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MULTI-LAYER CRYSTALS OF METALLIC WIRES: ANALYSIS OF THE TRANSMISSION COEFFICIENT FOR OUTSIDE AND INSIDE EXCITATION

This paper proposes a new analysis of the transmission coefficient at normal incidence for 2-D periodic crystals (also called Electromagnetic Band Gap (EBG) structures), which are finite in the direction of wave-propagation and are composed of metallic wires. The crystal is considered as a set of parallel Partially Reflecting Surfaces (PRSs), whose transmission and reflection characteristics are obtained rigorously using the Finite Difference Time Domain (FDTD) method. The transmission coefficient of the EBG structure is then obtained by using a plane-wave cascading approach considering single mode interactions between PRSs. The accuracy of the results given by the hybrid method is assessed compared to those obtained directly by the Finite Difference Time Domain (FDTD) method. The minima and maxima envelops and the resonance frequencies of the transmission coefficient are studied, with analytical expressions, for both, excitation from outside and excitation from inside. A discussion is also presented concerning the strength of the coefficient greater than one obtained when the plane-wave source is inside the EBG structure. In addition, by using a transmission line model, a normalized version for this coefficient is proposed, which considers the available power by the source.

INTRODUCTION

Electromagnetic bandgap (EBG) materials, also known as photonic crystals [START_REF] Yablonovitch | Inhibited spontaneous emission in solid state physics[END_REF][START_REF] Joannopoulos | Photonic Crystals: Molding the Flow of Light[END_REF], have been the subject of intensive research in the past few years. An important feature of these structures is their ability to open a bandgap that is a frequency range for which the propagation of electromagnetic waves is forbidden whatever the direction of propagation and the polarization. EBG materials are periodic structures composed of dielectric and/or metallic elements. Potential applications have been suggested in microwave and antenna domains, such as suppressing surface waves [START_REF] Yang | Microstrip antennas integrated with electromagnetic bandgap (EBG) structures: a low mutual coupling design for array applications[END_REF], creating controllable beams [START_REF] Poilasne | Active metallic photonic band-gap materials (MPBG): experimental results on beam shaper[END_REF][START_REF] Lourtioz | Toward controllable photonic crystals for centimeter and millimeter wave devices[END_REF], and designing high-gain antennas with a single feed [START_REF] Thevenot | Directive photonic band-gap antennas[END_REF][START_REF] Cheype | An electromagnetic bandgap resonator antenna[END_REF][START_REF] Biswas | Exceptionally directional sources with photonic band-gap crystals[END_REF][START_REF] Akalin | A highly directive dipole antenna embedded in a fabry-perot type cavity[END_REF][START_REF] Enoch | A metamaterial for directive emission[END_REF].

To analyze crystals with a rectangular lattice, various methods have been proposed for calculating the scattering of the periodic structures, e.g., the rigorous scattering matrix method [START_REF] Felbacq | Scattering by a random set of parallel cylinders[END_REF], and the generalized scattering matrix method with a cascading approach [START_REF] Hall | Analysis of multilayered periodic structures using generalized scattering matrix[END_REF], where the periodic structure is made from the cascading of multiple layers of PRSs, also called Frequency Selective Surfaces (FSSs) [START_REF] Munk | Frequency Selective Surfaces: Theory and Design[END_REF]. These methods are rigorous but they are typically time-consuming. In this paper, a simple modeling method based on a spectral planewave generalized-ray analysis with a cascading process is presented to predict the characteristics of a rectangular crystal. The proposed method does not consider the higher Floquet modes interactions between PRSs, but it reduces considerably the computational time compared to the preceding methods and it is well suited for the design process of the structure.

To our knowledge, the shapes and the resonance behaviors of the transmission coefficient for rectangular periodic crystals, which are finite in the direction of propagation, have not been studied enough. Indeed, it is of a lot of interest to be able to predict the stop-bands level and the locations of the transmission peaks in order to simplify the design process. For double layer structures, the Fabry Perot approach has been used in references [START_REF] De Lima | Fabry-Perot approach to the design of double layer FSS[END_REF][START_REF] Lee | Simple formulas for transmission through grids or plates[END_REF]. In this paper, new analytical results and a new parametrical study of multi-layers structures are proposed, in order to simplify the design of such structures.

Furthermore, to analyze EBG-antennas, many authors have used the characterization of the EBG structure when it is excited by a plane-wave from outside, and with an observation point outside the structure also [START_REF] Thevenot | Directive photonic band-gap antennas[END_REF][START_REF] Cheype | An electromagnetic bandgap resonator antenna[END_REF]. However the exciting source in the proposed antennas was inside the EBG structure. Because of the principle of reciprocity, the analysis of the transmission coefficient for a source located inside an EBG structure is equivalent to the calculation of the total wave inside an EBG structure excited from outside. This second analysis has been presented in [START_REF] Ozbay | Microwave applications of photonic crystals[END_REF], by using a ray method and in [START_REF] Guida | Time reversal symmetry, microcavities and photonic crystals[END_REF], where a numerical method has been proposed. However, the minima and maxima envelop and the resonance frequencies of the transmission coefficient have not been studied enough. In addition, the reason of the strength of the transmission coefficient greater than one, obtained for inside-excitation, has not been sufficiently developed and the physical insight of this anomaly has not been sufficiently explained. In this paper, a new analysis of the frequency response of a crystal with a rectangular lattice, excited from its interior, is presented, and a discussion is also proposed concerning the strength of the coefficient greater than one obtained when the plane-wave source is inside the EBG structure. In addition, a normalized version for this coefficient is proposed, by using a transmission line model and considering the available power by the source.

CHARACTERIZATION OF A SINGLE PARTIALLY REFLECTING SURFACE

The Partially Reflecting Surface (PRS) of infinite and perfectly conducting metallic wires, illuminated by a plane wave at normal incidence as illustrated in Fig. 1, is considered. In this figure, P t is the transversal period and a is the wire diameter. The coefficients t and r = |r|e jϕr are the complex transmission and the reflection coefficients of the surface, which are computed rigourously with the Finite Difference Time Domain (FDTD) method. In the FDTD code, Floquet boundaries conditions and a thin mesh ( = P eriod/80) are used. For the considered PRS, the magnitude of the transmission and reflection coefficients are plotted in Figs. 2 and 

EXCITATION FROM OUTSIDE

In this section, the previous results for the PRS, are used for the characterization of EBG structures composed of multiple layers of PRSs. The EBG structures are illuminated by a plane wave from outside, and they are finite in the direction of wave-propagation. In the following subsections, and in all the paper, the energy conservation relation |t 2 | = 1 -|r| 2 , which is verified because no absorption occurs, will be used to simplify analytical expressions.

Two Layer Structure

The Fabry-Perot cavity composed of two layers of PRSs separated by the distance D, and illuminated by a plane wave at its left, as illustrated in Fig. 5, is considered. Considering the multiple reflections inside the cavity, and considering only single mode interactions between layers, the amplitude of the total transmitted wave t 2 in the right part and of the total reflected wave in the left part r 2 can be written as following [START_REF] Hecht | Optics[END_REF]:

t 2 = t 2 ∞ n=0 r 2n e -jk(2n+1)D = t 2 e -jkD 1 -r 2 e -j2kD = t 2 e -jkD 1 -|r| 2 e -j(2kD-ϕr) (1)
r 2 = r + t 2 re -j2kD 1 -r 2 e -j2kD
(2) where k is the free space wave number.

In Figs. 6 to 8, are compared the coefficients |t 2 | given by FDTD and those obtained by the hybrid method, for a/P = 0.5%. Different values of the distance D are tested: D = 0.5P t , D = P t and D = 2P t . From these figures, it can be seen that semi-analytical method gives the same results than the full-wave method (FDTD) for P t < 0.8λ. In Figs. 9 to 11, the ratio a/P = 30% is now considered, and D vary by the same way than previously. One can note that for D = 0.5P t the hybrid method is less accurate. But for D ≥ P t and P t /λ < 0.8λ, the two method present the same results. Eq. ( 1) is now used in order to study the shape and the resonance frequencies of the transmission coefficient t 2 . The resonance picks, are obtained when all the transmitted partial waves have the same phase. This can be written as following:

ϕ r = kD -nπ, n = 0, ±1 . . . ( 3 
)
where ϕ r is the phase of r. At the resonance frequencies, the maximum value achieved by magnitude of the transmission coefficient t 2 is then given by: The envelop of the minima is obtained when the transmitted partial waves have opposite phase. This condition can be written as following:

|t 2 | max = |t| 2 1 -|r| 2 = 1 -|r| 2 1 -|r| 2 = 1 (4) 0 
ϕ r = kD + π/2 -nπ, n = 0, ±1 . . . ( 5 
)
The envelop of the minima can then be expressed as following:

|t 2 | min = |t| 2 1 + |r| 2 = 1 -|r| 2 1 + |r| 2 (6) 
Fig. 12 shows t 2 , the phase of r (ϕ r ) and the lines kDnπ (n = 0, 1 . . .), for D = P t and a/P t = 5%. The intersections between ϕ r and kDnπ correspond to the resonance peaks. Fig. 13 illustrate the envelop of the minima and of the maxima for |t 2 |. Fig. 14 illustrates that the intersections between ϕ r and kD +π/2-nπ correspond to the minima of |t 2 |. Fig. 15 illustrates the influence of a/P t in the position of the resonance peaks.

Multilayered Structures

In this section, the study is extended to multilayered structures. The structure of three layers equally spaced with the longitudinal period P l , as illustrated in Fig. 16 is considered. By replacing the two first layers by an equivalent surface of characteristics t 2 and r 2 , the coefficients of the three layers structure are written as following: hybrid method those obtained by FDTD. From these curves, Eq. ( 7) is exact until the normalized frequency P t /λ < 0.7.

t 3 = t 2 te -jkP l 1 -r 2 re -j2kP l (7)
r 3 = r 2 + t 2 2 re -j2kP l 1 -r 2 re -j2kP l (8)
|t 3 | has two peaks in each sides of the peaks of |t 2 | (see Fig. 18). By observing that when |t 2 | = 1, and then |r 2 | = 0, |t 3 | is in a minimum between the resonance peaks, the envelop of this minimum is then given by: By generalizing to n layers, it is obtained the following iterative equations, for the transmission and reflection coefficients: In Fig. 19, the magnitude of |t n | is plotted, for n = 5, using both, FDTD and semi-analytical methods, showing the accuracy of the hybrid method for P t /λ < 0.7. It is interesting to note that the transmission peaks of |t n | appear at the intersections between |t n-1 | and |t|. Indeed, this conducts to

|t 3 | = |t|/(1 -0) = |t|.
t n = t n-1 te -jkP l 1 -r n-1 re -j2kP l (9)
r n = r n-1 + t 2 n-1 re -j2kP l 1 -r n-1 re -j2kP l ( 10 
|t n | = |t n-1 ||t|/(1 -|r n-1 ||r|) = |t n-1 | 2 /(1 -|r n-1 | 2 ) = 1, at these resonance frequencies.
From Eq. ( 9), the envelop of the minima for |t n | can be written as following:

|t n | min = |t n-1 t| 1 + |r n-1 r| (11)
To obtain a simpler expression, the corresponding maxima of |r n | are first calculated. By using 2 , the following relation is obtained:

|r n | 2 max = 1 -|t n | 2 min , |t n-1 | 2 = 1 -|r n-1 | 2 and |t| 2 = 1 -|r|
|r n | max = |r| + |r n-1 | 1 + |r n-1 r| (12) 
In order to simplify this equation, we consider the coefficient

f n = 1-|rn|max 1+|rn|max .
After some algebra, it is obtained

f n = 1-|r| 1+|r| 1-|r n-1 | 1+|r n-1 | , and then f n = 1-|r| 1+|r| n
. From this, the envelop of the maxima for |r n | is given by

|r n | max = 1 -1-|r| 1+|r| n 1 + 1-|r| 1+|r| n ( 13 
)
The corresponding envelop of the minima for |t n | is then written as following:

|t n | min = 2 1-|r| 1+|r| n/2 1 + 1-|r| 1+|r| n ( 14 
)
The 

EXCITATION FROM INSIDE

In this section, the plane-wave source is considered inside the Fabry-Perot cavity or the EBG structure. For this case, the same ray analysis than previously is carried out.

Analysis of the "Transmission" Coefficient

Two Layers Structure

Two layers of PRSs are considered at the same distance D/2 at each side of the source as illustrated in Fig. 22(a). The source is considered transparent to electromagnetic waves and it sends two plane waves on each side. In the FDTD code, the source is modeled with a plane of current sources. Another model of the source, which considers the interactions of the source with the electromagnetic waves inside the cavity will be presented later in this paper. Because of the reciprocity principle, this analysis is equivalent to the one of the problem illustrated in Fig. 22(b), where the Fabry-perot cavity is excited from outside and the total wave is calculated at the center of the cavity. As referring to Fig. 22(a), the amplitude of the total transmitted wave T 2 is calculated by summing the rays outside the 

T 2 = t ∞ n=0 r n e -jk(2n+1)D/2 = te -jkD/2 1 -re -jkD ( 15 
)
|T 2 | is plotted in Fig. 23, for a/P t = 5% and D = P t , by using FDTD and semi-analytical method. For T 2 , the resonance condition is written:

ϕ r = kD -2nπ, n = 0, ±1 . . . ( 16 
)
This condition is illustrated in Fig. 24 for D = P t . In this figure, the coefficient |t 2 | is also plotted, in order to show that |t 2 | has twice more resonance frequencies than |T 2 |. The minima envelop is written as following:

ϕ r = kD -(2n + 1)π, n = 0, ±1 . . . ( 17 
)
The envelop of maxima for |T 2 | is given by:

|T 2 | max = |t| 1 -|r| = 1 -|r| 2 1 -|r| = 1 + |r| 1 -|r| ( 18 
)
From Eq. ( 18), |T 2 | max is equal or greater than one and can theoretically become very large if |r| is near one (note that 0 ≤ |r| < 1). This means that the source inside the cavity can supply more power in the presence of the cavity than without the cavity. This is due to the fact that the cavity modifies the matching of the source to free space. Taking into account the available power from the source, a normalized version for the transmission coefficient will be proposed later in this paper.

The envelop of minima for |T 2 | is expressed as following: The coefficient |T 2 |, the envelops of minima and maxima are plotted in Fig. 25, for D = P t , and in Fig. 29, for D = 2P t .

|T 2 | min = |t| 1 + |r| = 1 -|r| 2 1 + |r| = 1 -|r| 1 + |r| = 1 |T 2 | max ( 19 
)

Multilayered Structure

Multiple PRSs are on each sides of the source. The case P l = D = 2P t is considered. For n layers periodically spaced by the distance P l , at the distance P l /2 at each sides of the source, one can show that the coefficient T 2n is written:

T 2n = t n e -jkP l /2 1 -r n e -jkP l (20) 
In Eq. ( 20), t n and r n are obtained from Eqs. ( 9) and [START_REF] Enoch | A metamaterial for directive emission[END_REF]. The coefficient |T 2n | for n = 4 is plotted in Fig. 26. In this figure, this coefficient is compared to the transmission coefficients of the cavity walls (i.e., |t n |) and in Fig. 27, it is compared to the transmission coefficient of the all structure excited from outside (i.e., |t 2n |). From these curves, the coefficient |T 2n | has one more peak than |t n | in the first pass-band, but the two coefficients have the same number of peaks in the second pass-band (Fig. 26). In addition, the first peak of |T 2n | occurs at the same frequency that the first peak of |t 2n | (Fig. 27).

Concerning the Strength of "Transmission" Coefficient Greater than One

The strength of the coefficient greater than one is due to the fact that the power supplied by the source has not been considered. In the next sub-sections, a normalized version for this coefficient, which take into account the power available by the source is proposed, by using a transmission line model.

Power Normalization

The Fabry-Perot cavity excited from its inside (see Fig. 22(a)) is represented by the transmission line model as illustrated in Fig. 28(a). In Fig. 28(b), the transmission line model of the source with its matched impedance is also presented in order to calculate the available power from the source. Z c is the free-space characteristic impedance (Z c = 120π). Z is the equivalent circuit model of the PRS. Z s and e s are the equivalent impedance and equivalent tension of the source, respectively.

To calculate the transmission coefficient outside the cavity, the available power P i (see Fig. 28(b)) is first calculated [START_REF] Pozar | Microwave Engineering[END_REF]:

P i = 1 2 |V i | 2 Z * s = 1 2 |Z * s | 2 Z * s |Z * s + Z s | 2 |e s | 2 (21) 
where e s , Z s and V i parameters are shown in Fig. 28(b). Then, referring to Fig. 28(a), the transmitted power P t for one side of the transmission line is given by:

P t = 1 2 |V t | 2 Z c ( 22 
)
The transmission and reflection coefficients t and r can be expressed as functions of Z as following [START_REF] Pozar | Microwave Engineering[END_REF]:

t = 2Z 2Z + Z c (23) r = - Z c 2Z + Z c (24)
t s and r s are the transmission and reflection coefficients of the source and can be written as functions of Z s

t s = 2Z s 2Z s + Z c (25) r s = - Z c 2Z s + Z c (26)
By using Eqs. ( 23)-( 26), and after simplification (see Appendix), one can show that Eq. ( 22) can be written

P t = 1 2 Z c |2Z s + Z c | 2 |te -jkD/2 | 2 |1 -r(r s + t s )e -jkD | 2 |e s | 2 (27) 
Taking into account the power transmitted from the both sides of the line, the normalized squared magnitude of the transmission coefficient

|T 2 | 2
Norm,max can be expressed as following:

|T 2 | 2 Norm,max = 2P t P i = 2Z c Z * s |Z * s + Z s | 2 |Z * s | 2 |2Z s + Z c | 2 |te -jkD/2 | 2 |1 -r(r s + t s )e -jkD | 2 (28)
For the case of real Z s , Eq. ( 12) becomes

|T 2 | 2 Norm,max = 4|r s ||t s | |te -jkD/2 | 2 |1 -r(r s + t s )e -jkD | 2 (29) 
The maximum is then written

|T 2 | 2 N orm,max = 4|r s ||t s | 1 -|r| 2 (1 -|r||r s + t s |) 2 (30) 
In Fig. 29 Norm,max is always limited to 1, as expected.

Discussion

To analyze the directivity of an antenna embedded inside a Fabry-Perot cavity, one can use Eq. ( 15), where the variable D is replaced by D cos(θ), and θ is the angle of the transmitted waves. This analysis has been recently presented in [START_REF] Boutayeb | Directivity of an antenna embedded inside a Fabry-Perot cavity: Analysis and design[END_REF]. The directivity has been predicted by considering the angular dependance of the transmission coefficient. The Fabry-Perot cavity increases the directivity of the antenna and then its gain. Indeed, the relationship between directivity and gain for highly directive antennas is well known [START_REF] Balanis | Antenna Theory: Analysis and Design[END_REF]. However, it can be noted that the strength of the coefficient of Eq. ( 15), can not be interpreted has the gain of this antenna, because it does not consider the power available by the source.

Theoretically the coefficient of Eq. (29), is more correct than the coefficient of Eq. ( 15). However, it is less applicable in practice, because we don't have necessarily access to the transmission and reflection coefficients of the source.

A rapid comparison between Eq. ( 15) and Eq. ( 29) shows that the normalized version (Eq. ( 29)) has two factors more: 4|r s ||t s | and (r s + t s ) (in the denominator). For directive-antennas incorporating a Fabry-Perot cavity, we focus on the angular dependence of the transmission coefficient. If the source is omnidirectional, the factor 4|r s ||t s | is independent on transmitting angle and can then be omitted. Furthermore, as the source can usually considered as a point source, it can be considered having negligible interaction with the reflecting plane-waves inside the cavity, which leads to r s ≈ 0, t s ≈ 1 and r s + t s ≈ 1. From these, using the coefficient version presented in Eq. ( 15) for predicting the radiation patterns of directive-antennas based on a Fabry-Perot cavity excited internally is justified. However, the strength of this coefficient should not be considered as the gain of these antennas. The observed improvement of the gain of these antennas is more associated with the enhancement of their directivity that can be evaluated by calculating the half power beamwidth by using Eq. ( 15) (with D replaced by D cos(θ)) as has been demonstrated in [START_REF] Boutayeb | Directivity of an antenna embedded inside a Fabry-Perot cavity: Analysis and design[END_REF].

CONCLUSION

A new analysis of Electromagnetic Band Gap structures (EBGs) composed of multiple Partially Reflecting Surfaces (PRSs) of metallic wires has been presented. Transmission coefficients, for a plane-wave excitation, obtained with a semi-analytical method, which considers only the fundamental mode interaction between PRSs, have been validated by comparing them with the results of a full-wave method (FDTD). The shape and the resonance frequencies of the transmission coefficients have been studied by using analytical expressions. The two cases, excitation from outside and excitation from inside, have been treated. For the inside-excitation case, the transmission coefficient presents a different number of resonance peaks than for the outsideexcitation case. A discussion is also presented concerning the strength of the coefficient greater than one obtained when the plane-wave source is inside the EBG structure. In addition, by using a transmission line model, a normalized version for this coefficient is proposed, which considers the available power by the source. This work is useful for the design process of multilayered periodic structures and for physical study of crystals excited internally, which has applications in the design of high-gain antennas. The expression for the voltage V 1 (see Fig. A1) can be written:

V 1 = Z Z + Z s e s = Z c (1 + re -jkD ) (2Z s + Z c ) -(2Z s -Z c )re -jkD e s (A2)
And the current I 1 is expressed as following:

I 1 = V 1 Z = 2 1 -re -jkD (2Z s + Z c ) -(2Z s -Z c )re -jkD e s (A3)
Then the voltage V t (Fig. 28(a)) is deduced from these results: 

V t = V 1
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 6 Figure 6. Coefficient |t 2 | for D = P t /2, a/P t = 5%: FDTD (solid line) and semi-analytical model (dashed line).
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 728 Figure 7. Coefficient |t 2 | for D = P t , a/P t = 5%: FDTD (solid line) and semi-analytical model (dashed line).
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 2910 Figure 9. Coefficient |t 2 | for D = P t /2, a/P t = 30%: FDTD (solid line) and semi-analytical model (dashed line).
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 1213 Figure 12. The intersections between ϕ r and kDnπ, n = 0, 1, . . ., correspond to the transmission peaks of |t 2 |.
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 1521415 Fig. 15 shows results for the coefficient |t 3 | obtained with the
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 1617 Figure 16. Three layers of partially reflecting surfaces excited by a plane-wave source from outside.
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 1819 Figure 18. Coefficients |t|, |t 2 |, and |t 3 |. The intersections between |t| and |t 2 | correspond to the peaks of |t 3 |. The minimum between two peaks of |t 3 | is determined by |t|.

  coefficients |t 2 |, |t 3 |, |t 4 |, and |t 5 | and their minima envelops are reported in Fig. 20. The coefficients |r 2 |, and |r 5 | and their maxima envelops are plotted in Fig. 21.
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 2021 Figure 20. Coefficients |t 2 |, |t 3 |, |t 4 |, and |t 5 | and their minima envelops.
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 2223 Figure 22. Two equivalent problems: (a) Fabry-Perot cavity excited by a plane wave source from its inside. Calculation of the total transmitted wave outside the cavity (b) Fabry-Perot cavity excited by a plane wave source from outside. Calculation of the wave inside the cavity.
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 24 Figure 24. Intersections between ϕ r and kD -2nπ, n = 0, 1, . . ., correspond to transmission peaks of |T 2 |. |t 2 | has one more peaks than |T 2 |.
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 25 Figure 25. Coefficient |T 2 |, envelops of minima and maxima.

Figure 26 .Figure 27 .

 2627 Figure 26. Coefficient |T 2n |, for n = 4 and coefficient |t 4 |. P l = D = 2P t and a/P t = 5%. In the first pass-band, |T 2 * 4 | has two more peaks than |t 4 |. In the second pass-band the two coefficients have the same number of peaks.
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 28 Figure 28. Transmission line models: (a) Source-fabry perot cavity structure (b) Source with matched impedance.
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 29 Figure 29. |T 2 | 2 N orm,max coefficient versus Z s for different values of |r|.
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 1A1 Figure A1. Equivalent transmission line model of Fig. 28(a).

  cos (kD/2) + jZ c I 1 /2 sin (kD/2) = Z c (1 + r)e -jkD/2 (2Z s + Z c ) -(2Z s -Z c )re -jkD = Z c 2Z s + Z c (1 + r)e -jkD/2

  3, versus normalized frequency P t /λ, for different values of the ratio a/P t . The phase of the Phase of the reflection coefficient ϕ r versus normalized frequency P t /λ for different values of a/P t (FDTD).
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  , |T 2 | 2 Norm,max is plotted versus Z s for different values of |r|. From these curves, one can see that the strength of |T 2 | 2

APPENDIX A.

The details for the calculation of the variable V t (see Fig. 28(a)) are given in this appendix. Fig. A1 presents the equivalent model for the circuit of Fig. 28(a).

In this Figure, the impedance Z can be written as following: