroch Mahdjoubi. Cylindrical periodic structures of metallic wires. Nov 2003,
pp. 319-322, 10.1109/ISAPE.2003.1276692 . hal-00133709

HAL Id: hal-00133709
https://hal.science/hal-00133709
Submitted on 27 Feb 2007

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00133709
https://hal.archives-ouvertes.fr

Cylindrical Periodic Structures of Metallic wires

Halim Boutayeb and Kouroch Mahdjoubi
IETR - Institut d’Electronique et de Télécommunication de Rennes, Université de Rennes 1, Bat. 11 C, Campus
de Beaulieu, 35042 Rennes — France. Halim.Boutayeb@univ-rennes|.fr

Abstract- First, we calculate the total field for an
outgoing or an incoming TM cylindrical incident wave
illuminating a cylindrical periodic structure of metallic
wires. Then, we give analytical formulas to extract the
characteristics (reflection and transmission) of  the
cylindrical periodic structure. To finish, we extend the
study to infinite radius periodic structure by given an
approximation of the dispersion diagram.

I- Introduction

Cylindrical periodic structures are not often used in
antenna devices. Before associating this type of structures
with an antenna it is important to understand there
characteristics.

In part II, we calculate the fotal field due a
cylindrical periodic structure of metallic wires illuminated
by an outgoing cylindrical wave or an incoming
cylindrical wave, outside and inside the cavity. Unlike in
the plane case, in the cylindrical structure we have not
access directly to the characteristics of the cylindrical
surface because of the multiples reflections between the
center and the surface. In part III, we show how to extract
the reflection and transmission characteristics of a single
cylindrical surface by the knowledge of the preceding
results. In part IV, the multiple layer periodic structure
characteristics are deduced from one surface
characteristics.

II- Calculation of the total field

The cylindrical periodic structure of infinite long
metallic wires (figures I) have the following parameters :
C is the radius of the cylinder, a is the diameter of the
wires, Py is the angular period, Py is the transversal period
(P=Pg*C) and N=360/Pg is the number of wires.

In figure la the structure is illuminated by a TM
outgoing cylindrical wave and in figure 1b we consider a
TM incoming cylindrical incident wave. For these two
cases (case la and case 1b) we will calculate the total
Electric field inside and outside the cylindrical cavity.
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Figure 1(a) Cylindrical periodic structure of metallic
wires illuminated by an outgoing cylindrical incident
wave
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Figure 1 (b) Cylindrical periodic structure of metallic
wires illuminated by an incoming cylindrical incident
wave

Let us call E(p) the tangential composing of the total
electric field in function of the distance p to the center
The total field is the sum of the incident field and the
diffracted field [1].

For case 1a the expression of E is :

N
E(p) = Einc(p)+ ) KnEanp) is : (1a)
n=1

For case 1b the expression of E is :

N
E(p) = Einc (p)(l t1h exp(—Zjno(kp))+ ZKnEdn (p) (lb)

n=l

Where E;(p)=H3(kp) for the outgoing cylindrical

incident wave or E;(p)=H}(kp) for the incoming

cylindrical incident wave, n,(x)= arctan(

NO(X)J , Jo(x) and
Jolx)

No(x) are the Bessel functions of order 0, and k is the free
space wave number. r, is the reflection coefficient in the
center which is equal to one when no object is placed in
the center. Ey, is the electric field diffracted by wire
number n (n=1,...N). K,, represent the unknown factors
which contain the coupling between wires. Because of the
symmetry theses factors don’t depend on the wire
considered :

N N
ZKnEdn(p): KZEdn(p) (2)
n=l n=1

K is determined by imposing zero to E at a surface of a
metallic wire :
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, for case Ia,

zEdn (P)
n=l p=C+a/2

or K=— Einc (P)(l +1h exp(_zjno(kp))

iEdn (P)

, for case 1b

p=C+a/2

3)

In fact, for all wires but one this condition will be
took in the center of a wire and for this wire the condition
is took at a distance a/2. For small diameter of wire a
comparing to the wavelength, Ey, are approximated by the

Hankel function of first order H3 . The formulation of Egy,
are given below :

Edi(P)= H%{k\/cz + p2 —2Cpcos[(i 1)2TEJ] ,i=1,...N.

N

The total field E(p) is then given by (1a) or (1b) for the
two cases /a and /b respectively.

Let us call T the total transmission coefficient
outside the cylindrical cavity and R the total reflection
coefficient inside the cavity at a distance D (<C) from the
center :

T= Ei%)’ p>C+P (5)
R—%,p—D<C—Pt (6)

We call T, the value of T when the incident wave
Eic is an outgoing wave (case la) and T; when it is an
incoming wave (case 1b). Similar definitions are given for
R, and R;.

III- Characterization of a cylindrical periodic surface

(r, t) are the complex reflection and transmission
coefficient of the cylindrical periodic structure of metallic
wire for an outgoing cylindrical wave (figures 1a). (1’, t’)
are the complex reflection and transmission coefficient of
the structure for an incoming cylindrical incident wave
(figures 1b). The purpose of this part is to determine (r, t)
and (r’, t’) by the knowledge of T,, T;, R, and R;. Let us
insist that the method that we will describe can be used
even if the total field is calculated by an another method
that the method of part II. In [2,3] the problem of a source
inside a cylindrical periodic surface have been also treated
but the characteristics of the surface have not been given.

T, can be expressed in terms of (r, t) and r, (see
figure 2a) :

t
1=, exp(= j2ng(kC))”

Ny (x)
Jo(x)] @

+o0
T, = tZrnran exp(— jn2n0(kC)) =
n=0

where ng(x)= arctan[

R, is the wave at a distance D from the line source
inside the cavity, normalized by the incident wave (figure
2b). R, can be expressed in terms of (r, t) and 1, :

R :1+r-eXP(—j2ﬂo(kC)+j2ﬂ0(kD)) (8)
° 1_rra eXp(_JZnO(kC))

With expressions (7) and (8), we can calculate the
reflection and transmission coefficients (r, t) if we know
Roand T, :

o Ryl ’

- t=T,(1-11,Bc) )
raRo"'BD C ° e

where Be =exp(-2jno(kC)) ,  Bp =exp(2jny(kD))

(10)
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Figures 2 : (a) : Partial terms of the "total"
transmission coefficient T, (b) : Partial terms of the
"total" reflection coefficient R, inside the cavity

T 1
e s r’exp(-2jno(kE)) exp(2jno(kC))

> tt’raexp(-2jno(kE))

tt'r7r.exp(-2jmo(KE))exp(-2jna(kC))

tt°r, rPexp(-2jno(KE))exp(-4jno(kC))

C E (@



Iy rt r,t
t?

e e

) Urexpl- 2imo(kD))
£1r,exp(-2jn0(kC))

/‘—_ <_" 0

'\-\_> t_’l_‘r_af?xp(-Zjno(kC)- 2jno(kD))
gfge}fﬁ-ﬁno(kc))

??

(b)

Figures 3 : (a) : Partial terms of the "total”
transmission coefficient T; (b) : Partial terms of the "total”
reflection coefficient R; inside the cavity

In figure 3a we can see that T; can be expressed in
terms of (r’,t’), (r,t)and r,:

t'tr, exp(— jZnO(kE))
111, exp(~ j2no (kC))

an

T, = 1+ r'exp(~ j2no (KE)+ j2ng (kC)) +

R; can be expressed in terms of t’, r and r, (figure
3a):

R.— t’(l+ra exp(— jZnO(kD)))
" 1o expl—j2n,(kC))

(12)

With expressions (11) and (12), we can calculate the
reflection and transmission coefficients (r’, t’) if we know
R; and T; and (, t):

. (1-1B)R; W 1 [ trBg
T TinBy r_BEBZ\Ti "omp) P
where  Be=exp(—2jny(kC)), Bg=exp(-2jn,(kE)),

By=exp(~2jn,(kD)), B.=exp(2jn,(kC) (14)

IV- Radius periodic structures

In Figure 4a and Figure 4b, we plot the magnitudes
of (r, t) and (r’, t") and the phases of r and r’ obtained with
Ry, Ty, R; and Ti (obtained in part II) for two examples :
C=40mm and C=120mm respectively , with P, constant.
We see that (r°, t’) tend to (1, t) as C increase. In Figure 5
we can see that the resonances of T, are well given by the
intersections of the phase of r and 2kny(kC). The
condition of continuity r+1=t have been verified also.

The value of |T,| superior to one (Figure J5)
correspond to a matching of the ideal source (r,=1) and
must not be took as a gain enhancement. We can note that
an enhancement of the bandwidth of the resonance of [T,|
can be obtain if ¢, increase with frequency. This can be
obtained with a negative index material as it is observed
in [5].
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Figure 4 : |t],|t’], |7, |r’|, @ et @ for (a) : C=40mm (b)
: C=120mm (a, b) Pt=pi/6*40mm constant
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Figure 5: the resonances of |T,| correspond to the
intersections between @, and 21y(kC) (C=200mm,
a=Imm, Pg=30° P=pi/6*200mm ~105mm)

If we consider, now, two surfaces 1 and 2 (Figure 6),
and if we consider only the reflections between these two
surfaces (considering a matched source, i.e. r,=0), then the
transmission coefficient must be equal to :

tt
T 1*2

2 = o exp(2ny (O)expl 2o B )

This is the cylindrical equivalent of the Fabry-Perot
cavity in the plane case.
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Figure 6 : Two layer cylindrical periodic structure

T
0 ; /\\\
 mm,
o..z /’/
/

0 0.1 0.2

Py/A
Figure 7 : Two layer cylindrical structure transmission
coefficient |T,| (a=1mm C;=160mm, Pr=40mm Pg=15°
Pg, =12°, P, constant)
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Figure 6 represent a cylindrical structure of two
layers with a source in the center. Figure 7 give an
example of the transmission coefficient of this structure if
r,=0.

The case of multiple surfaces is easy to obtain (by
recurrence) and it is not necessary to develop it.

We consider, now, an infinite number of cylindrical
surfaces. In the same way than in the plane case, we can
consider that the cylindrical wave propagate in the
structure with a constant of propagation f (cylindrical
Floquet equivalent theorem). We can see [4] also that the
dispersion equation of the plane case is a good
approximation of the dispersion equation :

cos(BP, ) = cos(kP,) + %sin(kpr) (16)

Where k is the wave number, P, the radius period and
y=2(1-t)/t the normalized equivalent impedance of a
cylindrical surface. The cylindrical surfaces have the same
period P, and then the same characteristics when C is
sufficiently large.

Figure 8 represent a radius periodic cylindrical structure
of multiple layers. Figure 9 give the modulus of
M=cos(kP,)+jy/2sin(kP,) (16), BP, and also the magnitude
of the reflection coefficient rg of a six layer structure of
metallic wires. A frequency band gap appears when |[M|>1
(no real solution for ) where |r4| is near 1.

cylindrical surfaces

Figure 8 : Multiple layer cylindrical periodic structure
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Figure 9 : Six layer cylindrical periodic structure

reflection coefficient, BP, and |M| (a=I1mm,
Pr=C;=40mm Pg=60%i (i=1,2,...), P, constant)

V- Conclusion

We have seen how to obtain the mains characteristics
of a cylindrical periodic surface of metallic wires and of
multiple layer radius periodic cylindrical structure. These
methods will be used to design new types of antennas.
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