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MULTI-LAYER CRYSTALS OF METALLIC WIRES:
ANALYSIS OF THE TRANSMISSION COEFFICIENT
FOR OUTSIDE AND INSIDE EXCITATION

H. Boutayeb † , K. Mahdjoubi, and A.-C. Tarot

IETR, UMR 6164 CNRS, University of Rennes
Ave. Général Leclerc 35042 Rennes Cedex, France

Abstract—This paper proposes a new analysis of the transmission
coefficient at normal incidence for 2-D periodic crystals (also called
Electromagnetic Band Gap (EBG) structures), which are finite in the
direction of wave-propagation and are composed of metallic wires. The
crystal is considered as a set of parallel Partially Reflecting Surfaces
(PRSs), whose transmission and reflection characteristics are obtained
rigorously using the Finite Difference Time Domain (FDTD) method.
The transmission coefficient of the EBG structure is then obtained
by using a plane-wave cascading approach considering single mode
interactions between PRSs. The accuracy of the results given by the
hybrid method is assessed compared to those obtained directly by the
Finite Difference Time Domain (FDTD) method. The minima and
maxima envelops and the resonance frequencies of the transmission
coefficient are studied, with analytical expressions, for both, excitation
from outside and excitation from inside. A discussion is also presented
concerning the strength of the coefficient greater than one obtained
when the plane-wave source is inside the EBG structure. In addition,
by using a transmission line model, a normalized version for this
coefficient is proposed, which considers the available power by the
source.

1. INTRODUCTION

Electromagnetic bandgap (EBG) materials, also known as photonic
crystals [1, 2], have been the subject of intensive research in the
past few years. An important feature of these structures is their
† Also with INRS-EMT, University of Quebec, 800, Rue de la Gauchetière, H5A 1K6,
Montréal, Canada
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ability to open a bandgap that is a frequency range for which
the propagation of electromagnetic waves is forbidden whatever the
direction of propagation and the polarization. EBG materials are
periodic structures composed of dielectric and/or metallic elements.
Potential applications have been suggested in microwave and antenna
domains, such as suppressing surface waves [3], creating controllable
beams [4, 5], and designing high-gain antennas with a single feed [6–10].

To analyze crystals with a rectangular lattice, various methods
have been proposed for calculating the scattering of the periodic
structures, e.g., the rigorous scattering matrix method [11], and the
generalized scattering matrix method with a cascading approach [12],
where the periodic structure is made from the cascading of multiple
layers of PRSs, also called Frequency Selective Surfaces (FSSs) [13].
These methods are rigorous but they are typically time-consuming.
In this paper, a simple modeling method based on a spectral plane-
wave generalized-ray analysis with a cascading process is presented
to predict the characteristics of a rectangular crystal. The proposed
method does not consider the higher Floquet modes interactions
between PRSs, but it reduces considerably the computational time
compared to the preceding methods and it is well suited for the design
process of the structure.

To our knowledge, the shapes and the resonance behaviors of the
transmission coefficient for rectangular periodic crystals, which are
finite in the direction of propagation, have not been studied enough.
Indeed, it is of a lot of interest to be able to predict the stop-bands
level and the locations of the transmission peaks in order to simplify the
design process. For double layer structures, the Fabry Perot approach
has been used in references [14, 15]. In this paper, new analytical
results and a new parametrical study of multi-layers structures are
proposed, in order to simplify the design of such structures.

Furthermore, to analyze EBG-antennas, many authors have used
the characterization of the EBG structure when it is excited by a
plane-wave from outside, and with an observation point outside the
structure also [6, 7]. However the exciting source in the proposed
antennas was inside the EBG structure. Because of the principle of
reciprocity, the analysis of the transmission coefficient for a source
located inside an EBG structure is equivalent to the calculation of
the total wave inside an EBG structure excited from outside. This
second analysis has been presented in [16], by using a ray method
and in [17], where a numerical method has been proposed. However,
the minima and maxima envelop and the resonance frequencies of the
transmission coefficient have not been studied enough. In addition, the
reason of the strength of the transmission coefficient greater than one,
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obtained for inside-excitation, has not been sufficiently developed and
the physical insight of this anomaly has not been sufficiently explained.
In this paper, a new analysis of the frequency response of a crystal
with a rectangular lattice, excited from its interior, is presented, and
a discussion is also proposed concerning the strength of the coefficient
greater than one obtained when the plane-wave source is inside the
EBG structure. In addition, a normalized version for this coefficient
is proposed, by using a transmission line model and considering the
available power by the source.

2. CHARACTERIZATION OF A SINGLE PARTIALLY
REFLECTING SURFACE

The Partially Reflecting Surface (PRS) of infinite and perfectly
conducting metallic wires, illuminated by a plane wave at normal
incidence as illustrated in Fig. 1, is considered. In this figure, Pt is
the transversal period and a is the wire diameter. The coefficients
t and r = |r|ejϕr are the complex transmission and the reflection
coefficients of the surface, which are computed rigourously with the
Finite Difference Time Domain (FDTD) method. In the FDTD code,
Floquet boundaries conditions and a thin mesh (� = Period/80) are
used. For the considered PRS, the magnitude of the transmission and
reflection coefficients are plotted in Figs. 2 and 3, versus normalized
frequency Pt/λ, for different values of the ratio a/Pt. The phase of the
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Figure 1. Partially Reflecting Surface of metallic wires.
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Figure 2. Coefficient |t| versus normalized frequency Pt/λ for different
values of a/Pt (FDTD).
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Figure 3. Coefficient |r| versus normalized frequency Pt/λ for
different values of a/Pt (FDTD).

reflection coefficient r, ϕr, is also reported in Fig. 4, versus normalized
frequency Pt/λ, for different values of the ratio a/Pt. These results
will be applied in the next sections in order to characterize structures
with multiple layers of PRSs.
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Figure 4. Phase of the reflection coefficient ϕr versus normalized
frequency Pt/λ for different values of a/Pt (FDTD).

3. EXCITATION FROM OUTSIDE

In this section, the previous results for the PRS, are used for the
characterization of EBG structures composed of multiple layers of
PRSs. The EBG structures are illuminated by a plane wave from
outside, and they are finite in the direction of wave-propagation. In
the following subsections, and in all the paper, the energy conservation
relation |t2| = 1 − |r|2, which is verified because no absorption occurs,
will be used to simplify analytical expressions.

3.1. Two Layer Structure

The Fabry-Perot cavity composed of two layers of PRSs separated
by the distance D, and illuminated by a plane wave at its left, as
illustrated in Fig. 5, is considered. Considering the multiple reflections
inside the cavity, and considering only single mode interactions between
layers, the amplitude of the total transmitted wave t2 in the right part
and of the total reflected wave in the left part r2 can be written as
following [18]:

t2 = t2
∞∑

n=0

r2ne−jk(2n+1)D =
t2e−jkD

1 − r2e−j2kD
=

t2e−jkD

1 − |r|2e−j(2kD−ϕr)
(1)

r2 = r +
t2re−j2kD

1 − r2e−j2kD
(2)
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Figure 5. Fabry-Perot cavity excited by a plane-wave source from
outside.
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Figure 6. Coefficient |t2| for D = Pt/2, a/Pt = 5%: FDTD (solid
line) and semi-analytical model (dashed line).

where k is the free space wave number.
In Figs. 6 to 8, are compared the coefficients |t2| given by FDTD

and those obtained by the hybrid method, for a/P = 0.5%. Different
values of the distance D are tested: D = 0.5Pt, D = Pt and D = 2Pt.
From these figures, it can be seen that semi-analytical method gives
the same results than the full-wave method (FDTD) for Pt < 0.8λ. In
Figs. 9 to 11, the ratio a/P = 30% is now considered, and D vary by
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Figure 7. Coefficient |t2| for D = Pt, a/Pt = 5%: FDTD (solid line)
and semi-analytical model (dashed line).
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Figure 8. Coefficient |t2| for D = 2Pt, a/Pt = 5%: FDTD (solid line)
and semi-analytical model (dashed line).

the same way than previously. One can note that for D = 0.5Pt the
hybrid method is less accurate. But for D ≥ Pt and Pt/λ < 0.8λ, the
two method present the same results.

Eq. (1) is now used in order to study the shape and the resonance
frequencies of the transmission coefficient t2. The resonance picks, are
obtained when all the transmitted partial waves have the same phase.
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Figure 9. Coefficient |t2| for D = Pt/2, a/Pt = 30%: FDTD (solid
line) and semi-analytical model (dashed line).
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Figure 10. Coefficient |t2| for D = Pt, a/Pt = 30%: FDTD (solid
line) and semi-analytical model (dashed line).

This can be written as following:

ϕr = kD − nπ, n = 0,±1 . . . (3)

where ϕr is the phase of r. At the resonance frequencies, the maximum
value achieved by magnitude of the transmission coefficient t2 is then
given by:

|t2|max =
|t|2

1 − |r|2 =
1 − |r|2
1 − |r|2 = 1 (4)
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Figure 11. Coefficient |t2| for D = 2Pt, a/Pt = 30%: FDTD (solid
line) and semi-analytical model (dashed line).

The envelop of the minima is obtained when the transmitted
partial waves have opposite phase. This condition can be written as
following:

ϕr = kD + π/2 − nπ, n = 0,±1 . . . (5)

The envelop of the minima can then be expressed as following:

|t2|min =
|t|2

1 + |r|2 =
1 − |r|2
1 + |r|2 (6)

Fig. 12 shows t2, the phase of r (ϕr) and the lines kD − nπ
(n = 0, 1 . . .), for D = Pt and a/Pt = 5%. The intersections between
ϕr and kD − nπ correspond to the resonance peaks. Fig. 13 illustrate
the envelop of the minima and of the maxima for |t2|. Fig. 14 illustrates
that the intersections between ϕr and kD+π/2−nπ correspond to the
minima of |t2|. Fig. 15 illustrates the influence of a/Pt in the position
of the resonance peaks.

3.2. Multilayered Structures

In this section, the study is extended to multilayered structures. The
structure of three layers equally spaced with the longitudinal period Pl,
as illustrated in Fig. 16 is considered. By replacing the two first layers
by an equivalent surface of characteristics t2 and r2, the coefficients of
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Figure 12. The intersections between ϕr and kD − nπ, n = 0, 1, . . .,
correspond to the transmission peaks of |t2|.
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Figure 13. Magnitude |t2|, minima and maxima envelops of this
coefficient.

the three layers structure are written as following:

t3 =
t2te

−jkPl

1 − r2re−j2kPl
(7)

r3 = r2 +
t22re

−j2kPl

1 − r2re−j2kPl
(8)

Fig. 15 shows results for the coefficient |t3| obtained with the
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Figure 14. The intersections between ϕr and kD + π/2 − nπ,
n = 0, 1, . . ., correspond to the minima of |t2|.
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Figure 15. Resonance frequency for different values of a/Pt, with
D = Pt.

hybrid method those obtained by FDTD. From these curves, Eq. (7)
is exact until the normalized frequency Pt/λ < 0.7.

|t3| has two peaks in each sides of the peaks of |t2| (see Fig. 18).
By observing that when |t2| = 1, and then |r2| = 0, |t3| is in a
minimum between the resonance peaks, the envelop of this minimum
is then given by: |t3| = |t|/(1 − 0) = |t|. Furthermore, the resonance
peaks of |t3| appear for |t2| = |t|. The coefficients |t|, |t2| and |t3|
are plotted in Fig. 18, to illustrate that the intersections between |t2|
and |t| correspond to the resonance peaks of |t3| and that between two
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Figure 16. Three layers of partially reflecting surfaces excited by a
plane-wave source from outside.
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Figure 17. Magnitude of the transmission coefficient |t3| for the three-
layers structure, for Pl = Pt, a/Pt = 5%: FDTD (solid line) and semi-
analytical model (dashed line).

peaks of |t3| the minimum is given by |t|.
By generalizing to n layers, it is obtained the following iterative

equations, for the transmission and reflection coefficients:

tn =
tn−1te

−jkPl

1 − rn−1re−j2kPl
(9)

rn = rn−1 +
t2n−1re

−j2kPl

1 − rn−1re−j2kPl
(10)
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Figure 18. Coefficients |t|, |t2|, and |t3|. The intersections between
|t| and |t2| correspond to the peaks of |t3|. The minimum between two
peaks of |t3| is determined by |t|.
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Figure 19. Coefficient |t5| for Pl = Pt, a/Pt = 5% : FDTD (solid
line) and semi-analytical model (dashed line).

In Fig. 19, the magnitude of |tn| is plotted, for n = 5, using both,
FDTD and semi-analytical methods, showing the accuracy of the
hybrid method for Pt/λ < 0.7. It is interesting to note that the
transmission peaks of |tn| appear at the intersections between |tn−1|
and |t|. Indeed, this conducts to |tn| = |tn−1||t|/(1 − |rn−1||r|) =
|tn−1|2/(1 − |rn−1|2) = 1, at these resonance frequencies.

From Eq. (9), the envelop of the minima for |tn| can be written as
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following:

|tn|min =
|tn−1t|

1 + |rn−1r|
(11)

To obtain a simpler expression, the corresponding maxima of |rn| are
first calculated. By using |rn|2max = 1 − |tn|2min, |tn−1|2 = 1 − |rn−1|2
and |t|2 = 1 − |r|2, the following relation is obtained:

|rn|max =
|r| + |rn−1|
1 + |rn−1r|

(12)

In order to simplify this equation, we consider the coefficient
fn = 1−|rn|max

1+|rn|max
. After some algebra, it is obtained fn = 1−|r|

1+|r|
1−|rn−1|
1+|rn−1| ,

and then fn =
(

1−|r|
1+|r|

)n
. From this, the envelop of the maxima for |rn|

is given by

|rn|max =
1 −

(
1−|r|
1+|r|

)n

1 +
(

1−|r|
1+|r|

)n (13)

The corresponding envelop of the minima for |tn| is then written as
following:

|tn|min =
2

(
1−|r|
1+|r|

)n/2

1 +
(

1−|r|
1+|r|

)n (14)

The coefficients |t2|, |t3|, |t4|, and |t5| and their minima envelops are
reported in Fig. 20. The coefficients |r2|, and |r5| and their maxima
envelops are plotted in Fig. 21.

4. EXCITATION FROM INSIDE

In this section, the plane-wave source is considered inside the Fabry-
Perot cavity or the EBG structure. For this case, the same ray analysis
than previously is carried out.

4.1. Analysis of the “Transmission” Coefficient

4.1.1. Two Layers Structure

Two layers of PRSs are considered at the same distance D/2 at each
side of the source as illustrated in Fig. 22(a). The source is considered
transparent to electromagnetic waves and it sends two plane waves on
each side. In the FDTD code, the source is modeled with a plane
of current sources. Another model of the source, which considers



Progress In Electromagnetics Research, PIER 59, 2006 313

 

0 0.2 0.4 0.6 0.8 1 0 

0.2 

0.4 

0.6 

0.8 

1 

|t2|min 

|t3|min 

|t4|min 

|t5|min 

Pt /λ
 

|tn|max 

|tn| 

Figure 20. Coefficients |t2|, |t3|, |t4|, and |t5| and their minima
envelops.
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Figure 21. Coefficients |r2| and |r5| and their maxima envelops.

the interactions of the source with the electromagnetic waves inside
the cavity will be presented later in this paper. Because of the
reciprocity principle, this analysis is equivalent to the one of the
problem illustrated in Fig. 22(b), where the Fabry-perot cavity is
excited from outside and the total wave is calculated at the center
of the cavity. As referring to Fig. 22(a), the amplitude of the total
transmitted wave T2 is calculated by summing the rays outside the
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Figure 22. Two equivalent problems: (a) Fabry-Perot cavity excited
by a plane wave source from its inside. Calculation of the total
transmitted wave outside the cavity (b) Fabry-Perot cavity excited
by a plane wave source from outside. Calculation of the wave inside
the cavity.
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Figure 23. Coefficient |T2| for D = Pt, a/Pt = 5%: FDTD (solid line)
and semi-analytical model (dashed line).

cavity:

T2 = t
∞∑

n=0

rne−jk(2n+1)D/2 =
te−jkD/2

1 − re−jkD
(15)

|T2| is plotted in Fig. 23, for a/Pt = 5% and D = Pt, by using FDTD



Progress In Electromagnetics Research, PIER 59, 2006 315

 

0 0.2 0.4 0.6 0.8 1 
0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

Pt /λ
 

ϕr 

|t2| 

|T2| 

kD  

Figure 24. Intersections between ϕr and kD − 2nπ, n = 0, 1, . . .,
correspond to transmission peaks of |T2|. |t2| has one more peaks than
|T2|.

and semi-analytical method. For T2, the resonance condition is written:

ϕr = kD − 2nπ, n = 0,±1 . . . (16)

This condition is illustrated in Fig. 24 for D = Pt. In this figure,
the coefficient |t2| is also plotted, in order to show that |t2| has twice
more resonance frequencies than |T2|. The minima envelop is written
as following:

ϕr = kD − (2n + 1)π, n = 0,±1 . . . (17)

The envelop of maxima for |T2| is given by:

|T2|max =
|t|

1 − |r| =
√

1 − |r|2
1 − |r| =

√
1 + |r|
1 − |r| (18)

From Eq. (18), |T2|max is equal or greater than one and can
theoretically become very large if |r| is near one (note that 0 ≤ |r| < 1).
This means that the source inside the cavity can supply more power in
the presence of the cavity than without the cavity. This is due to the
fact that the cavity modifies the matching of the source to free space.
Taking into account the available power from the source, a normalized
version for the transmission coefficient will be proposed later in this
paper.

The envelop of minima for |T2| is expressed as following:

|T2|min =
|t|

1 + |r| =
√

1 − |r|2
1 + |r| =

√
1 − |r|
1 + |r| =

1
|T2|max

(19)



316 Boutayeb, Mahdjoubi, and Tarot

 

0 0.2 0.4 0.6 0.8 1 0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

Pt /λ
 

|T2| 

r1

r1

−

+

 

r1

r1

+

−

 

Figure 25. Coefficient |T2|, envelops of minima and maxima.

The coefficient |T2|, the envelops of minima and maxima are plotted
in Fig. 25, for D = Pt, and in Fig. 29, for D = 2Pt.

4.1.2. Multilayered Structure

Multiple PRSs are on each sides of the source. The case Pl = D = 2Pt

is considered. For n layers periodically spaced by the distance Pl, at
the distance Pl/2 at each sides of the source, one can show that the
coefficient T2n is written:

T2n =
tne−jkPl/2

1 − rne−jkPl
(20)

In Eq. (20), tn and rn are obtained from Eqs. (9) and (10).
The coefficient |T2n| for n = 4 is plotted in Fig. 26. In this figure,

this coefficient is compared to the transmission coefficients of the cavity
walls (i.e., |tn|) and in Fig. 27, it is compared to the transmission
coefficient of the all structure excited from outside (i.e., |t2n|). From
these curves, the coefficient |T2n| has one more peak than |tn| in the
first pass-band, but the two coefficients have the same number of peaks
in the second pass-band (Fig. 26). In addition, the first peak of |T2n|
occurs at the same frequency that the first peak of |t2n| (Fig. 27).

4.2. Concerning the Strength of “Transmission” Coefficient
Greater than One

The strength of the coefficient greater than one is due to the fact that
the power supplied by the source has not been considered. In the
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Figure 26. Coefficient |T2n|, for n = 4 and coefficient |t4|. Pl = D =
2Pt and a/Pt = 5%. In the first pass-band, |T2∗4| has two more peaks
than |t4|. In the second pass-band the two coefficients have the same
number of peaks.
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Figure 27. Coefficient |T2n|, for n = 4 and coefficient |t8|. Pl =
D = 2Pt and a/Pt = 5%. The first peak of |T2n| occurs at the same
frequency that the first peak of |t2n|.

next sub-sections, a normalized version for this coefficient, which take
into account the power available by the source is proposed, by using a
transmission line model.

4.2.1. Power Normalization

The Fabry-Perot cavity excited from its inside (see Fig. 22(a)) is
represented by the transmission line model as illustrated in Fig. 28(a).
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Figure 28. Transmission line models: (a) Source-fabry perot cavity
structure (b) Source with matched impedance.

In Fig. 28(b), the transmission line model of the source with its
matched impedance is also presented in order to calculate the available
power from the source. Zc is the free-space characteristic impedance
(Zc = 120π). Z is the equivalent circuit model of the PRS. Zs and
es are the equivalent impedance and equivalent tension of the source,
respectively.

To calculate the transmission coefficient outside the cavity, the
available power Pi (see Fig. 28(b)) is first calculated [19]:

Pi =
1
2
|Vi|2
Z∗

s

=
1
2

|Z∗
s |2

Z∗
s |Z∗

s + Zs|2
|es|2 (21)

where es, Zs and Vi parameters are shown in Fig. 28(b). Then, referring
to Fig. 28(a), the transmitted power Pt for one side of the transmission
line is given by:

Pt =
1
2
|Vt|2
Zc

(22)

The transmission and reflection coefficients t and r can be expressed
as functions of Z as following [19]:

t =
2Z

2Z + Zc
(23)
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r = − Zc

2Z + Zc
(24)

ts and rs are the transmission and reflection coefficients of the source
and can be written as functions of Zs

ts =
2Zs

2Zs + Zc
(25)

rs = − Zc

2Zs + Zc
(26)

By using Eqs. (23)–(26), and after simplification (see Appendix), one
can show that Eq. (22) can be written

Pt =
1
2

Zc

|2Zs + Zc|2
|te−jkD/2|2

|1 − r(rs + ts)e−jkD|2 |es|2 (27)

Taking into account the power transmitted from the both sides of the
line, the normalized squared magnitude of the transmission coefficient
|T2|2Norm,max can be expressed as following:

|T2|2Norm,max =
2Pt

Pi
=

2ZcZ
∗
s |Z∗

s + Zs|2
|Z∗

s |2|2Zs + Zc|2
|te−jkD/2|2

|1 − r(rs + ts)e−jkD|2 (28)

For the case of real Zs, Eq. (12) becomes

|T2|2Norm,max = 4|rs||ts|
|te−jkD/2|2

|1 − r(rs + ts)e−jkD|2 (29)

The maximum is then written

|T2|2Norm,max = 4|rs||ts|
1 − |r|2

(1 − |r||rs + ts|)2
(30)

In Fig. 29, |T2|2Norm,max is plotted versus Zs for different values of |r|.
From these curves, one can see that the strength of |T2|2Norm,max is
always limited to 1, as expected.

4.2.2. Discussion

To analyze the directivity of an antenna embedded inside a Fabry-
Perot cavity, one can use Eq. (15), where the variable D is replaced by
D cos(θ), and θ is the angle of the transmitted waves. This analysis
has been recently presented in [20]. The directivity has been predicted
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Figure 29. |T2|2Norm,max coefficient versus Zs for different values of
|r|.

by considering the angular dependance of the transmission coefficient.
The Fabry-Perot cavity increases the directivity of the antenna and
then its gain. Indeed, the relationship between directivity and gain for
highly directive antennas is well known [21]. However, it can be noted
that the strength of the coefficient of Eq. (15), can not be interpreted
has the gain of this antenna, because it does not consider the power
available by the source.

Theoretically the coefficient of Eq. (29), is more correct than the
coefficient of Eq. (15). However, it is less applicable in practice, because
we don’t have necessarily access to the transmission and reflection
coefficients of the source.

A rapid comparison between Eq. (15) and Eq. (29) shows that
the normalized version (Eq. (29)) has two factors more: 4|rs||ts| and
(rs + ts) (in the denominator). For directive-antennas incorporating
a Fabry-Perot cavity, we focus on the angular dependence of the
transmission coefficient. If the source is omnidirectional, the factor
4|rs||ts| is independent on transmitting angle and can then be omitted.
Furthermore, as the source can usually considered as a point source,
it can be considered having negligible interaction with the reflecting
plane-waves inside the cavity, which leads to rs ≈ 0, ts ≈ 1 and
rs + ts ≈ 1. From these, using the coefficient version presented in
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Eq. (15) for predicting the radiation patterns of directive-antennas
based on a Fabry-Perot cavity excited internally is justified. However,
the strength of this coefficient should not be considered as the gain
of these antennas. The observed improvement of the gain of these
antennas is more associated with the enhancement of their directivity
that can be evaluated by calculating the half power beamwidth by using
Eq. (15) (with D replaced by D cos(θ)) as has been demonstrated in
[20].

5. CONCLUSION

A new analysis of Electromagnetic Band Gap structures (EBGs)
composed of multiple Partially Reflecting Surfaces (PRSs) of metallic
wires has been presented. Transmission coefficients, for a plane-wave
excitation, obtained with a semi-analytical method, which considers
only the fundamental mode interaction between PRSs, have been
validated by comparing them with the results of a full-wave method
(FDTD). The shape and the resonance frequencies of the transmission
coefficients have been studied by using analytical expressions. The two
cases, excitation from outside and excitation from inside, have been
treated. For the inside-excitation case, the transmission coefficient
presents a different number of resonance peaks than for the outside-
excitation case. A discussion is also presented concerning the strength
of the coefficient greater than one obtained when the plane-wave source
is inside the EBG structure. In addition, by using a transmission
line model, a normalized version for this coefficient is proposed, which
considers the available power by the source. This work is useful for
the design process of multilayered periodic structures and for physical
study of crystals excited internally, which has applications in the design
of high-gain antennas.

APPENDIX A.

The details for the calculation of the variable Vt (see Fig. 28(a)) are
given in this appendix. Fig. A1 presents the equivalent model for the
circuit of Fig. 28(a).

In this Figure, the impedance Z ′ can be written as following:

Z ′ =
Zc

2
Z//Zc + j tan kD/2
Z//Zc + j tan kD/2

=
Zc

2
1 − Zc

2Z+Zc
e−jkD

1 + Zc
2Z+Zc

e−jkD
=

Zc

2
1 − re−jkD

1 + re−jkD

(A1)
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Figure A1. Equivalent transmission line model of Fig. 28(a).

The expression for the voltage V1 (see Fig. A1) can be written:

V1 =
Z ′

Z ′ + Zs
es =

Zc(1 + re−jkD)
(2Zs + Zc) − (2Zs − Zc)re−jkD

es (A2)

And the current I1 is expressed as following:

I1 =
V1

Z ′ = 2
1 − re−jkD

(2Zs + Zc) − (2Zs − Zc)re−jkD
es (A3)

Then the voltage Vt (Fig. 28(a)) is deduced from these results:

Vt = V1 cos (kD/2) + jZcI1/2 sin (kD/2)

=
Zc(1 + r)e−jkD/2

(2Zs + Zc) − (2Zs − Zc)re−jkD

=
Zc

2Zs + Zc

(1 + r)e−jkD/2

1 − 2Zs − Zc

2Zs + Zc
re−jkD

=
Zc

2Zs + Zc

te−jkD/2

1 − (rs + ts)re−jkD
(A4)
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